forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_dag_utils.cc
515 lines (474 loc) · 17.5 KB
/
net_dag_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#include "caffe2/core/net_dag_utils.h"
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include "caffe2/core/operator.h"
#include "caffe2/core/timer.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
namespace dag_utils {
namespace {
void prune(int node_idx, std::vector<OpGraphNode>& nodes) {
// Ancestor table for tracking the visited nodes
std::vector<bool> ancestors(nodes.size(), false);
// stack element is pair of <curr_node, previous_node>
std::stack<std::pair<int, int>> nodes_stack;
// initialize the prev_node to be -1
nodes_stack.push(std::make_pair(node_idx, -1));
while (!nodes_stack.empty()) {
const auto& node_pair = nodes_stack.top();
int curr = node_pair.first;
int prev = node_pair.second;
// If the node has already been visited, pop curr out of
// stack and clean up the ancestor table
CAFFE_ENFORCE(curr < (int)ancestors.size(), "Out of bound access");
if (ancestors[curr]) {
ancestors[curr] = false;
nodes_stack.pop();
continue;
}
// Check if this has a parent that can be pruned:
// if parent is not the previous node visited and is
// an ancestor of the current traversar, it can be
// pruned.
if (prev >= 0) {
std::vector<int> new_parents;
for (auto parent : nodes[curr].parents_) {
if (parent != prev && ancestors[parent]) {
// We can prune this one
nodes[parent].children_.erase(
std::remove(
nodes[parent].children_.begin(),
nodes[parent].children_.end(),
curr),
nodes[parent].children_.end());
} else {
new_parents.push_back(parent);
}
}
nodes[curr].parents_ = new_parents;
}
ancestors[curr] = true;
// Descend -- but only once from each node
if (nodes[curr].visited_inputs == nodes[curr].num_orig_parents) {
const auto& children = nodes[curr].children_;
for (auto child : children) {
nodes[child].visited_inputs++;
nodes_stack.push(std::make_pair(child, curr));
}
}
}
}
/**
* Prune redundant dependencies to improve chaining.
* TODO: t15868555 This algorithm is fast but can miss dependencies.
*/
std::vector<OpGraphNode> pruneOpNodeGraph(
const std::vector<OperatorNode>& nodes) {
Timer t;
std::vector<OpGraphNode> pruned;
// Create a separate list of pruned operatornodes used
// for the chaining computation. Because of the unique_ptr
// in the OperatorNode, we cannot do a copy but have to
// copy just the fields we need.
for (auto& node : nodes) {
OpGraphNode nd;
nd.children_ = node.children_;
nd.parents_ = node.parents_;
nd.num_orig_parents = nd.parents_.size();
pruned.push_back(nd);
}
for (int i = 0; i < (int)pruned.size(); ++i) {
if (pruned[i].parents_.size() == 0) {
prune(i, pruned);
}
}
LOG(INFO) << "Operator graph pruning prior to chain compute took: "
<< t.Seconds() << " secs";
return pruned;
}
void updateOperatorNodes(
std::vector<OperatorNode>& nodes,
const ExecutionChains& chains) {
for (int i = 0; i < (int)nodes.size(); ++i) {
auto& node = nodes[i];
if (chains.find(i) != chains.end()) {
node.is_chain_start_ = true;
} else {
node.is_chain_start_ = false;
}
node.runtime_parent_count_ = 0;
node.scheduled_.clear();
}
}
} // namespace
ExecutionChains computeChains(std::vector<OperatorNode>& orig_nodes) {
const std::vector<OpGraphNode> nodes = pruneOpNodeGraph(orig_nodes);
vector<int> initial_frontier;
for (int idx = 0; idx < (int)nodes.size(); ++idx) {
if (nodes[idx].parents_.size() == 0) {
initial_frontier.push_back(idx);
}
}
// We need to construct the node_seen_count to know how many inner edges each
// node has.
