-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHELP.txt
659 lines (579 loc) · 29.1 KB
/
HELP.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
--- SVR.DEM by G. Ch. Miliaresis
7th of January 2018
DESCRIPTION
@author: gmiliar (George Ch. Miliaresis)
Dimensonality reduction for DEMs (SVR.DEM) by G.Ch. Miliaresis
Ver. 2017.02 winpython implementation, (https://winpython.github.io/)
Details in https://github.com/miliaresis
https://sites.google.com/site/miliaresisg/
CONTENTS:
1. Processing options, active data header ('dataDEM2') and data
2. module: dmr_data_headers
3. module: dmr_myf
4. History file (test run)
5. Convergence (classification after k-means clustering)
_____________________________________________________________________
111111111111111111111111111111111111111111111111111111111111111111111
*********************************************************************
Processing options:
TIFF import options ['PIL', 'SKITimage']
Clustering options ['Kmeans', 'Kmeans refined by NBG']
DISPLAY ACTIVE DATA HEADER
---> ALOS, SRTM, ASTER GDEMs, 1 arc sec, Lat/Lon, WGS84, EGM96
Labels for x-axis, y-axis of images/histograms:
['H, m', 'Longitude,DD', 'Latitude, DD']
Geographic extent of data: [54.2362, 54.681, 27.1107, 27.5555]
AXES legends & Tables headers for rows & columns
['A', 'S', 'G']
['ALOS', 'SRTM', 'ASTER']
Domain of histograms, data: 301 2210 Rdata: -25 25 m
Subdir with images or vector files= data
Clustering method: Kmeans refined by NBG
Method for TIF file import: PIL
Data headers available: ['dataDEM2']
IMPORT/READ DATA FILES
Files EXTENSION= .tif DIR: data
FILENAMES: ['MASK', '01', '02', '03'] (names are case sensitive)
data\MASK.tif (1601, 1601)
data\01.tif (1601, 1601)
data\02.tif (1601, 1601)
data\03.tif (1601, 1601)
_____________________________________________________________________
222222222222222222222222222222222222222222222222222222222222222222222
*********************************************************************
Help on module dmr_data_headers:
NAME
dmr_data_headers - Created on 20th of December, 2017
----------------------------------------------------
TO LOAD your data, define a header in the file svr_data_headers.py.
---------------------------------------------------------
FUNCTIONS
dataDEM2(clustering_options, tiff_import_options)
ALOS, SRTM, ASTER GDEMs
phead(xy, ML, x2, x3, Lmn, Lmx, Rmn, Rmx, LDIR, T, cm)
PRINT DATA HEADER.
DATA files stored in a subdir named data within the dir where the
3 scripts are stored.
The tif image filenames (in the data dir) are fixed :
MASK [0, 1 for data], & 01, 02, 03 for the 3 DEMs (ALOS, SRTM, ASTER)
THE NAMES ARE CASE SENSITIVE and they are
determined automatically from the script (as well as the dimension of
the feature space -> length of tics list), so you should preserve them
in your data dir.
