-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
266 lines (219 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
'''
Author: Emilio Morales (mil.mor.mor@gmail.com)
Jan 2022
'''
import argparse
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Disable tensorflow debugging logs
import time
import tensorflow as tf
import json
from diffaug import DiffAugment
from model import *
from utils import *
class FastGAN(tf.keras.Model):
def __init__(self, generator, discriminator, noise_dim, gp_weight, rec_weight, policy, d_steps):
super(FastGAN, self).__init__()
self.generator = generator
self.discriminator = discriminator
self.noise_dim = noise_dim
self.gp_weight = gp_weight
self.rec_weight = rec_weight
self.policy = policy
self.d_steps = d_steps
# Metrics
self.g_loss_avg = tf.keras.metrics.Mean()
self.d_loss_avg = tf.keras.metrics.Mean()
self.gp_avg = tf.keras.metrics.Mean()
self.rec_avg = tf.keras.metrics.Mean()
self.d_total_avg = tf.keras.metrics.Mean()
def compile(self, g_optimizer, d_optimizer, g_loss, d_loss, rec_loss):
super(FastGAN, self).compile()
self.g_optimizer = g_optimizer
self.d_optimizer = d_optimizer
self.g_loss = g_loss
self.d_loss = d_loss
self.rec_loss = rec_loss
def gradient_penalty(self, real_samples, fake_samples):
alpha = tf.random.uniform([real_samples.shape[0], 1, 1, 1], minval=0., maxval=1.)
diff = fake_samples - real_samples
interpolation = real_samples + alpha * diff
with tf.GradientTape() as gradient_tape:
gradient_tape.watch(interpolation)
pred = self.discriminator(DiffAugment(interpolation, self.policy), training=True)
gradients = gradient_tape.gradient(pred[0], [interpolation])[0]
norm = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=[1, 2, 3]))
gradient_penalty = tf.reduce_mean((norm - 1.0) ** 2)
return gradient_penalty
@tf.function
def train_step(self, real_images):
batch_size = tf.shape(real_images)[0]
noise = tf.random.normal(shape=[batch_size, self.noise_dim])
# Train the discriminator
for _ in range(self.d_steps):
with tf.GradientTape() as d_tape:
generator_output = self.generator(noise, training=True)
real_aug = DiffAugment(real_images, self.policy)
fake_aug = DiffAugment(generator_output[0], self.policy)
real_disc_output = self.discriminator(real_aug, decode=True, training=True)
fake_disc_output = self.discriminator(fake_aug, training=True)
d_loss = self.d_loss(real_disc_output[0], fake_disc_output[0])
rec_loss = self.rec_loss(real_aug, real_disc_output[1]) * self.rec_weight
gp = 0.0
if self.gp_weight != 0:
gp = self.gradient_penalty(real_images, generator_output[0]) * self.gp_weight
d_total = d_loss + rec_loss + gp
d_gradients = d_tape.gradient(d_total, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(
zip(d_gradients, self.discriminator.trainable_weights)
)
# Save discriminator metrics
self.d_loss_avg(d_loss)
self.gp_avg(gp)
self.rec_avg(rec_loss)
self.d_total_avg(d_total)
noise = tf.random.normal(shape=[batch_size, self.noise_dim])
# Train the generator
with tf.GradientTape() as g_tape:
generator_output = self.generator(noise, training=True)
fake_aug = DiffAugment(generator_output[0], self.policy)
fake_disc_output = self.discriminator(fake_aug, training=True)
g_loss = self.g_loss(fake_disc_output[0])
g_gradients = g_tape.gradient(g_loss, self.generator.trainable_weights)
self.g_optimizer.apply_gradients(zip(g_gradients, self.generator.trainable_weights))
# Save generator metrics
self.g_loss_avg(g_loss)
def create_log(self, model_dir, ckpt_interval, max_ckpt_to_keep):
log_dir = os.path.join(model_dir, 'log-dir')
self.writer = tf.summary.create_file_writer(log_dir)
checkpoint_dir = os.path.join(model_dir, 'training-checkpoints')
self.ckpt = tf.train.Checkpoint(g_optimizer=self.g_optimizer,
d_optimizer=self.d_optimizer,
generator=self.generator,
discriminator=self.discriminator,
epoch=tf.Variable(0))
self.ckpt_manager = tf.train.CheckpointManager(self.ckpt, directory=checkpoint_dir,
max_to_keep=max_ckpt_to_keep)
self.ckpt_interval = ckpt_interval
if self.ckpt_manager.latest_checkpoint:
last_ckpt = self.ckpt_manager.latest_checkpoint
self.ckpt.restore(last_ckpt)
print(f'Checkpoint restored from {last_ckpt} at epoch {int(self.ckpt.epoch)}')
self.ckpt.epoch.assign_add(1)
def save_log(self, verbose=1, reset_states=True):