std::unordered_map<int, int> node_seen_count;
for (int root_index : initial_frontier) {
const auto& root = nodes[root_index];
std::stack<std::pair<int, std::vector<int>::const_iterator>> depth_stack;
depth_stack.push(make_pair(root_index, root.children_.begin()));
node_seen_count[root_index]++;
CAFFE_ENFORCE(
node_seen_count[root_index] == 1,
"root node ",
root_index,
" visit count must be == 1");
while (depth_stack.size() > 0) {
auto cur = depth_stack.top();
depth_stack.pop();
if (cur.second != nodes[cur.first].children_.end()) {
int node_index = *cur.second;
node_seen_count[node_index]++;
cur.second++;
depth_stack.push(cur);
if (node_seen_count[node_index] == 1) {
// Visit each child only once.
depth_stack.push(
make_pair(node_index, nodes[node_index].children_.begin()));
}
}
}
}
// Now, we compute the set of execution chains An execution chain is
// a linear set of nodes that can be executed on a single stream
// (e.g. a chain of single input, single output operators)
ExecutionChains chains;
std::unordered_set<int> seen_nodes;
std::vector<int> chain;
std::pair<int, std::vector<int>::const_iterator> cur;
std::stack<std::pair<int, std::vector<int>::const_iterator>> depth_stack;
auto check_current_for_chaining = [&]() -> bool {
return (
node_seen_count[cur.first] == 1 &&
(chain.size() == 0 ||
(
// A chain of operators is executed without additional
// synchronization by calling RunAsync sequentially on each
// operator and passing the same stream id on each call.
// RunAsync may schedule an async computation on device.
// In order to be scheduled on the same chain two operators
// (parent and dependent) need to satisfy:
// 1. Both ops are on the same device _and_
// 2. Parent op does not have an async part or
// dependent op can be executed as an async dependency
IsSameDevice(
orig_nodes[cur.first].operator_->device_option(),
orig_nodes[chain.back()].operator_->device_option()) &&
(!orig_nodes[chain.back()].operator_->HasAsyncPart() ||
orig_nodes[cur.first].operator_->SupportsAsyncScheduling()))));
};
auto commit_chain = [&]() {
if (chain.size() > 0) {
CAFFE_ENFORCE(
chains.insert({chain.front(), chain}).second,
"Chain ",
chain.front(),
" was already added.");
VLOG(2) << "Added chain: " << chain.front() << "with elements";
for (auto ch : chain) {
VLOG(2) << ch << ", ";
}
chain.clear();
}
};
auto depth_traverse = [&]() {
while (cur.second != nodes[cur.first].children_.end() &&
seen_nodes.find(*cur.second) != seen_nodes.end()) {
cur.second++;
}
if (cur.second != nodes[cur.first].children_.end()) {
auto next = make_pair(*cur.second, nodes[*cur.second].children_.begin());
depth_stack.push(cur);
depth_stack.push(next);
}
};
for (int root_index : initial_frontier) {
depth_stack.push(
make_pair(root_index, nodes[root_index].children_.begin()));
while (depth_stack.size() > 0) {
cur = depth_stack.top();
depth_stack.pop();
if (seen_nodes.find(cur.first) == seen_nodes.end()) {
seen_nodes.insert(cur.first);
// Has one child, can be candidate for chain or can be added to the
// previous chain.
if (nodes[cur.first].children_.size() == 1) {
if (check_current_for_chaining()) {
// Add oneself to the current chain.
VLOG(1) << "Adding to existing chain" << cur.first;
chain.push_back(cur.first);
int index = *nodes[cur.first].children_.begin();
depth_stack.push(make_pair(index, nodes[index].children_.begin()));
} else {
// Can't belong to the previous chain, commit previous chain and
// start a new one.
commit_chain();
chain.push_back(cur.first);
int index = *nodes[cur.first].children_.begin();
depth_stack.push(make_pair(index, nodes[index].children_.begin()));
}
} else if (
nodes[cur.first].children_.size() == 0 &&
check_current_for_chaining()) {
// Add current node to the current chain and commit.
chain.push_back(cur.first);
commit_chain();
} else {
// Node has more than one child.
commit_chain();
// Add current node as an independent chain since it won't be a part
// of a bigger chain.
chain.push_back(cur.first);
commit_chain();
depth_traverse();
}
} else {
// This node has been seen before, we will only traverse its children.