FILE
d:\run_z\dmr_data_headers.py
_____________________________________________________________________
333333333333333333333333333333333333333333333333333333333333333333333
*********************************************************************
Help on module dmr_myf:
NAME
dmr_myf - Created on 20th of December, 2017
DESCRIPTION
@author: gmiliar (George Ch. Miliaresis)
Dimensonality reduction for DEMs (SVR.DEM) by G.Ch. Miliaresis
Ver. 2017.02 winpython implementation, (https://winpython.github.io/)
Details in https://github.com/miliaresis
https://sites.google.com/site/miliaresisg/
FUNCTIONS
CreateMask_fromCluster(c)
Create mask matrix from cluster image matrix
ImplementSVR_MG(data, Labelmonth1, f)
main calls to SVR_MG
Kmeans_init(number_of_clusters)
Kmeans initialization
MainRun(data, rows, cols, GeoExtent, FigureLabels, LabelLST, LabelLSTxls, Hmin, Hmax, HRmin, HRmax, Clustering_method, clustering_options)
Main run module of SVR-mg.py
Processing_constants()
TIF import options (in function tiff_to_np in dim_myf)
if PIL then Image from PIL is used
if SKITimage then skimage.io is used
CLUSTERING & CLASSIFICATION OPTIONS:
K-means clustering
K-means clustering refined by Naive Bayes Gaussian classification
Reconstruct_matrix(evmat, LST)
Inverse transform keep pc-1 only
Reconstruct_matrix2(evmat, LST)
Inverse transform keep pc2 & pc3 only
centroids_visualize(data, figuretitle, Lx, MDLabel)
Visualize centroids
clusterRefineNBG(CM, centroid, iteration, centroid_variance, bb)
Clustering refinements by NBG,
display mean standardized divergence (n*n)-n, n=clusters
clustering_Kmeans(data, LabelLST, maxC, maxNBG, f, FigureLabels, Clustering_method)
Kmeans clustering
clustering_Kmeans_by_NBG(data, ML2, maxC, maxNBG, f, MDLabel, Clustering_method)
Kmeans clustering refined by NBG -density, display mean divergence
compute_descriptive_stats(RLST, x, lst_or_rlst)
compute mean, st.dev, kurtosis, skew
covariance_matrix(LST2)
Compoute variance-covariance matrix
create_data_files(data)
Read data file, create sub-matrices
creatematrix(rows, cols, ids, labels)
vector to image matrix
crosscorrelate(LST)
compute the crosscorrelation matrix
data_imv_read(LfilesDIR, featuredimension, T)
Main Data FILE (individual images read)
dem_differences_RMS(R)
Compute RMS of elevation differences among DEM pairs
dem_differences_absoulte_mean(R)
Compute absolute mean of elevation differences among DEM pairs
dem_differences_mean(R)
Compute mean of elevation differences among DEM pairs
dem_differences_stdev(R)
Compute st.dev of elevation differences among DEM pairs
descriptive_stats_RLST(data, LABELmonths3, Lx, f, lst_or_rlst)
Compute, display & save to xlsx descriptive statistics for Rdata
display_LST(rows, cols, xyrange, data, x, f, MDLabel)
display data images and save to png/tiff files
display_RLST(rows, cols, xyrange, data, RLST, x, f, MDLabel)
display Rdata images and save to png/tif files
display_save_clusterimage(rows, cols, xyrange, data, labels, f, w, MDLabe)
covert vector cluster labels to image, plot it & save to tif
display_save_maskimage(xyrange, c, MDLabel)
convert vector cluster labels to image, plot
dummyvar_fcheck()
assign dummy variables if file donot exist (to exit from return var
filenames_of_images(k)
Defines the filenames of images MASK, 01, 02, 03
findcreatenewpath()
Creates a new (non exisiting) path within the data/script-path where
the output files are stored. The path name is ...\outX where X is
a number determined automatically by this script
findpaths_data2csv(data)
find newpath to store outputs, change to newpath data dir
historyfile()
Track (save to file) the user inputs and the file outputs
input_screen_int(xstring, xmin, xmax)
input an integer X from screen in the range min<=X<=xmax
input_screen_str_yn(xstring)
input a string X from screen y, Y, n, N
pcanew(LST)
compute eigevalues, & eigenvectors
plotmatrix(c, xyrange, lut, name1, yesno, MDLabel)
plot a matrix
printHST(RLST, Fstring, xmin, xmax, x, f, MDLabel)
print histogram of LST/RLST
printNPP(RLST, x, f, lst_or_rlst)
print normal propability plot
printRLST_correlation(data, x)