# Cast epoch
epoch = int(self.ckpt.epoch)
# Print metrics
if verbose:
print(f'Epoch: {epoch}')
print(f'Generator loss: {self.g_loss_avg.result():.4f}')
print(f'Discriminator loss: {self.d_loss_avg.result():.4f}')
print(f'GP: {self.gp_avg.result():.4f}')
print(f'Reconstruction loss: {self.rec_avg.result():.4f}')
print(f'Discriminator total loss: {self.d_total_avg.result():.4f}\n')
# Save metrics
with self.writer.as_default():
tf.summary.scalar('generator_loss', self.g_loss_avg.result(), step=epoch)
tf.summary.scalar('discriminator_loss', self.d_loss_avg.result(), step=epoch)
tf.summary.scalar('gp_loss', self.gp_avg.result(), step=epoch)
tf.summary.scalar('reconstruction_loss', self.rec_avg.result(), step=epoch)
tf.summary.scalar('discriminator_total_loss', self.d_total_avg.result(), step=epoch)
# Reset metrics
if reset_states:
self.g_loss_avg.reset_states()
self.d_loss_avg.reset_states()
self.gp_avg.reset_states()
self.rec_avg.reset_states()
self.d_total_avg.reset_states()
# Save checlpoint
if epoch % self.ckpt_interval == 0:
self.ckpt_manager.save(epoch)
print('Checkpoint saved at epoch {}\n'.format(epoch))
self.ckpt.epoch.assign_add(1)
def train(args):
print('\n#########################')
print('Self-Supervised GAN Train')
print('#########################\n')
file_pattern = args.file_pattern
main_dir = args.main_dir
run_dir = args.run_dir
ckpt_interval = args.ckpt_interval
epochs = args.epochs
test_seed = args.test_seed
max_ckpt_to_keep = args.max_ckpt_to_keep
global hparams
# Create directory
model_dir = os.path.join(main_dir, run_dir)
hparams_file = os.path.join(model_dir, run_dir + '_hparams.json')
if os.path.isfile(hparams_file):
with open(hparams_file) as f:
hparams = json.load(f)
print(f'hparams {hparams_file} loaded')
else:
from hparams import hparams
os.makedirs(model_dir, exist_ok=True)
json_hparams = json.dumps(hparams)
with open(hparams_file, 'w') as f:
f.write(json_hparams)
print(f'hparams {hparams_file} saved')
gen_test_dir = os.path.join(model_dir, 'test-gen')
disc_test_dir = os.path.join(model_dir, 'test-rec')
os.makedirs(gen_test_dir, exist_ok=True)
os.makedirs(disc_test_dir, exist_ok=True)
# Define model
generator = Generator(filters=hparams['g_dim'],
initializer=hparams['g_initializer'])
discriminator = Discriminator(filters=hparams['d_dim'],
initializer=hparams['d_initializer'],
dec_dim=hparams['dec_dim'])
gan = FastGAN(generator=generator, discriminator=discriminator,
noise_dim=hparams['noise_dim'],
gp_weight=hparams['gp_weight'],
rec_weight=hparams['rec_weight'],
policy=hparams['policy'],
d_steps=hparams['d_steps'])
# Create dataset and define losses
train_ds = create_train_ds(file_pattern, hparams['batch_size'])
generator_loss, discriminator_loss = get_loss(hparams['loss'])
perc_loss = LossNetwork(128, hparams['rec_layers'])
gan.compile(
g_optimizer=tf.keras.optimizers.Adam(learning_rate=hparams['g_learning_rate'],
beta_1=hparams['g_beta_1'],
beta_2=hparams['g_beta_2']),
d_optimizer=tf.keras.optimizers.Adam(learning_rate=hparams['d_learning_rate'],
beta_1=hparams['d_beta_1'],
beta_2=hparams['d_beta_2']),
g_loss=generator_loss,
d_loss=discriminator_loss,
rec_loss=perc_loss
)
gan.create_log(model_dir, ckpt_interval, max_ckpt_to_keep)
# Log vars
num_examples_to_generate = 64
noise_seed = tf.random.normal([num_examples_to_generate,
hparams['noise_dim']], seed=test_seed)
train_batch = next(iter(train_ds))
gan.ckpt.epoch.assign_add(1)
start_epoch = int(gan.ckpt.epoch)
for _ in range(start_epoch, epochs):
start = time.time()
for image_batch in train_ds:
gan.train_step(image_batch)
print(f'\nTime for epoch is {time.time()-start} sec')
save_generator_img(gan.generator, int(gan.ckpt.epoch), noise_seed, gen_test_dir)
save_decoder_img(gan.discriminator, int(gan.ckpt.epoch), train_batch, disc_test_dir)
gan.save_log()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--file_pattern')
parser.add_argument('--main_dir', default='model-1')
parser.add_argument('--run_dir', default='run-1')
parser.add_argument('--ckpt_interval', type=int, default=5)
parser.add_argument('--epochs', type=int, default=5000)
parser.add_argument('--test_seed', type=int, default=15)
parser.add_argument('--max_ckpt_to_keep', type=int, default=5)
args = parser.parse_args()
train(args)
if __name__ == '__main__':
main()