-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
107 lines (84 loc) · 3.47 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
'''GPT model for Tensorflow.
Author: Emilio Morales (mil.mor.mor@gmail.com)
Mar 2022
'''
import os
import tensorflow as tf
import tensorflow_text as tf_text
import keras_nlp
from huggingface_hub import hf_hub_download
import json
def next_token(x, i, model, temperature, k):
logits = model(x, training=False) / temperature
logits, indices = tf.math.top_k(logits[:, i-1, :], k=k, sorted=False)
probabilities = tf.nn.softmax(logits, axis=-1)
rand_idx = tf.random.categorical(tf.math.log(probabilities), num_samples=1, dtype=tf.int32)
sample = tf.gather_nd(indices, rand_idx, batch_dims=1)
# Set the value at position i in x to sample
x = tf.tensor_scatter_nd_update(x, [[0, i]], sample)
return x
def sample(model, tokenizer, context, max_len, k=10, temperature=1.0, seed=None):
x = tokenizer.tokenize(tf_text.normalize_utf8(context, 'NFKD'))
x = tf.expand_dims(x, 0)
start_len = x.shape[1]
x = tf.keras.preprocessing.sequence.pad_sequences(x,
maxlen=model.seq_len, padding="post"
)
if seed is not None:
tf.random.set_seed(seed)
for i in range(start_len, max_len):
x = next_token(x, i, model, temperature, k)
# Find the first occurrence of zero and truncate the sequence at that point
zero_positions = tf.where(tf.equal(x, 0))
if tf.size(zero_positions) > 0:
first_zero_pos = zero_positions[0, 1] # Get the position of the first zero
x = x[:, :first_zero_pos]
out_text = tokenizer.detokenize(x).numpy()[0].decode('utf-8', errors='replace')
return out_text
class Config(object):
def __init__(self, input_dict, save_dir):
file_path = os.path.join(save_dir, f"{save_dir}_config.json")
# Check if the configuration file exists
if os.path.exists(file_path):
self.load_config(file_path)
else:
for key, value in input_dict.items():
setattr(self, key, value)
self.save_config(file_path, save_dir)
print(self.__dict__)
def save_config(self, file_path, save_dir):
# Create the directory if it doesn't exist
os.makedirs(save_dir, exist_ok=True)
# Convert input_dict to JSON and save to file
with open(file_path, "w") as f:
json.dump(vars(self), f, indent=4)
print(f'New config {file_path} saved')
def load_config(self, file_path):
# Load configuration from the existing file
with open(file_path, "r") as f:
config_data = json.load(f)
# Update the object's attributes with loaded configuration
for key, value in config_data.items():
setattr(self, key, value)
print(f'Config {file_path} loaded')
class Loader():
def __init__(self):
pass
def download(self, ckpt_dir):
hf_hub_download(repo_id="milmor/gpt-mini",
filename=f"{ckpt_dir}/ckpt-1760000.data-00000-of-00001",
local_dir='./'
)
hf_hub_download(repo_id="milmor/gpt-mini",
filename=f"{ckpt_dir}/ckpt-1760000.index",
local_dir='./'
)
hf_hub_download(repo_id="milmor/gpt-mini",
filename=f"{ckpt_dir}/checkpoint",
local_dir='./')
config_file = hf_hub_download(repo_id="milmor/gpt-mini",
filename="openwt_512_d_512/openwt_512_d_512_config.json",
local_dir='./'
)
with open(config_file) as f:
self.config = json.load(f)