write Rdata cross correlation matrix to xls file
print_RMS(Reconstruct, x, filename2, f)
Write elevation difference stats among DEM pairs to xls file
prn_xls_centroids(workbook, Centroids, LabelLST)
write Centroids matrix to a sheet of an excel workbook
prn_xls_cluster_membership(workbook, CLlabels)
compute & write cluster membership to excel file
prn_xls_divergence(workbook, Diverg)
write Divergence matrix to a sheet of an excel workbook
prn_xls_sigma(workbook, sigma, LabelLST)
write Sigma matrix to a sheet of an excel workbook
prnxls_confuse(workbook, data2)
Add confusion matrix to an xls sheet within a workbook
program_constants()
program constants:
maxC = Maximum number of clusters
maxNBG = Maximum number of NBG refinements
readdatafiles(filename, rows1, cols1, continue1, T)
Read SVR 2-d tif file & convert it 1-dto numpy array
readdatafiles0(filename, continue1, T)
Read image 2-d tif file & convert it 1-d to numpy array
readimagetiff(Ldatafiles, T)
Read individual tiff images - convert data
retranslatebymean(LST, RLST)
RETranslate a matrix by mean vector (per columns)
savematrix2image(c, name1)
save image to tif file
savevector_to_CSV(c, name1, f)
save vector data (derived from input images) to CSV files
sortdescent(evs, evmat)
sort eigenvalues-eigenvectors in descenting eigenvalue magnitude
standardize_matrix2(A)
standardize a 2-d matrix per columns
tiff_to_np(filename, T)
Read/Import tiff file
translatebymean(LST)
Translate a matrix by mean (per columns)
write2classconvergece(a, iteration)
Save mean inertia convergence to xlsx file
xlspca(data, data1, data2, data3, x)
write correlation matrix, eigen-vectors/values to xls file
FILE
d:\run_z\dmr_myf.py
______________________________________________________________
44444444444444444444444444444444444444444444444444444444444444
**************************************************************
HISTORY FILE: Test RUN
date: 2018-01-06 time = 1515222785.0923355
_history.txt tracks user selections & output files
Dimensionality reduction-DEM Selective Variance Reduction by
George Ch. Miliaresis (https://about.me/miliaresis)
Details in https://github.com/miliaresis [Repository SVR.DEM]
https://sites.google.com/site/miliaresisg/
Output data files are stored to : D:\run_z\out10
DISPLAY:descriptives, NPPs, images & histograms
SAVE vector data to CSV file (1st col = mask ID): vectors.csv
SAVE DEM comparisons: _initial_DEMS_DIF_stats.xlsx
Compute, display descriptive statistics
Write Rdata stats to descriptives_LST.xlsx
Save absolute kurtosis & skew to abs_kurtosis_skew.png
VISUALIZE & SAVE (png) the data images
L1_ALOS
L2_SRTM
L3_ASTER
Display & write NPP files
NPP_H1.png
NPP_H2.png
NPP_H3.png
DISPLAY & PRINT histograms for LST data
H_LST1.png
H_LST2.png
H_LST3.png
SVR IMPLEMENTATION
Compute cross correlation matrix
Compute eigenvalues & eigenvectors
Write xlsx file: pca.xlsx
---> Reconstruct from PC2 & PC3
SAVE DEM comparisons: _Reconstruted_DEMS_DIF_stats.xlsx
Compute, display descriptive statistics
Write Rdata stats to descriptives_RLST.xlsx
Save absolute kurtosis & skew to abs_kurtosis_skew.png
Display & write NPP files
NPP_RH1.png
NPP_RH2.png
NPP_RH3.png
VISUALIZE & SAVE (png/tif) the Rdata images
R1_ALOS
R2_SRTM
R3_ASTER
DISPLAY & PRINT histograms for RLST data
H_RLST1.png
H_RLST2.png
H_RLST3.png
Save clustering outputs to _clustering_output_tables.xlsx
Save centroids to centroids.png
Save sigma to Sigma.png
VISUALIZE cluster image & save to Clusters.png
Save to Clustermap.tif, & Clustermap.mat
_____________________________________________________________________
555555555555555555555555555555555555555555555555555555555555555555555
*********************************************************************
It might be non appropriate to fully reprocess / refine the K-means
clustering results with NBG classification (for DEM residual
information interpretation).
So just consider the example below as a convergence case study.
The percent 83.1 % at end, compares the initial cluster
map (formed by K-means clustering) to the final classified map
(formed by the 300 refinement iterations).
