-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft_support.c
330 lines (308 loc) · 11.1 KB
/
fft_support.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/******************************************************************************************************
* *
* Functions developed to perform 2D FFT in MPI Space *
* *
******************************************************************************************************
Author: Dr. Mirco Meazzo */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <mpi.h>
#include "remap2d_wrap.h"
#include "fftw3-mpi.h"
typedef double FFT_SCALAR;
/*============================================= Functions Def =============================================*/
void z_aliasing(int nx, int nz, int nzd, FFT_SCALAR *U, FFT_SCALAR *U_read){
int nz_left = 1+ (nz-1)/2; int reader=0;
int stride_x, k;
for( stride_x = 0; stride_x < 2*nzd*nx; stride_x = stride_x + 2*nzd) {
for ( k= (nzd-nz_left+1)*2; k < nzd*2; k++){
U[stride_x+k] = U_read[reader];
reader++;
//printf("U[%d] = %g\n", stride_x + stride_y+k, U[stride_x + stride_y+k]);
}
for ( k= (nz_left)*2; k < (nzd-nz_left+1)*2; k++){
U[stride_x+k]=0;
}
for ( k= 0; k < (nz_left)*2; k++){
U[stride_x+k] = U_read[reader];
reader++;
//printf("U[%d] = %g\n", stride_x + stride_y+k, U[stride_x + stride_y+k]);
}
}
}
void x_aliasing(int nx, int nzd, int nxd, FFT_SCALAR *U, FFT_SCALAR *U_read){
int reader = nx*nzd*2-1;
int stride_z, i;
for( stride_z = 2*nxd*nzd-1; stride_z > 0 ; stride_z = stride_z - 2*nxd) { //Backward x evitare sovrascritture
//printf("stride_z %d\n", stride_z)
for( i = 0; i < 2*(nxd-nx); i++) {
U[stride_z - i] = 0;
//printf("U0[%d] = %g\n", stride_z - i, U[stride_z - i]);
}
for( i = 2*(nxd-nx); i < 2*nxd; i++) {
U[stride_z - i] = U_read[reader];
//printf("reader %d\n", reader);
reader--;
//printf("U[%d] = %g\n", stride_z - i, U[stride_z - i]);
}
}
}
void x_dealiasing(int scounts, int nx, int nxd, FFT_SCALAR *u) {
/* scounts = initial number of ny*nz modes */
int stride_x, placeholder= 0;
int mode, i;
for ( mode =0; mode < scounts; mode++) {
stride_x = mode*nxd*2;
placeholder = mode*nx*2;
for ( i = 0; i < 2*nx; i++) {
u[placeholder+i] = u[stride_x+i];
//printf("u[%d]= %g\n", placeholder+i, u[placeholder+i]);
}
}
}
void z_dealiasing(int nx, int nz, int nzd, FFT_SCALAR *U) {
int writer=0; int reader=0; int nz_left = 1+(nz-1)/2;
int stride_x, k;
FFT_SCALAR *temp = (FFT_SCALAR *) malloc(2*nz_left*sizeof(FFT_SCALAR *));
if (temp == NULL) {
perror(".:Error while allocating temporary vector in z_dealiasing routine:.\n");
abort();
}
for ( stride_x = 0; stride_x < 2*nx*nzd; stride_x = stride_x + 2*nzd ) {
reader=0;
for ( k= 0; k < 2*nz_left; k++) {
temp[reader] = U[stride_x + k];
reader++;
}
for ( k=2*(nzd-(nz_left-1)); k < 2*nzd; k++ ) {
U[writer] = U[stride_x + k];
writer++;
}
reader=0;
for ( k = 2*(nz_left-1); k < 2*nz; k++) {
U[writer] = temp[reader];
writer++; reader++;
}
}
free(temp);
}
void block_def(int size, int nxd, int nzd, ptrdiff_t *block_x, ptrdiff_t *block_z){
if (nxd % size == 0) *block_x = nxd/size;
else *block_x = (int)(nxd/size) +1;
if (nzd % size == 0) *block_z = nzd/size;
else *block_z = (int)(nzd/size) +1;
//printf("block_x = %d, block_z= %d\n", block_x, block_z);
}
void cores_handler( int nxd, int nzd, int size, int rank, ptrdiff_t *local_x,
ptrdiff_t *local_z, ptrdiff_t *local_x_start, ptrdiff_t *local_z_start) {
int block_x, block_z;
block_def(size, nxd, nzd, &block_x, &block_z);
//printf("block_x = %d, block_z= %d\n", block_x, block_z);
