Vision Outlooker (VOLO), a novel outlook attention, presents a simple and general architecture. Unlike self-attention that focuses on global dependency modeling at a coarse level, the outlook attention efficiently encodes finer-level features and contexts into tokens, which is shown to be critically beneficial to recognition performance but largely ignored by the self-attention. Five versions different from model scaling are introduced based on the proposed VOLO: VOLO-D1 with 27M parameters to VOLO-D5 with 296M. Experiments show that the best one, VOLO-D5, achieves 87.1% top-1 accuracy on ImageNet-1K classification, which is the first model exceeding 87% accuracy on this competitive benchmark, without using any extra training data.
Figure 1. Illustration of outlook attention. [1]
mindspore | ascend driver | firmware | cann toolkit/kernel |
---|---|---|---|
2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |
Please refer to the installation instruction in MindCV.
Please download the ImageNet-1K dataset for model training and validation.
- Distributed Training
It is easy to reproduce the reported results with the pre-defined training recipe. For distributed training on multiple Ascend 910 devices, please run
# distributed training on multiple GPU/Ascend devices
msrun --bind_core=True --worker_num 8 python train.py --config configs/volo/volo_d1_ascend.yaml --data_dir /path/to/imagenet
Similarly, you can train the model on multiple GPU devices with the above msrun
command.
For detailed illustration of all hyper-parameters, please refer to config.py.
Note: As the global batch size (batch_size x num_devices) is an important hyper-parameter, it is recommended to keep the global batch size unchanged for reproduction or adjust the learning rate linearly to a new global batch size.
- Standalone Training
If you want to train or finetune the model on a smaller dataset without distributed training, please run:
# standalone training on a CPU/GPU/Ascend device
python train.py --config configs/volo/volo_d1_ascend.yaml --data_dir /path/to/dataset --distribute False
To validate the accuracy of the trained model, you can use validate.py
and parse the checkpoint path
with --ckpt_path
.
python validate.py -c configs/volo/volo_d1_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
Our reproduced model performance on ImageNet-1K is reported as follows.
performance tested on ascend 910*(8p) with graph mode
coming soon
performance tested on ascend 910(8p) with graph mode
coming soon
- top-1 and top-5: Accuracy reported on the validation set of ImageNet-1K.
[1] Yuan L , Hou Q , Jiang Z , et al. VOLO: Vision Outlooker for Visual Recognition[J]. . arXiv preprint arXiv: 2106.13112, 2021.