Convergence
1st: K-means clustering
Number of clusters in [2, 100]: 7
Number of NBG refinements in [5, 500]: 300
2nd:refine by NBG classification, MAX iterations: 300
no % vectors mean(st.divergence)
1 3.8322 ( 98228 ) 1.970045
2 3.8680 ( 99144 ) 2.344321
3 3.7974 ( 97334 ) 2.720994
4 3.7136 ( 95187 ) 3.082857
5 3.6144 ( 92644 ) 3.433549
6 3.4902 ( 89462 ) 3.784132
7 3.3796 ( 86625 ) 4.134461
8 3.2780 ( 84022 ) 4.484277
9 3.1763 ( 81414 ) 4.842610
10 3.0579 ( 78381 ) 5.226605
11 2.9298 ( 75096 ) 5.605404
12 2.8112 ( 72057 ) 5.975465
13 2.6951 ( 69080 ) 6.331822
14 2.5565 ( 65528 ) 6.671078
15 2.4303 ( 62294 ) 6.997241
16 2.3125 ( 59274 ) 7.307593
17 2.2193 ( 56885 ) 7.599233
18 2.1265 ( 54507 ) 7.872763
19 2.0165 ( 51687 ) 8.139425
20 1.9320 ( 49522 ) 8.389498
21 1.8551 ( 47550 ) 8.639150
22 1.7667 ( 45283 ) 8.878778
23 1.6890 ( 43293 ) 9.107852
24 1.6113 ( 41301 ) 9.322245
25 1.5160 ( 38857 ) 9.528048
26 1.4489 ( 37138 ) 9.727802
27 1.3635 ( 34950 ) 9.915437
28 1.2941 ( 33171 ) 10.094210
29 1.2371 ( 31710 ) 10.266284
30 1.1701 ( 29991 ) 10.435603
31 1.1116 ( 28493 ) 10.591728
32 1.0603 ( 27177 ) 10.741273
33 1.0153 ( 26024 ) 10.886203
34 0.9784 ( 25078 ) 11.025478
35 0.9373 ( 24024 ) 11.164367
36 0.8796 ( 22547 ) 11.298581
37 0.8226 ( 21085 ) 11.427965
38 0.7723 ( 19796 ) 11.543464
39 0.7316 ( 18753 ) 11.653255
40 0.6978 ( 17887 ) 11.753414
41 0.6748 ( 17296 ) 11.846644
42 0.6343 ( 16258 ) 11.937559
43 0.6090 ( 15611 ) 12.024399
44 0.5760 ( 14764 ) 12.109000
45 0.5440 ( 13945 ) 12.194221
46 0.5118 ( 13119 ) 12.276543
47 0.4843 ( 12414 ) 12.355780
48 0.4641 ( 11895 ) 12.426950
49 0.4466 ( 11447 ) 12.496063
50 0.4244 ( 10877 ) 12.563139
51 0.4047 ( 10374 ) 12.629435
52 0.3830 ( 9816 ) 12.692104
53 0.3771 ( 9666 ) 12.751669
54 0.3498 ( 8966 ) 12.810042
55 0.3307 ( 8476 ) 12.866677
56 0.3261 ( 8358 ) 12.923041
57 0.3098 ( 7940 ) 12.973538
58 0.2991 ( 7666 ) 13.022035
59 0.2936 ( 7526 ) 13.069765
60 0.2837 ( 7273 ) 13.114295
61 0.2828 ( 7249 ) 13.158304
62 0.2703 ( 6928 ) 13.201694
63 0.2678 ( 6863 ) 13.242992
64 0.2637 ( 6758 ) 13.286976
65 0.2616 ( 6705 ) 13.330512
66 0.2522 ( 6465 ) 13.372618
67 0.2460 ( 6306 ) 13.411799
68 0.2408 ( 6172 ) 13.450974
69 0.2271 ( 5822 ) 13.489082
70 0.2215 ( 5678 ) 13.523622
71 0.2206 ( 5655 ) 13.556506
72 0.2077 ( 5325 ) 13.590721
73 0.2119 ( 5432 ) 13.621196
