-
Notifications
You must be signed in to change notification settings - Fork 1
/
began.py
240 lines (190 loc) · 8.38 KB
/
began.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""BEGAN Model"""
import argparse
import gzip
import os
import shutil
import urllib.request
import mindspore
import mindspore.common.initializer as init
from mindspore import nn, Tensor
from mindspore import ops
from mindspore.dataset.vision import transforms
from img_utils import to_image
file_path = "../../data/MNIST/"
if not os.path.exists(file_path):
# 下载数据集
if not os.path.exists('../../data'):
os.mkdir('../../data')
os.mkdir(file_path)
base_url = 'http://yann.lecun.com/exdb/mnist/'
file_names = ['train-images-idx3-ubyte.gz', 'train-labels-idx1-ubyte.gz',
't10k-images-idx3-ubyte.gz', 't10k-labels-idx1-ubyte.gz']
for file_name in file_names:
url = (base_url + file_name).format(**locals())
print("正在从" + url + "下载MNIST数据集...")
urllib.request.urlretrieve(url, os.path.join(file_path, file_name))
with gzip.open(os.path.join(file_path, file_name), 'rb') as f_in:
print("正在解压数据集...")
with open(os.path.join(file_path, file_name)[:-3], 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(os.path.join(file_path, file_name))
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=62, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="number of image channels")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
class Generator(nn.Cell):
"""Generator network"""
def __init__(self):
super().__init__(Generator)
self.init_size = opt.img_size // 4
self.l1 = nn.SequentialCell(nn.Dense(opt.latent_dim, 128 * self.init_size ** 2))
self.conv_blocks = nn.SequentialCell(
nn.BatchNorm2d(128,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
nn.Conv2d(128, 128, 3, 1, 'pad', 1,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(128, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
nn.Conv2d(128, 64, 3, 1, 'pad', 1,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(64, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Conv2d(64, opt.channels, 3, 1, 'pad', 1,
weight_init=init.Normal(0.02, 0.0)),
nn.Tanh()
)
def construct(self, _noise):
out = self.l1(_noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
_img = self.conv_blocks(out)
return _img
class Discriminator(nn.Cell):
"""Discriminator Network"""
def __init__(self):
super().__init__(Discriminator)
# Upsampling
self.down = nn.SequentialCell(
nn.Conv2d(opt.channels, 64, 3,
2, 'pad', 1,
weight_init=init.Normal(0.02, 0.0)),
nn.ReLU()
)
# Fully-connected layers
self.down_size = opt.img_size // 2
down_dim = 64 * (opt.img_size // 2) ** 2
self.fc = nn.SequentialCell(
nn.Dense(down_dim, 32),
nn.BatchNorm1d(32, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.ReLU(),
nn.Dense(32, down_dim),
nn.BatchNorm1d(down_dim,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.ReLU()
)
# Upsampling
self.up = nn.SequentialCell(nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
nn.Conv2d(64, opt.channels, 3, 1,
'pad', 1, weight_init=init.Normal(0.02, 0.0)))
def construct(self, img):
out = self.down(img)
out = self.fc(out.view(out.shape[0], -1))
out = self.up(out.view(out.shape[0], 64, self.down_size, self.down_size))
return out
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
optimizer_G = nn.optim.Adam(generator.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
optimizer_D = nn.optim.Adam(discriminator.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
transform = [
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5], is_hwc=False)
]
dataset = mindspore.dataset.MnistDataset(
dataset_dir=file_path,
usage='train',
shuffle=True
).map(operations=transform, input_columns="image").batch(opt.batch_size)
def g_forward(_z):
"""Generator forward function"""
# Generate a batch of images
_gen_imgs = generator(_z)
# Loss measures generator's ability to fool the discriminator
_g_loss = ops.mean(ops.abs(discriminator(_gen_imgs) - _gen_imgs))
return _g_loss, _gen_imgs
def d_forward(_real_imgs, _gen_imgs):
"""Discriminator forward function"""
# Measure discriminator's ability to classify real from generated samples
d_real = discriminator(_real_imgs)
d_fake = discriminator(_gen_imgs)
_d_loss_real = ops.mean(ops.abs(d_real - _real_imgs))
_d_loss_fake = ops.mean(ops.abs(d_fake - _gen_imgs))
_d_loss = _d_loss_real - k * _d_loss_fake
return _d_loss, _d_loss_real, _d_loss_fake
grad_g = ops.value_and_grad(g_forward, None, optimizer_G.parameters, has_aux=True)
grad_d = ops.value_and_grad(d_forward, None, optimizer_D.parameters, has_aux=True)
# ----------
# Training
# ----------
generator.set_train()
discriminator.set_train()
# BEGAN hyper parameters
gamma = 0.75
lambda_k = 0.001
k = 0.0
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(dataset.create_tuple_iterator()):
# Configure input
real_imgs = Tensor(imgs)
# -----------------
# Train Generator
# -----------------
z = ops.randn((imgs.shape[0], opt.latent_dim))
(g_loss, gen_imgs), g_grads = grad_g(z)
optimizer_G(g_grads)
# ---------------------
# Train Discriminator
# ---------------------
(d_loss, d_loss_real, d_loss_fake), d_grads = grad_d(real_imgs, ops.stop_gradient(gen_imgs))
optimizer_D(d_grads)
# ----------------
# Update weights
# ----------------
diff = ops.mean(gamma * d_loss_real - d_loss_fake)
# Update weight term for fake samples
k = k + lambda_k * diff.asnumpy().item()
k = min(max(k, 0), 1) # Constraint to interval [0, 1]
# Update convergence metric
M = d_loss_real + ops.abs(diff)
# --------------
# Log Progress
# --------------
print(
f'[Epoch {epoch}/{opt.n_epochs}] [Batch {i}/{dataset.get_dataset_size()}] '
f'[D loss: {d_loss.asnumpy().item():.4f}] [G loss: {g_loss.asnumpy().item():.4f}] '
f'-- M: {M}, k: {k}'
)
batches_done = epoch * dataset.get_dataset_size() + i
if batches_done % opt.sample_interval == 0:
to_image(gen_imgs[:25], os.path.join("images", F'{batches_done}.png'))