-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstates_helpers.py
185 lines (146 loc) · 4.84 KB
/
states_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import torch
CUT_IDENTIFIERS_TO_NUMS = {
'cmir': 1,
'flowcover': 2,
'clique': 3,
'dis': 4, #. ?
'gom': 5,
'implbd': 6,
'mcf': 7,
'oddcycle': 8,
'scg': 9,
'zerohalf': 10
}
SCIP_CUT_IDENTIFIERS_TO_NUMS = {
# 'closecuts',
'disjunctive': 1,
# '#SM',
# '#CS',
'convexproj': 2,
'gauge': 3,
'impliedbounds': 4,
'intobj': 5,
'gomory': 6,
'cgmip': 7,
'strongcg': 8,
'aggregation': 9,
'clique': 10,
'zerohalf': 11,
'mcf': 12,
'eccuts': 13,
'oddcycle': 14,
'flowcover': 15,
'cmir': 16,
'rapidlearning': 17
}
def computeSepas(sepa_states):
res = [None for _ in range(len(sepa_states))]
for sepa, v in sepa_states.items():
res[CUT_IDENTIFIERS_TO_NUMS[sepa]-1] = v
return res
def computeSCIPSepas(sepa_states):
res = [None for _ in range(len(sepa_states))]
for sepa, v in sepa_states.items():
res[SCIP_CUT_IDENTIFIERS_TO_NUMS[sepa]-1] = v
return res
def getCutTypeFromName(cut_name):
for k, v in CUT_IDENTIFIERS_TO_NUMS.items():
if k in cut_name:
return v
# unknown, return zero..
return 0
def get_names(model):
# we stick to the order of names this function returns
row_names = []
col_names = []
cut_names = []
for row in model.getLPRowsData():
row_names.append(row.name)
for col in model.getCols():
col_names.append(col.name)
for cut in model.getOptPoolCuts():
cut_names.append(cut.name)
return row_names, col_names, cut_names
def computeInputScores(cuts, model):
score_funcs = [
model.getCutViolation,
model.getCutRelViolation,
model.getCutObjParallelism,
model.getCutEfficacy,
# model.getCutDirectedCutoffDistance,
# model.getCutAdjustedDirectedCutoffDistance,
model.getCutSCIPScore,
model.getCutExpImprov,
model.getCutSupportScore,
model.getCutIntSupport,
]
scores = np.empty((len(cuts), len(score_funcs)), dtype=np.float32)
for i, cut in enumerate(cuts):
for j, score_func in enumerate(score_funcs):
scores[i, j] = score_func(cut)
return scores
def computeLookaheadScores(cuts, model):
lpobjval = model.getLPObjVal()
scores = np.empty([len(cuts), 3])
scores[:, 0] = lpobjval
for (i, cut) in enumerate(cuts):
scores[i, 1] = model.getCutLookaheadScore(cut)
scores[i, 2] = model.getCutLookaheadLPObjval(cut)
return scores
def computeSepaFeatures1(model, round_num=0):
features = []
stats = model.getSepaCumulatedStatics()
for sepa_name, sepa_freq in SCIP_CUT_IDENTIFIERS_TO_NUMS.items():
ft = {'#calls': stats[sepa_name]['time'], 'time': stats[sepa_name]['time'],
'#cuts': stats[sepa_name]['#cuts'], '#cutoffs': stats[sepa_name]['#cutoffs'],
'#applied': stats[sepa_name]['#applied'],
'round_num': round_num, 'name': sepa_name}
features.append(ft)
return features
def computeRowFeatures1(rows, model, round_num=0):
features = []
for row in rows:
ft = model.getRowFeatures1(row)
ft['round_num'] = round_num
features.append(ft)
return features
def computeColFeatures1(cols, model, round_num=0):
features = []
for col in cols:
ft = model.getColFeatures1(col)
ft['round_num'] = round_num
features.append(ft)
return features
def computeCoefs(rows, cols, model):
# hash col position for fast retrieval..
col_dict = {}
for j, col in enumerate(cols):
colname = col.getVar().name
assert not (colname in col_dict)
col_dict[colname] = j
coefs = {}
for (i, row) in enumerate(rows):
row_cols = row.getCols()
row_js = [col_dict[col.getVar().name] for col in row_cols if col.getVar().name in col_dict]
row_coefs = [val for val, col in zip(row.getVals(), row_cols) if col.getVar().name in col_dict]
coefs[i] = (row_js, row_coefs)
return coefs
def computeCutTypes(cuts):
cut_types = np.empty((len(cuts), ), dtype=np.int32)
for i, cut in enumerate(cuts):
cut_types[i] = getCutTypeFromName(cut.name)
return cut_types
def computeCutParallelism(cuts, model):
cut_parallelism = []
for i, cut1 in enumerate(cuts[:-1]): # exclude the very last
for cut2 in cuts[(i+1):]:
cut_parallelism.append(model.getRowParallelism(cut1, cut2))
cut_parallelism = np.array(cut_parallelism, dtype=np.float32) #1D
return cut_parallelism
def computeCutRowParallelism(cuts, rows, model):
row_parallelism = np.empty((len(cuts), len(rows)), dtype=np.float32)
for i, cut1 in enumerate(cuts): # exclude the very last [:-1]
for j, row in enumerate(rows):
row_parallelism[i, j] = model.getRowParallelism(cut1, row)
return row_parallelism