74 0.2060 ( 5281 ) 13.652963
75 0.2029 ( 5200 ) 13.683631
76 0.1998 ( 5120 ) 13.714323
77 0.1926 ( 4937 ) 13.743423
78 0.1950 ( 4998 ) 13.770019
79 0.1875 ( 4805 ) 13.798033
80 0.1859 ( 4766 ) 13.823070
81 0.1857 ( 4759 ) 13.846213
82 0.1836 ( 4707 ) 13.872561
83 0.1839 ( 4715 ) 13.901870
84 0.1777 ( 4556 ) 13.931639
85 0.1811 ( 4641 ) 13.959283
86 0.1752 ( 4492 ) 13.986151
87 0.1742 ( 4464 ) 14.012049
88 0.1763 ( 4518 ) 14.039788
89 0.1710 ( 4384 ) 14.067708
90 0.1747 ( 4478 ) 14.094331
91 0.1696 ( 4346 ) 14.123367
92 0.1647 ( 4222 ) 14.149519
93 0.1714 ( 4394 ) 14.175403
94 0.1698 ( 4352 ) 14.203116
95 0.1648 ( 4224 ) 14.229827
96 0.1642 ( 4210 ) 14.255418
97 0.1612 ( 4131 ) 14.279488
98 0.1577 ( 4043 ) 14.306159
99 0.1524 ( 3906 ) 14.328890
100 0.1574 ( 4034 ) 14.353011
101 0.1472 ( 3772 ) 14.381336
102 0.1472 ( 3772 ) 14.406240
103 0.1443 ( 3699 ) 14.431170
104 0.1419 ( 3637 ) 14.456814
105 0.1458 ( 3736 ) 14.480170
106 0.1461 ( 3745 ) 14.505843
107 0.1387 ( 3556 ) 14.537208
108 0.1404 ( 3599 ) 14.566828
109 0.1356 ( 3476 ) 14.598140
110 0.1408 ( 3608 ) 14.625006
111 0.1307 ( 3349 ) 14.651316
112 0.1301 ( 3336 ) 14.675957
113 0.1321 ( 3386 ) 14.701783
114 0.1306 ( 3348 ) 14.725024
115 0.1292 ( 3311 ) 14.750317
116 0.1269 ( 3252 ) 14.772545
117 0.1234 ( 3162 ) 14.797587
118 0.1267 ( 3247 ) 14.816332
119 0.1262 ( 3236 ) 14.833959
120 0.1261 ( 3231 ) 14.852833
121 0.1285 ( 3294 ) 14.871717
122 0.1297 ( 3324 ) 14.893318
123 0.1314 ( 3367 ) 14.915886
124 0.1302 ( 3337 ) 14.935499
125 0.1328 ( 3405 ) 14.955018
126 0.1255 ( 3216 ) 14.977937
127 0.1273 ( 3263 ) 14.997817
128 0.1143 ( 2930 ) 15.012885
129 0.1145 ( 2934 ) 15.027802
130 0.1151 ( 2949 ) 15.048034
131 0.1092 ( 2800 ) 15.069110
132 0.1039 ( 2662 ) 15.088591
133 0.1001 ( 2566 ) 15.103214
134 0.0945 ( 2422 ) 15.117571
135 0.0959 ( 2457 ) 15.130576
136 0.0959 ( 2459 ) 15.139713
137 0.0981 ( 2514 ) 15.153871
138 0.0937 ( 2402 ) 15.165603
139 0.1023 ( 2621 ) 15.178544
140 0.0996 ( 2553 ) 15.195005
141 0.1038 ( 2661 ) 15.206446
142 0.0998 ( 2558 ) 15.218920
143 0.0978 ( 2506 ) 15.234213
144 0.0979 ( 2509 ) 15.244497
145 0.0996 ( 2553 ) 15.257131
146 0.1012 ( 2595 ) 15.273167
147 0.0963 ( 2469 ) 15.288724
148 0.0983 ( 2519 ) 15.300674
149 0.0979 ( 2510 ) 15.318656
150 0.0941 ( 2413 ) 15.330871
151 0.0999 ( 2561 ) 15.345144
