ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
In this paper, the authors propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques (such as MAE) and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation.[1]
Figure 1. Architecture of ConvNeXt V2 [1]
mindspore | ascend driver | firmware | cann toolkit/kernel |
---|---|---|---|
2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |
Please refer to the installation instruction in MindCV.
Please download the ImageNet-1K dataset for model training and validation.
- Distributed Training
It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run
# distributed training on multiple NPU devices
msrun --bind_core=True --worker_num 8 python train.py --config configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/imagenet
For detailed illustration of all hyper-parameters, please refer to config.py.
Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.
- Standalone Training
If you want to train or finetune the model on a smaller dataset without distributed training, please run:
# standalone training on single NPU device
python train.py --config configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/dataset --distribute False
To validate the accuracy of the trained model, you can use validate.py
and parse the checkpoint path with --ckpt_path
.
python validate.py -c configs/convnextv2/convnextv2_tiny_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
Our reproduced model performance on ImageNet-1K is reported as follows.
Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode.
model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|
convnextv2_tiny | 28.64 | 8 | 128 | 224x224 | O2 | 268s | 257.2 | 3984.44 | 82.39 | 95.95 | yaml | weights |
Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode.
model name | params(M) | cards | batch size | resolution | jit level | graph compile | ms/step | img/s | acc@top1 | acc@top5 | recipe | weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|
convnextv2_tiny | 28.64 | 8 | 128 | 224x224 | O2 | 237s | 400.20 | 2560.00 | 82.43 | 95.98 | yaml | weights |
- top-1 and top-5: Accuracy reported on the validation set of ImageNet-1K.
[1] Woo S, Debnath S, Hu R, et al. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders[J]. arXiv preprint arXiv:2301.00808, 2023.