-
Notifications
You must be signed in to change notification settings - Fork 121
/
cp_dataset.py
263 lines (223 loc) · 9.9 KB
/
cp_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# coding=utf-8
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
from PIL import ImageDraw
import os.path as osp
import numpy as np
import json
class CPDataset(data.Dataset):
"""Dataset for CP-VTON+.
"""
def __init__(self, opt):
super(CPDataset, self).__init__()
# base setting
self.opt = opt
self.root = opt.dataroot
self.datamode = opt.datamode # train or test or self-defined
self.stage = opt.stage # GMM or TOM
self.data_list = opt.data_list
self.fine_height = opt.fine_height
self.fine_width = opt.fine_width
self.radius = opt.radius
self.data_path = osp.join(opt.dataroot, opt.datamode)
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# load data list
im_names = []
c_names = []
with open(osp.join(opt.dataroot, opt.data_list), 'r') as f:
for line in f.readlines():
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
self.im_names = im_names
self.c_names = c_names
def name(self):
return "CPDataset"
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
if self.stage == 'GMM':
c = Image.open(osp.join(self.data_path, 'cloth', c_name))
cm = Image.open(osp.join(self.data_path, 'cloth-mask', c_name)).convert('L')
else:
c = Image.open(osp.join(self.data_path, 'warp-cloth', im_name)) # c_name, if that is used when saved
cm = Image.open(osp.join(self.data_path, 'warp-mask', im_name)).convert('L') # c_name, if that is used when saved
c = self.transform(c) # [-1,1]
cm_array = np.array(cm)
cm_array = (cm_array >= 128).astype(np.float32)
cm = torch.from_numpy(cm_array) # [0,1]
cm.unsqueeze_(0)
# person image
im = Image.open(osp.join(self.data_path, 'image', im_name))
im = self.transform(im) # [-1,1]
"""
LIP labels
[(0, 0, 0), # 0=Background
(128, 0, 0), # 1=Hat
(255, 0, 0), # 2=Hair
(0, 85, 0), # 3=Glove
(170, 0, 51), # 4=SunGlasses
(255, 85, 0), # 5=UpperClothes
(0, 0, 85), # 6=Dress
(0, 119, 221), # 7=Coat
(85, 85, 0), # 8=Socks
(0, 85, 85), # 9=Pants
(85, 51, 0), # 10=Jumpsuits
(52, 86, 128), # 11=Scarf
(0, 128, 0), # 12=Skirt
(0, 0, 255), # 13=Face
(51, 170, 221), # 14=LeftArm
(0, 255, 255), # 15=RightArm
(85, 255, 170), # 16=LeftLeg
(170, 255, 85), # 17=RightLeg
(255, 255, 0), # 18=LeftShoe
(255, 170, 0) # 19=RightShoe
(170, 170, 50) # 20=Skin/Neck/Chest (Newly added after running dataset_neck_skin_correction.py)
]
"""
# load parsing image
parse_name = im_name.replace('.jpg', '.png')
im_parse = Image.open(
# osp.join(self.data_path, 'image-parse', parse_name)).convert('L')
osp.join(self.data_path, 'image-parse-new', parse_name)).convert('L') # updated new segmentation
parse_array = np.array(im_parse)
im_mask = Image.open(
osp.join(self.data_path, 'image-mask', parse_name)).convert('L')
mask_array = np.array(im_mask)
# parse_shape = (parse_array > 0).astype(np.float32) # CP-VTON body shape
# Get shape from body mask (CP-VTON+)
parse_shape = (mask_array > 0).astype(np.float32)
if self.stage == 'GMM':
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 4).astype(np.float32) + \
(parse_array == 13).astype(
np.float32) # CP-VTON+ GMM input (reserved regions)
else:
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 2).astype(np.float32) + \
(parse_array == 4).astype(np.float32) + \
(parse_array == 9).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32) + \
(parse_array == 16).astype(np.float32) + \
(parse_array == 17).astype(
np.float32) # CP-VTON+ TOM input (reserved regions)
parse_cloth = (parse_array == 5).astype(np.float32) + \
(parse_array == 6).astype(np.float32) + \
(parse_array == 7).astype(np.float32) # upper-clothes labels
# shape downsample
parse_shape_ori = Image.fromarray((parse_shape*255).astype(np.uint8))
parse_shape = parse_shape_ori.resize(
(self.fine_width//16, self.fine_height//16), Image.BILINEAR)
