-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo_sparsity.m
228 lines (204 loc) · 6.06 KB
/
demo_sparsity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
%% Sparse Networks with Overlapping Communities (SNetOC) package: demo_sparsity
%
% This Matlab script shows empirically the sparsity properties of a range of graph models.
%
% For downloading the package and information on installation, visit the
% <https://github.com/OxCSML-BayesNP/SNetOC SNetOCC webpage>.
%
% Reference:
%
% * A. Todeschini, X. Miscouridou and F. Caron (2017) <https://arxiv.org/abs/1602.02114 Exchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities>. arXiv:1602.02114.
%
% Authors:
%
% * <http://adrien.tspace.fr/ A. Todeschini>, Inria
% * <http://csml.stats.ox.ac.uk/people/miscouridou/ X. Miscouridou>, University of Oxford
% * <http://www.stats.ox.ac.uk/~caron/ F. Caron>, University of Oxford
%
% Tested on Matlab R2017a. Requires the Statistics toolbox.
%
% Last Modified: 01/2020
%%
%% General settings
%
clear
close all
% Add paths
addpath ./GGP/ ./CGGP/ ./utils/
% Save plots and workspace
saveplots = false;
saveworkspace = true;
root = '.';
outpath = fullfile(root, 'results', 'demo_sparsity', date);
if (saveplots || saveworkspace) && ~isdir(outpath)
mkdir(outpath)
end
% Set the seed
rng default
%% Definition of the graph models
%
p = 2; alpha = 100; tau = 1;
gamma = zeros(p,1);
a = .2;
b = 1/p;
Fdist.name = 'gamma';
Fdist.param.a = a;
Fdist.param.b = b;
typegraph = 'undirected';
observe_all = false;
ntrials = 500;
nsamples = 1;
imod = 0;
% CGGP (sigma=-0.5)
imod = imod+1;
sigma = -0.5;
obj{imod} = graphmodel('CGGP', p, alpha, sigma, tau, Fdist, gamma, typegraph, observe_all);
field{imod} = 'alpha';
trial{imod} = linspace(1, 1500, ntrials);
optionrnd{imod} = 1e-10;
% CGGP (sigma=0.2)
imod = imod+1;
sigma = 0.2;
obj{imod} = graphmodel('CGGP', p, alpha, sigma, tau, Fdist, gamma, typegraph, observe_all);
field{imod} = 'alpha';
trial{imod} = linspace(1, 600, ntrials);
optionrnd{imod} = 1e-10;
% CGGP (sigma=0.5)
imod = imod+1;
sigma = 0.5;
obj{imod} = graphmodel('CGGP', p, alpha, sigma, tau, Fdist, gamma, typegraph, observe_all);
field{imod} = 'alpha';
trial{imod} = linspace(1, 300, ntrials);
optionrnd{imod} = 1e-5;
% CGGP (sigma=0.8)
imod = imod+1;
sigma = 0.8;
obj{imod} = graphmodel('CGGP', p, alpha, sigma, tau, Fdist, gamma, typegraph, observe_all);
field{imod} = 'alpha';
trial{imod} = linspace(1, 300, ntrials);
optionrnd{imod} = 1e-4;
edgebins = 2.^(0:1:12);
sizebins = edgebins(2:end) - edgebins(1:end-1);
sizebins(end+1) = 1;
%% Sample graphs of various sizes
%
for k=1:numel(obj) % For different models
fprintf('--- Model %d/%d: %s ---\n', k, numel(obj), obj{k}.name)
for i=1:numel(trial{k}) % Varying number of nodes
if rem(i, 10)==0
fprintf('Trial %d/%d \n', i, numel(trial{k}));
end
obj{k}.param.(field{k}) = trial{k}(i);
for j=1:nsamples % For different samples
G = graphrnd(obj{k}, optionrnd{k}); % Sample the graph
degreefreq{k}(i,j,:) = zeros(numel(edgebins), 1);
if size(G, 1)>0