152 0.0958 ( 2456 ) 15.361047
153 0.0946 ( 2426 ) 15.380945
154 0.0933 ( 2391 ) 15.393009
155 0.0948 ( 2430 ) 15.405712
156 0.0886 ( 2272 ) 15.422163
157 0.0881 ( 2257 ) 15.436250
158 0.0882 ( 2261 ) 15.448760
159 0.0835 ( 2139 ) 15.465442
160 0.0780 ( 1999 ) 15.476118
161 0.0800 ( 2050 ) 15.487984
162 0.0755 ( 1934 ) 15.497851
163 0.0729 ( 1868 ) 15.509905
164 0.0749 ( 1920 ) 15.518320
165 0.0689 ( 1766 ) 15.528145
166 0.0749 ( 1919 ) 15.535023
167 0.0618 ( 1585 ) 15.544282
168 0.0692 ( 1773 ) 15.554198
169 0.0661 ( 1693 ) 15.565681
170 0.0666 ( 1706 ) 15.574715
171 0.0640 ( 1640 ) 15.588891
172 0.0628 ( 1610 ) 15.598602
173 0.0628 ( 1609 ) 15.610842
174 0.0613 ( 1570 ) 15.622923
175 0.0608 ( 1559 ) 15.632100
176 0.0540 ( 1384 ) 15.641688
177 0.0615 ( 1577 ) 15.649015
178 0.0584 ( 1497 ) 15.660235
179 0.0524 ( 1342 ) 15.664813
180 0.0555 ( 1422 ) 15.673304
181 0.0513 ( 1315 ) 15.680562
182 0.0517 ( 1325 ) 15.682169
183 0.0535 ( 1372 ) 15.691580
184 0.0497 ( 1275 ) 15.699567
185 0.0491 ( 1259 ) 15.704506
186 0.0478 ( 1225 ) 15.711535
187 0.0464 ( 1189 ) 15.718195
188 0.0542 ( 1389 ) 15.720039
189 0.0537 ( 1377 ) 15.721503
190 0.0506 ( 1296 ) 15.726994
191 0.0543 ( 1393 ) 15.728065
192 0.0495 ( 1268 ) 15.730046
193 0.0455 ( 1167 ) 15.735765
194 0.0492 ( 1261 ) 15.737827
195 0.0418 ( 1072 ) 15.739133
196 0.0471 ( 1208 ) 15.744028
197 0.0471 ( 1208 ) 15.747054
198 0.0455 ( 1166 ) 15.747289
199 0.0490 ( 1255 ) 15.754310
200 0.0459 ( 1177 ) 15.762384
201 0.0437 ( 1121 ) 15.764128
202 0.0479 ( 1227 ) 15.770675
203 0.0431 ( 1105 ) 15.777470
204 0.0431 ( 1104 ) 15.780740
205 0.0432 ( 1108 ) 15.788257
206 0.0426 ( 1091 ) 15.796996
207 0.0361 ( 926 ) 15.800046
208 0.0419 ( 1074 ) 15.800899
209 0.0445 ( 1140 ) 15.805731
210 0.0387 ( 991 ) 15.812625
211 0.0446 ( 1144 ) 15.815506
212 0.0426 ( 1091 ) 15.818214
213 0.0390 ( 999 ) 15.826902
214 0.0421 ( 1078 ) 15.831557
215 0.0382 ( 978 ) 15.837976
216 0.0418 ( 1071 ) 15.843068
217 0.0349 ( 895 ) 15.851153
218 0.0298 ( 763 ) 15.856223
219 0.0312 ( 799 ) 15.859011
220 0.0324 ( 830 ) 15.861681
221 0.0408 ( 1045 ) 15.864957
222 0.0334 ( 857 ) 15.871507
223 0.0363 ( 931 ) 15.873839
224 0.0335 ( 859 ) 15.881175
225 0.0356 ( 912 ) 15.886148
226 0.0332 ( 850 ) 15.894594
227 0.0291 ( 746 ) 15.900502
228 0.0301 ( 771 ) 15.905046
229 0.0313 ( 802 ) 15.910283