parse_shape = parse_shape.resize(
(self.fine_width, self.fine_height), Image.BILINEAR)
parse_shape_ori = parse_shape_ori.resize(
(self.fine_width, self.fine_height), Image.BILINEAR)
shape_ori = self.transform(parse_shape_ori) # [-1,1]
shape = self.transform(parse_shape) # [-1,1]
phead = torch.from_numpy(parse_head) # [0,1]
# phand = torch.from_numpy(parse_hand) # [0,1]
pcm = torch.from_numpy(parse_cloth) # [0,1]
# upper cloth
im_c = im * pcm + (1 - pcm) # [-1,1], fill 1 for other parts
im_h = im * phead - (1 - phead) # [-1,1], fill -1 for other parts
# load pose points
pose_name = im_name.replace('.jpg', '_keypoints.json')
with open(osp.join(self.data_path, 'pose', pose_name), 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['people'][0]['pose_keypoints']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 3))
point_num = pose_data.shape[0]
pose_map = torch.zeros(point_num, self.fine_height, self.fine_width)
r = self.radius
im_pose = Image.new('L', (self.fine_width, self.fine_height))
pose_draw = ImageDraw.Draw(im_pose)
for i in range(point_num):
one_map = Image.new('L', (self.fine_width, self.fine_height))
draw = ImageDraw.Draw(one_map)
pointx = pose_data[i, 0]
pointy = pose_data[i, 1]
if pointx > 1 and pointy > 1:
draw.rectangle((pointx-r, pointy-r, pointx +
r, pointy+r), 'white', 'white')
pose_draw.rectangle(
(pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white')
one_map = self.transform(one_map)
pose_map[i] = one_map[0]
# just for visualization
im_pose = self.transform(im_pose)
# cloth-agnostic representation
agnostic = torch.cat([shape, im_h, pose_map], 0)
if self.stage == 'GMM':
im_g = Image.open('grid.png')
im_g = self.transform(im_g)
else:
im_g = ''
pcm.unsqueeze_(0) # CP-VTON+
result = {
'c_name': c_name, # for visualization
'im_name': im_name, # for visualization or ground truth
'cloth': c, # for input
'cloth_mask': cm, # for input
'image': im, # for visualization
'agnostic': agnostic, # for input
'parse_cloth': im_c, # for ground truth
'shape': shape, # for visualization
'head': im_h, # for visualization
'pose_image': im_pose, # for visualization
'grid_image': im_g, # for visualization
'parse_cloth_mask': pcm, # for CP-VTON+, TOM input
'shape_ori': shape_ori, # original body shape without resize
}
return result
def __len__(self):
return len(self.im_names)
class CPDataLoader(object):
def __init__(self, opt, dataset):
super(CPDataLoader, self).__init__()
if opt.shuffle:
train_sampler = torch.utils.data.sampler.RandomSampler(dataset)
else:
train_sampler = None
self.data_loader = torch.utils.data.DataLoader(
dataset, batch_size=opt.batch_size, shuffle=(
train_sampler is None),
num_workers=opt.workers, pin_memory=True, sampler=train_sampler)
self.dataset = dataset
self.data_iter = self.data_loader.__iter__()
def next_batch(self):
try:
batch = self.data_iter.__next__()
except StopIteration:
self.data_iter = self.data_loader.__iter__()
batch = self.data_iter.__next__()
return batch
if __name__ == "__main__":
print("Check the dataset for geometric matching module!")
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataroot", default="data")
parser.add_argument("--datamode", default="train")
parser.add_argument("--stage", default="GMM")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=192)
parser.add_argument("--fine_height", type=int, default=256)
parser.add_argument("--radius", type=int, default=3)
parser.add_argument("--shuffle", action='store_true',
help='shuffle input data')
parser.add_argument('-b', '--batch-size', type=int, default=4)
parser.add_argument('-j', '--workers', type=int, default=1)
opt = parser.parse_args()
dataset = CPDataset(opt)
data_loader = CPDataLoader(opt, dataset)
print('Size of the dataset: %05d, dataloader: %04d'
% (len(dataset), len(data_loader.data_loader)))
first_item = dataset.__getitem__(0)
first_batch = data_loader.next_batch()
from IPython import embed
embed()