// Commit any pending chains and continue traversing.
commit_chain();
depth_traverse();
}
} // End while
// Check if this if is even needed.
commit_chain();
}
CAFFE_ENFORCE(
seen_nodes.size() == nodes.size(),
"Haven't seen all the nodes, expected number of nodes ",
nodes.size(),
", but seen only ",
seen_nodes.size(),
".");
updateOperatorNodes(orig_nodes, chains);
return chains;
}
// Here chains are essentially groups, we used chain/group interchangeably
ExecutionChains computeGroups(std::vector<OperatorNode>& orig_nodes) {
const std::vector<OpGraphNode> nodes = pruneOpNodeGraph(orig_nodes);
ExecutionChains chains;
std::vector<int> sync_frontier;
std::vector<int> async_frontier;
std::vector<int> in_degrees;
in_degrees.reserve(nodes.size());
std::transform(
nodes.begin(),
nodes.end(),
std::back_inserter(in_degrees),
[](const OpGraphNode& n) { return n.parents_.size(); });
// Screen out the primary root nodes
for (int idx = 0; idx < (int)nodes.size(); ++idx) {
if (in_degrees[idx] == 0) {
if (orig_nodes[idx].operator_->HasAsyncPart()) {
async_frontier.push_back(idx);
} else {
sync_frontier.push_back(idx);
}
}
}
// We check sync ops on the frontier first and then async ops. This gives us a
// head start to execute sync ops locally while waiting for async ops to
// finish.
std::queue<int> q;
while (!(async_frontier.empty() && sync_frontier.empty())) {
// Sync ops
for (const auto i : sync_frontier) {
q.push(i);
}
sync_frontier.clear();
std::vector<int> chain;
while (!q.empty()) {
int idx = q.front();
q.pop();
chain.push_back(idx);
for (int child : nodes[idx].children_) {
if (--in_degrees[child] == 0) {
if (orig_nodes[child].operator_->HasAsyncPart()) {
async_frontier.push_back(child);
} else {
q.push(child);
}
}
}
}
// add the whole group of continuous sync ops into one chain
if (!chain.empty()) {
chains.emplace(chain.front(), chain);
}
// Async ops
for (const auto i : async_frontier) {
q.push(i);
}
async_frontier.clear();
while (!q.empty()) {
int idx = q.front();
q.pop();
// Put each individual node as a new chain
chains[idx] = {idx};
for (int child : nodes[idx].children_) {
if (--in_degrees[child] == 0) {
if (orig_nodes[child].operator_->HasAsyncPart()) {
q.push(child);
} else {
sync_frontier.push_back(child);
}
}
}
}
}
updateOperatorNodes(orig_nodes, chains);
return chains;
}
ExecutionChains singleChains(std::vector<OperatorNode>& nodes) {
ExecutionChains chains;
for (int i = 0; i < (int)nodes.size(); ++i) {
chains[i] = {i};
}
updateOperatorNodes(nodes, chains);
return chains;
}
std::vector<OperatorNode> prepareOperatorNodes(
const std::shared_ptr<const NetDef>& net_def,
Workspace* ws) {
std::vector<OperatorNode> operator_nodes(net_def->op_size());
std::map<string, int> blob_creator;
std::map<string, std::set<int>> blob_readers;
bool net_def_has_device_option = net_def->has_device_option();
// Initialize the operators
for (int idx = 0; idx < net_def->op_size(); ++idx) {
const OperatorDef& op_def = net_def->op(idx);
VLOG(1) << "Creating operator #" << idx << ": " << op_def.name() << ": "
<< op_def.type();
if (net_def_has_device_option) {
OperatorDef temp_def(op_def);
DeviceOption temp_dev(net_def->device_option());
temp_dev.MergeFrom(op_def.device_option());
temp_def.mutable_device_option()->CopyFrom(temp_dev);
operator_nodes[idx].operator_ = CreateOperator(temp_def, ws, idx);
} else {
auto op = CreateOperator(op_def, ws, idx);
op->set_debug_def(
std::shared_ptr<const OperatorDef>{net_def, &(net_def->op(idx))});
operator_nodes[idx].operator_ = std::move(op);
}
// Check the inputs, and set up parents if necessary. This addressese the
// read after write case.
