-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
46 lines (46 loc) · 1.83 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Package: suddengains
Title: Identify Sudden Gains in Longitudinal Data
Date: 2023-02-27
Version: 0.7.2
Authors@R: c(
person("Milan", "Wiedemann", email = "milan.wiedemann@gmail.com", role = c("aut", "cre"), comment = c(ORCID = "0000-0003-1991-282X")),
person("Graham M", "Thew", role = "aut", comment = c(ORCID = "0000-0003-2851-1315")),
person("Richard", "Stott", role = "ctb", comment = c(ORCID = "0000-0003-2533-5504")),
person("Anke", "Ehlers", role = c("ctb", "ths"), comment = c(ORCID = "0000-0002-8742-0192")),
person("Mental Health Research UK", role = c("fnd")),
person("Wellcome Trust", role = c("fnd"))
)
Description: Identify sudden gains based on the three criteria outlined by Tang and DeRubeis (1999) <doi:10.1037/0022-006X.67.6.894> to a selection of repeated measures. Sudden losses, defined as the opposite of sudden gains can also be identified. Two different datasets can be created, one including all sudden gains/losses and one including one selected sudden gain/loss for each case. It can extract scores around sudden gains/losses. It can plot the average change around sudden gains/losses and trajectories of individual cases.
Depends:
R (>= 3.5.0)
License: MIT + file LICENSE
Encoding: UTF-8
URL: https://milanwiedemann.github.io/suddengains/
BugReports: https://github.com/milanwiedemann/suddengains/issues
LazyData: true
Imports:
dplyr (>= 0.8.0),
tibble (>= 2.1.1),
magrittr (>= 1.5),
rlang (>= 0.3.4),
stringr (>= 1.4.0),
ggplot2 (>= 3.1.1),
psych (>= 1.8.12),
readr (>= 1.3.1),
tidyr (>= 0.8.2),
ggrepel (>= 0.8.0),
patchwork (>= 1.0.0),
forcats,
naniar,
scales,
cli
Suggests:
haven (>= 2.1.0),
writexl (>= 1.1.0),
knitr (>= 1.21),
DT (>= 0.5),
rmarkdown (>= 1.11),
spelling (>= 2.1)
RoxygenNote: 7.2.3
VignetteBuilder: knitr
Language: en-US