block_x= (ptrdiff_t) block_x; block_z= (ptrdiff_t) block_z; /*The blocks MUST be as big as the array or wider, NOT LESS!!*/
int n[]={nxd,nzd};
ptrdiff_t alloc_local = fftw_mpi_local_size_many_transposed(2, &n, 2, /*First 2 is rank, second is for complex*/
block_x, block_z, MPI_COMM_WORLD,
&local_x, &local_x_start,
&local_z, &local_z_start);
printf("[%d] local_x=%d\tlocal_z=%d\nstart_x=%d\tstart_z=%d\n", rank, local_x, local_z, local_x_start, local_z_start);
}
void read_data(int nx, int ny, int nz, FFT_SCALAR *U_read, char file_to_read[4]) {
//On rank 0 read the dataset
FILE *U_dat; U_dat = fopen( file_to_read, "r");
printf("Reading initial field from %s...\n",file_to_read);
int i;
for ( i = 0; i < (nx)*(ny)*(nz)*2; i++) {
fscanf( U_dat, "%lf", &U_read[i]);
//printf("I've read %lf\n", U_read[i]);
}
printf("\tReading completed\n");
}
/* APPLY GLOBAL AA Z PENCIL VERSION
void print_z_pencil(int nz, int in_ilo, int in_ihi, int in_jlo,
FFT_SCALAR *u, int rank, int scounts, int desidered_rank);
void apply_AA(int nx, int ny, int nz, int nxd, int nzd, FFT_SCALAR *U, FFT_SCALAR *U_read){
int nz_left = 1+ (nz-1)/2; int reader=0;
// z-AA
for( int stride_y = 0; stride_y < 2*nzd*nxd*ny; stride_y = stride_y + 2*nzd*nxd) {
for( int stride_x = 0; stride_x < 2*nzd*nx; stride_x = stride_x + 2*nzd) {
for (int k= (nzd-nz_left+1)*2; k < nzd*2; k++){
U[stride_x + stride_y+k] = U_read[reader];
reader++;
}
for (int k= (nz_left-1)*2; k < (nzd-nz_left)*2; k++){
U[stride_x + stride_y+k]=0;
}
for (int k= 0; k < (nz_left)*2; k++){
U[stride_x + stride_y+k] = U_read[reader];
reader++;
}
}
for (int stride_x = 2*nzd*nx; stride_x < 2*nzd*nxd; stride_x = stride_x + 2*nzd*nxd) {
for (int k= 0; k < nzd*2; k++){
U[stride_x + stride_y+k]=0;
}
}
}
//print_z_pencil(nzd, 0, nxd-1, 0, U, 0, 2*nxd*ny*nzd, 0);
} */
/* APPLY GLOBAL AA X-PENCIL VERSION
void apply_AA(int nx, int ny, int nz, int nxd, int nzd, FFT_SCALAR *U, FFT_SCALAR *U_read) {
int nz_left = 1+ (nz-1)/2, reader= 2*nx*ny*(nz_left-1) ;
//Fill the array with read values and zeros for AA
int i, stride_y, stride_z, last_index;
for ( stride_z = 0; stride_z < nz_left*ny*nxd*2; stride_z = stride_z + ny*nxd*2) {
//printf("\n\nstride z %d\n", stride_z );
for ( stride_y = 0; stride_y < ny*nxd*2; stride_y = stride_y + nxd*2) {
//printf("\nstride y %d\n", stride_y );
for ( i = 0; i < (nx)*2; i++) {
U[stride_z + stride_y+i] = U_read[reader];
//printf("U[%d] = %g\n", (stride_z + stride_y+i), U[stride_z + stride_y+i]);
reader++;
}
for ( i = (nx)*2; i < nxd*2; i++) {
U[stride_z + stride_y+i] = 0;
// printf("U[%d] = %g\n", (stride_z + stride_y+i), U[stride_z + stride_y+i]);
}
}
last_index = stride_z + stride_y;
//printf("last %d\n", (nzd - nz_left+1)*nxd*ny*2);
}
//Fill with zeros from nz to nzd
for ( int i = last_index; i < (nzd - nz_left+1)*nxd*ny*2; i++) {
U[i] = 0;
}
reader= 0;
for ( stride_z = (nzd - nz_left+1)*nxd*ny*2; stride_z < nzd*ny*nxd*2; stride_z = stride_z + ny*nxd*2) {
//printf("\n\nstride z %d\n", stride_z );
for ( stride_y = 0 ; stride_y < ny*nxd*2; stride_y = stride_y + nxd*2) {
//printf("\nstride y %d\n", stride_y );
for ( i = 0; i < (nx)*2; i++) {
U[stride_z + stride_y+i] = U_read[reader];
//printf("U[%d] = %g\n", (stride_z + stride_y+i), U[stride_z + stride_y+i]);
reader++;
}
for ( i = (nx)*2; i < nxd*2; i++) {
U[stride_z + stride_y+i] = 0;
//printf("U[%d] = %g\n", (stride_z + stride_y+i), U[stride_z + stride_y+i]);
}
}
last_index = stride_z + stride_y;
//printf("last %d\n", last_index);
}
for (int i =0; i < nxd*nzd*ny*2; i++) {
printf("u[%d] = %g\n", i, U[i]);
}
}*/
void print_x_pencil(int nx, int in_klo, FFT_SCALAR *u, int rank, int scounts, int desidered_rank) {