auto checkInputs =
[&](const google::protobuf::RepeatedPtrField<std::string>& inputs) {
for (const string& input : inputs) {
if (blob_creator.count(input) == 0) {
VLOG(1) << "Input " << input << " not produced by this net. "
<< "Assuming it is pre-existing.";
} else {
int parent = blob_creator[input];
VLOG(1) << "op dependency (RaW " << input << "): " << parent
<< "->" << idx;
operator_nodes[idx].parents_.push_back(parent);
operator_nodes[parent].children_.push_back(idx);
}
// Add the current idx to the readers of this input.
blob_readers[input].insert(idx);
}
};
checkInputs(op_def.input());
checkInputs(op_def.control_input());
// Check the outputs.
for (const string& output : op_def.output()) {
if (blob_creator.count(output) != 0) {
// This addresses the write after write case - we will assume that all
// writes are inherently sequential.
int waw_parent = blob_creator[output];
VLOG(1) << "op dependency (WaW " << output << "): " << waw_parent
<< "->" << idx;
operator_nodes[idx].parents_.push_back(waw_parent);
operator_nodes[waw_parent].children_.push_back(idx);
}
// This addresses the write after read case - we will assume that writes
// should only occur after all previous reads are finished.
for (const int war_parent : blob_readers[output]) {
VLOG(1) << "op dependency (WaR " << output << "): " << war_parent
<< "->" << idx;
operator_nodes[idx].parents_.push_back(war_parent);
operator_nodes[war_parent].children_.push_back(idx);
}
// Renew the creator of the output name.
blob_creator[output] = idx;
// The write would create an implicit barrier that all earlier readers of
// this output is now parents of the current op, and future writes would
// not need to depend on these earlier readers. Thus, we can clear up the
// blob readers.
blob_readers[output].clear();
}
}
// Now, make sure that the parent list and the children list do not contain
// duplicated items.
for (int i = 0; i < (int)operator_nodes.size(); ++i) {
auto& node = operator_nodes[i];
// Sort, remove duplicates, and delete self dependency.
auto& p = node.parents_;
std::sort(p.begin(), p.end());
p.erase(std::unique(p.begin(), p.end()), p.end());
p.erase(std::remove(p.begin(), p.end(), i), p.end());
// Do the same for the children vector.
auto& c = node.children_;
std::sort(c.begin(), c.end());
c.erase(std::unique(c.begin(), c.end()), c.end());
c.erase(std::remove(c.begin(), c.end(), i), c.end());
}
return operator_nodes;
}
std::vector<OpGraphNode> prepareChainGraphNodes(
const std::vector<dag_utils::OperatorNode>& operator_nodes,
const std::vector<std::vector<int>>& execution_chains) {
std::unordered_map<int, int> op_to_chain_idx;
for (int chain_idx = 0; chain_idx < (int)execution_chains.size(); ++chain_idx) {
const auto& chain_indices = execution_chains[chain_idx];
for (const auto& chain_op_idx : chain_indices) {
CAFFE_ENFORCE(!op_to_chain_idx.count(chain_op_idx));
op_to_chain_idx[chain_op_idx] = chain_idx;
}
}
std::vector<OpGraphNode> chain_nodes(execution_chains.size());
for (int op_idx = 0; op_idx < (int)operator_nodes.size(); ++op_idx) {
CAFFE_ENFORCE(op_to_chain_idx.count(op_idx));
auto chain_idx = op_to_chain_idx[op_idx];
auto& chain = chain_nodes[chain_idx];
auto& op_node = operator_nodes[op_idx];
for (const auto& child_idx : op_node.children_) {
CAFFE_ENFORCE(op_to_chain_idx.count(child_idx));
auto child_chain_idx = op_to_chain_idx[child_idx];
if (child_chain_idx != chain_idx) {
auto it = std::find(
chain.children_.begin(), chain.children_.end(), child_chain_idx);
if (it == chain.children_.end()) {
chain.children_.push_back(child_chain_idx);
}
}
}
for (const auto& parent_idx : op_node.parents_) {
CAFFE_ENFORCE(op_to_chain_idx.count(parent_idx));
auto parent_chain_idx = op_to_chain_idx[parent_idx];
if (parent_chain_idx != chain_idx) {
auto it = std::find(
chain.parents_.begin(), chain.parents_.end(), parent_chain_idx);
if (it == chain.parents_.end()) {
chain.parents_.push_back(parent_chain_idx);
}
}
}
}
return chain_nodes;
}
} // namespace dag_utils
} // namespace caffe2