230 0.0297 ( 762 ) 15.915292
231 0.0286 ( 732 ) 15.918836
232 0.0299 ( 766 ) 15.922403
233 0.0309 ( 792 ) 15.927755
234 0.0299 ( 767 ) 15.936226
235 0.0307 ( 787 ) 15.945598
236 0.0291 ( 747 ) 15.953744
237 0.0333 ( 854 ) 15.961416
238 0.0330 ( 845 ) 15.974147
239 0.0318 ( 814 ) 15.981704
240 0.0335 ( 858 ) 15.987721
241 0.0288 ( 739 ) 15.997911
242 0.0254 ( 652 ) 16.007595
243 0.0217 ( 557 ) 16.016525
244 0.0276 ( 707 ) 16.023349
245 0.0298 ( 764 ) 16.031961
246 0.0256 ( 657 ) 16.041337
247 0.0263 ( 673 ) 16.043987
248 0.0267 ( 684 ) 16.046332
249 0.0268 ( 688 ) 16.052024
250 0.0289 ( 742 ) 16.056477
251 0.0259 ( 665 ) 16.059819
252 0.0252 ( 647 ) 16.061851
253 0.0251 ( 644 ) 16.061987
254 0.0228 ( 585 ) 16.061693
255 0.0229 ( 587 ) 16.061162
256 0.0268 ( 687 ) 16.066249
257 0.0231 ( 593 ) 16.068953
258 0.0244 ( 625 ) 16.070274
259 0.0248 ( 636 ) 16.070099
260 0.0216 ( 554 ) 16.072281
261 0.0238 ( 609 ) 16.078714
262 0.0246 ( 630 ) 16.085496
263 0.0247 ( 632 ) 16.089612
264 0.0229 ( 588 ) 16.090993
265 0.0224 ( 575 ) 16.090011
266 0.0215 ( 551 ) 16.090361
267 0.0214 ( 548 ) 16.095471
268 0.0182 ( 466 ) 16.101468
269 0.0214 ( 548 ) 16.106102
270 0.0208 ( 532 ) 16.108473
271 0.0206 ( 527 ) 16.109966
272 0.0220 ( 564 ) 16.108609
273 0.0204 ( 522 ) 16.107681
274 0.0163 ( 417 ) 16.111305
275 0.0182 ( 466 ) 16.114304
276 0.0188 ( 483 ) 16.118800
277 0.0230 ( 589 ) 16.122662
278 0.0197 ( 504 ) 16.124731
279 0.0242 ( 621 ) 16.125532
280 0.0186 ( 476 ) 16.126810
281 0.0184 ( 472 ) 16.127973
282 0.0178 ( 456 ) 16.128690
283 0.0167 ( 428 ) 16.129534
284 0.0213 ( 547 ) 16.132516
285 0.0210 ( 539 ) 16.135663
286 0.0229 ( 588 ) 16.137391
287 0.0181 ( 464 ) 16.137173
288 0.0158 ( 404 ) 16.138154
289 0.0146 ( 373 ) 16.137111
290 0.0142 ( 363 ) 16.139087
291 0.0178 ( 456 ) 16.138476
292 0.0179 ( 458 ) 16.138262
293 0.0158 ( 404 ) 16.140455
294 0.0183 ( 470 ) 16.142718
295 0.0180 ( 462 ) 16.145703
296 0.0194 ( 497 ) 16.151119
297 0.0211 ( 540 ) 16.153308
298 0.0183 ( 470 ) 16.154665
299 0.0175 ( 448 ) 16.155528
300 0.0134 ( 344 ) 16.155097
Save mean inertia convergence to file: convergence_NBG.xlsx
NBG iterations: 300 output file: _clustering_output_tables.xlsx
Centroids, Sigma, Divergence, Occurence, Confusion Matrix
Confusion of KMEANS versus F I N A L NBG
Reclassified by NBG 83.1381 percent ( 2130996 )