if (rank == desidered_rank) {
int stride_nz = in_klo;
int i;
for ( i = 0; i < scounts; i++) {
if ( i % (nx*2) == 0) {
printf("========(nz= %d)=======\n", stride_nz);
stride_nz ++;
}
printf("u[%d]= %.10f\n", (i), u[i]);
}
}
}
void print_y_pencil(int ny, int y_ilo, int y_khi, int y_klo,
FFT_SCALAR *u, int rank, int scounts, int desidered_rank) {
if (rank == desidered_rank) {
int stride_nx = y_ilo;
int stride_nz = y_klo;
int i;
for ( i = 0; i < scounts; i++) {
if ( i % (ny*2) == 0) {
printf("========(nx= %d, nz= %d)=======\n", stride_nx , stride_nz);
if ( (stride_nz ) == y_khi) {
stride_nz = y_klo;
stride_nx++;
}
else stride_nz++;
}
printf("u[%d]= %.10f\n", (i), u[i]);
}
}
}
void print_z_pencil(int nz, int in_ilo, int in_ihi, FFT_SCALAR *u, int rank, int scounts, int desidered_rank) {
if (rank == desidered_rank) {
int stride_nx = in_ilo;
int i;
for ( i = 0; i < scounts; i++) {
if ( i % (nz*2) == 0) {
printf("========(nx= %d)=======\n", stride_nx);
if ( (stride_nx) == in_ihi) {
stride_nx = in_ilo;
}
else stride_nx ++;
}
printf("u[%d]= %.10f\n", (i), u[i]);
}
}
}
void Alltoall(int rank, int size, int in_jlo, int in_jhi, int in_ilo,
int in_ihi, int nz, int nx, FFT_SCALAR *arr, FFT_SCALAR *arr_recv, int flag){
/* Flag = 1 => Scatterw
* Flag = -1 => Gatherw */
int i;
int *contiguous_x = (int *) malloc(sizeof(int)*size);
int *contiguous_y = (int *) malloc(sizeof(int)*size);
int *sendcounts = (int *) malloc(sizeof(int)*size);
int *senddispls = (int *) malloc(sizeof(int)*size);
int *recvdispls = (int *) malloc(sizeof(int)*size);
int *recvcounts = (int *) malloc(sizeof(int)*size);
if (( contiguous_x||contiguous_y||senddispls||sendcounts||recvdispls||recvcounts ) == NULL) {
perror(".:Error while allocating memory for Alltoallw parameters:.\n");
abort();
}
MPI_Datatype recvtype[size];
contiguous_y[rank] = (in_jhi-in_jlo+1);
contiguous_x[rank] = (in_ihi-in_ilo+1);
for ( i = 0; i < size; i++){
sendcounts[i] = 0; recvdispls[i] = 0; recvcounts[i] = 0; recvtype[i] = MPI_DOUBLE;
}
// Broadcaster is the only one that send something
if (rank == 0) {
for ( i = 0; i < size; i++){
sendcounts[i] = 1;
}
}
senddispls[rank] = (2*nz*in_ilo + 2*nz*nx*in_jlo )*sizeof(double);
recvcounts[0] = 2*nz*(in_jhi-in_jlo+1)*(in_ihi-in_ilo+1);
//printf("RECV COUNTS %d\n", recvcounts[0]);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Allgather(&contiguous_y[rank],1,MPI_INT,contiguous_y,1,MPI_INT, MPI_COMM_WORLD);
MPI_Allgather(&contiguous_x[rank],1,MPI_INT,contiguous_x,1,MPI_INT, MPI_COMM_WORLD);
MPI_Allgather(&senddispls[rank],1,MPI_INT,senddispls,1,MPI_INT, MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Datatype vector[size], contiguous[size];
int bytes_stride = sizeof(double)*2*nz*nx;
for ( i = 0; i < size; i++) {
MPI_Type_contiguous(2*nz*contiguous_x[i], MPI_DOUBLE, &contiguous[i]);
MPI_Type_create_hvector(contiguous_y[i], 1, bytes_stride, contiguous[i], &vector[i]);
MPI_Type_commit(&vector[i]);
}
MPI_Barrier(MPI_COMM_WORLD);
if (flag == 1) {
MPI_Alltoallw(&arr[0], sendcounts, senddispls, vector, &arr_recv[0], recvcounts, recvdispls, recvtype, MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
}
else if (flag == -1) {
MPI_Alltoallw(&arr_recv[0], recvcounts, recvdispls, recvtype, &arr[0], sendcounts, senddispls, vector, MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
}
else {
perror(".:Invalid FLAG for Alltoall call:.\n\n");
abort();
}
//Checking function
if (rank == 0){
for(int i = 0; i < recvcounts[0]; i++){
//printf("arr_recv[%d]= %f\n", i, arr_recv[i]);
}
}
MPI_Type_free(vector);
}