-
Notifications
You must be signed in to change notification settings - Fork 1
/
cogan.py
280 lines (228 loc) · 10.4 KB
/
cogan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""COGAN Model"""
import argparse
import gzip
import os
import shutil
import urllib.request
import mindspore
import mindspore.common.initializer as init
from mindspore import nn
from mindspore import ops
from mindspore.dataset.transforms import Compose
from mindspore.dataset.vision import transforms
from img_utils import to_image
from mnistm import MNISTM
file_path = "../../data/MNIST/"
if not os.path.exists(file_path):
# 下载数据集
if not os.path.exists('../../data'):
os.mkdir('../../data')
os.mkdir(file_path)
base_url = 'http://yann.lecun.com/exdb/mnist/'
file_names = ['train-images-idx3-ubyte.gz', 'train-labels-idx1-ubyte.gz',
't10k-images-idx3-ubyte.gz', 't10k-labels-idx1-ubyte.gz']
for file_name in file_names:
url = (base_url + file_name).format(**locals())
print("Downloading MNIST dataset from" + url)
urllib.request.urlretrieve(url, os.path.join(file_path, file_name))
with gzip.open(os.path.join(file_path, file_name), 'rb') as f_in:
print("Unzipping...")
with open(os.path.join(file_path, file_name)[:-3], 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(os.path.join(file_path, file_name))
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=32, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
class CoupledGenerators(nn.Cell):
"""COGAN Generators"""
def __init__(self):
super().__init__(CoupledGenerators)
self.init_size = opt.img_size // 4
self.fc = nn.SequentialCell(nn.Dense(opt.latent_dim, 128 * self.init_size ** 2))
self.shared_conv = nn.SequentialCell(
nn.BatchNorm2d(128,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
nn.Conv2d(128, 128, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(128, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Upsample(scale_factor=2.0, recompute_scale_factor=True),
)
self.G1 = nn.SequentialCell(
nn.Conv2d(128, 64, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(64, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Conv2d(64, opt.channels, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.Tanh()
)
self.G2 = nn.SequentialCell(
nn.Conv2d(128, 64, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.BatchNorm2d(64, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False),
nn.LeakyReLU(0.2),
nn.Conv2d(64, opt.channels, 3, stride=1,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0)),
nn.Tanh()
)
def construct(self, noise):
out = self.fc(noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img_emb = self.shared_conv(out)
img1 = self.G1(img_emb)
img2 = self.G2(img_emb)
return img1, img2
class CoupledDiscriminators(nn.Cell):
"""COGAN Discriminator"""
def __init__(self):
super().__init__(CoupledDiscriminators)
def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv2d(in_filters, out_filters, 3, 2,
pad_mode='pad', padding=1, has_bias=False,
weight_init=init.Normal(0.02, 0.0))]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8,
gamma_init=init.Normal(0.02, 1.0),
beta_init=init.Constant(0.0), affine=False))
block.extend([nn.LeakyReLU(0.2), nn.Dropout2d(0.25)])
return block
self.shared_conv = nn.SequentialCell(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
self.D1 = nn.Dense(128 * ds_size ** 2, 1)
self.D2 = nn.Dense(128 * ds_size ** 2, 1)
def construct(self, img1, img2):
# Determine validity of first image
out = self.shared_conv(img1)
out = out.view(out.shape[0], -1)
validity1 = self.D1(out)
# Determine validity of second image
out = self.shared_conv(img2)
out = out.view(out.shape[0], -1)
validity2 = self.D2(out)
return validity1, validity2
# Loss function
adversarial_loss = nn.MSELoss()
# Initialize models
coupled_generators = CoupledGenerators()
coupled_discriminators = CoupledDiscriminators()
transform = [
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5],is_hwc=False)
]
os.makedirs("../../data/MNIST-M", exist_ok=True)
dataset1 = mindspore.dataset.MnistDataset(
dataset_dir=file_path,
usage='train',
shuffle=True
).map(operations=transform, input_columns="image").batch(opt.batch_size)
dataset2 = mindspore.dataset.GeneratorDataset(
source=MNISTM(
root='../../data/MNIST-M',
mnist_root='../../data/MNIST',
transform=Compose(
[
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False),
]
)
),
shuffle=True,
column_names=["image", "target"]
).batch(opt.batch_size)
# Optimizers
optimizer_G = nn.optim.Adam(coupled_generators.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
optimizer_D = nn.optim.Adam(coupled_discriminators.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
def g_forward(_batch_size, _valid):
"""Generator forward function"""
# Sample noise as generator input
z = ops.randn((_batch_size, opt.latent_dim))
# Generate a batch of images
_gen_imgs1, _gen_imgs2 = coupled_generators(z)
# Determine validity of generated images
validity1, validity2 = coupled_discriminators(_gen_imgs1, _gen_imgs2)
_g_loss = (adversarial_loss(validity1, _valid) + adversarial_loss(validity2, _valid)) / 2
return _g_loss, _gen_imgs1, _gen_imgs2
def d_forward(_imgs1, _imgs2, _gen_imgs1, _gen_imgs2, _valid, _fake):
"""Discriminator forward function"""
# Determine validity of real and generated images
validity1_real, validity2_real = coupled_discriminators(_imgs1, _imgs2)
validity1_fake, validity2_fake = coupled_discriminators(_gen_imgs1, _gen_imgs2)
_d_loss = (
adversarial_loss(validity1_real, _valid)
+ adversarial_loss(validity1_fake, _fake)
+ adversarial_loss(validity2_real, _valid)
+ adversarial_loss(validity2_fake, _fake)
) / 4
return _d_loss
grad_g = ops.value_and_grad(g_forward, None, optimizer_G.parameters, has_aux=True)
grad_d = ops.value_and_grad(d_forward, None, optimizer_D.parameters, has_aux=False)
coupled_generators.set_train()
coupled_discriminators.set_train()
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, ((imgs1, _), (imgs2, _)) in enumerate(zip(dataset1.create_tuple_iterator(),
dataset2.create_tuple_iterator())):
batch_size = imgs1.shape[0]
# Adversarial ground truths
valid = ops.stop_gradient(ops.ones((batch_size, 1)))
fake = ops.stop_gradient(ops.zeros((batch_size, 1)))
# Configure input
imgs1 = imgs1.broadcast_to((imgs1.shape[0], 3, opt.img_size, opt.img_size))
# ------------------
# Train Generators
# ------------------
(g_loss, gen_imgs1, gen_imgs2), g_grads = grad_g(batch_size, valid)
optimizer_G(g_grads)
# ----------------------
# Train Discriminators
# ----------------------
(d_loss), d_grads = grad_d(imgs1, imgs2, ops.stop_gradient(gen_imgs1),
ops.stop_gradient(gen_imgs2), valid, fake)
optimizer_D(d_grads)
# --------------
# Log Progress
# --------------
print(
f'[Epoch {epoch}/{opt.n_epochs}] [Batch {i}/{dataset1.get_dataset_size()}] '
f'[D loss: {d_loss.asnumpy().item():.4f}] [G loss: {g_loss.asnumpy().item():.4f}]'
)
batches_done = epoch * dataset1.get_dataset_size() + i
if batches_done % opt.sample_interval == 0:
gen_imgs = ops.cat((gen_imgs1, gen_imgs2), 0)
to_image(gen_imgs, os.path.join("images", F'{batches_done}.png'))