degreefreq{k}(i,j,:) = histc(full(sum(G)),edgebins)./sizebins/size(G, 1);
end
nbnodes{k}(i,j) = size(G, 1);
nbedges{k}(i,j) = sum(G(:))/2 + trace(G)/2;
maxdegree{k}(i,j) = max(sum(G));
degreeone{k}(i,j) = sum(sum(G)==1);
end
end
end
%% Some plots
%
% Properties of the plots
fontsize = 22;
plotstyles = {'--+',':s',':d',':o'};
colors = lines;
for k=1:numel(obj)
leg{k} = sprintf('$\\sigma = %g$', obj{k}.param.sigma);
end
set(0,'DefaultAxesFontSize', 16)
set(0,'DefaultTextFontSize', fontsize)
set(0,'DefaultLineLineWidth', 2)
set(0,'DefaultLineMarkerSize', 8)
set(0, 'defaultTextInterpreter', 'latex');
set(0, 'defaultAxesTickLabelInterpreter', 'latex');
close
% Degree distribution loglog plot
figure('name', 'degreeloglog')
for k=1:numel(obj)
h = loglog(edgebins, squeeze(mean(mean(degreefreq{k}, 1), 2)), plotstyles{k});
set(h, 'markerfacecolor', colors(k,:), 'color', colors(k,:));
hold on
end
axis tight
% xlim([1, 300])
% ylim([10, 20000])
xlabel('Degree', 'fontsize', fontsize)
ylabel('Distribution', 'fontsize', fontsize)
legend(leg, 'fontsize', fontsize, 'location', 'southwest', 'interpreter', 'latex')
legend boxoff
box off
if saveplots
savefigs(gcf, 'degree', outpath);
end
% Nb of Edges vs nb of nodes on loglog plot
step = .4;
figure('name', 'edgesvsnodesloglog');
for k=1:numel(obj)
h = plot_loglog(nbnodes{k}(:), nbedges{k}(:), plotstyles{k}, step);
set(h, 'markerfacecolor', colors(k,:), 'color', colors(k,:));
hold on
end
axis tight
xlim([25, 3000])
% ylim([10, 20000])
xlabel('Number of nodes', 'fontsize', fontsize)
ylabel('Number of edges', 'fontsize', fontsize)
legend(leg, 'fontsize', fontsize, 'location', 'northwest', 'interpreter', 'latex')
legend boxoff
box off
if saveplots
savefigs(gcf, 'edgesvsnodes', outpath);
end
%%
%
% Nb of Edges/Nb of nodes squared vs nb of nodes on loglog plot
step = 1;
figure('name', 'edgesvsnodesloglog')
for k=1:numel(obj)
ind = nbnodes{k}(:)>0;
h = plot_loglog(nbnodes{k}(ind), nbedges{k}(ind)./nbnodes{k}(ind).^2, plotstyles{k}, step);
set(h, 'markerfacecolor', colors(k,:), 'color', colors(k,:));
hold on
end
axis tight
xlim([10, 2000])
xlabel('Number of nodes', 'fontsize', fontsize)
ylabel('Nb of edges / (Nb of nodes)^2', 'fontsize', fontsize)
legend(leg,'fontsize', fontsize, 'location', 'southwest', 'interpreter', 'latex')
legend boxoff
box off
if saveplots
savefigs(gcf, 'edgesvsnodes2', outpath);
end
%%
%
% Nb of nodes of degree one versus number of nodes
figure('name', 'degonevsnodes');
for k=1:numel(obj)
h = plot_loglog(nbnodes{k}(:), degreeone{k}(:), plotstyles{k}, step);
set(h, 'markerfacecolor', colors(k,:), 'color', colors(k,:));
hold on
end
axis tight
xlim([10, 2000])
% ylim([1, 2000])
xlabel('Number of nodes', 'fontsize', fontsize);
ylabel('Number of nodes of degree one', 'fontsize', fontsize);
legend(leg,'fontsize', fontsize, 'location', 'northwest', 'interpreter', 'latex');
legend('boxoff');
legend boxoff
box off
if saveplots
savefigs(gcf, 'degreeonevsnodes', outpath);
end
%% Save workspace
%
if saveworkspace
save(fullfile(outpath, 'workspace'));
end