Skip to content

Latest commit

 

History

History

convnextv2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

ConvNeXt V2

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

Introduction

In this paper, the authors propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques (such as MAE) and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation.[1]

Figure 1. Architecture of ConvNeXt V2 [1]

Requirements

mindspore ascend driver firmware cann toolkit/kernel
2.3.1 24.1.RC2 7.3.0.1.231 8.0.RC2.beta1

Quick Start

Preparation

Installation

Please refer to the installation instruction in MindCV.

Dataset Preparation

Please download the ImageNet-1K dataset for model training and validation.

Training

  • Distributed Training

It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run

# distributed training on multiple NPU devices
msrun --bind_core=True --worker_num 8 python train.py --config configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/imagenet

For detailed illustration of all hyper-parameters, please refer to config.py.

Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.

  • Standalone Training

If you want to train or finetune the model on a smaller dataset without distributed training, please run:

# standalone training on single NPU device
python train.py --config configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/dataset --distribute False

Validation

To validate the accuracy of the trained model, you can use validate.py and parse the checkpoint path with --ckpt_path.

python validate.py -c configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt

Performance

Our reproduced model performance on ImageNet-1K is reported as follows.

Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode.

model name params(M) cards batch size resolution jit level graph compile ms/step img/s acc@top1 acc@top5 recipe weight
convnextv2_tiny 28.64 8 128 224x224 O2 268s 257.2 3984.44 82.39 95.95 yaml weights

Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode.

model name params(M) cards batch size resolution jit level graph compile ms/step img/s acc@top1 acc@top5 recipe weight
convnextv2_tiny 28.64 8 128 224x224 O2 237s 400.20 2560.00 82.43 95.98 yaml weights

Notes

  • top-1 and top-5: Accuracy reported on the validation set of ImageNet-1K.

References

[1] Woo S, Debnath S, Hu R, et al. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders[J]. arXiv preprint arXiv:2301.00808, 2023.