-
Notifications
You must be signed in to change notification settings - Fork 55
devel stuff: notes for test update (bladen)
Max Bladen edited this page Apr 5, 2022
·
33 revisions
"C:/Users/Work/Desktop/mO Work/Test Ground Truths//.RData"
-
basic
- just tests the simplest use case works for ALL possible input objects
-
data
- similar to basic, but uses different input datasets
-
parameter
- tests the functionality of a specific parameter (or set of parameters)
-
edge case
- tests for warnings or odd scenarios
-
error
- tests that a specific error is raised in the appropriate scenario
- names of output ocmponents
- dimensions of output
- test full dataframes numerically (explore this a bit)
- test pass through of input parameters
- test type of output components
- test when certain errors should be raised
-
auroc
- only test for comp auroc values on one dataset
- different parameters, different datasets, test for more values
-
background_predict
- only test one dataset and only test two numerical values.
- different parameters, different datasets, test for more values
-
cim
- tests for matricies, rcc, spca, spls (x2) and multilevel. two datasets. fairly sufficient for now
- could maybe test with a variety of different parameters
-
circosPlot
- two datasets, only test that circos "works" (tests output is of matrix type)
- check different parameter usage and wider range of numerical testing
-
diablo
- wide range of tests but only one dataset. small number of numerical values evaluated
- different parameters, another dataset
-
internals-.get-pch
- doesn't use any mixOmics datasets
- explore different parameters and error states
-
internals
- tests
.get.ind.colors
,.are.colors
,.get.colors
,.get.character.vector
,.check_test.keepX
and.check_ncomp
- see if there are more internals to test, explore different datasets with these tests
- tests
-
network
- two datasets, only 1 numerical value for each
- variety of parameters to be tested
-
pca
- only one test with one dataset and no numerical values are assessed, a lot of work here
-
perf.diablo
- only one dataset, need to test edge cases (low numbers of repeats/folds - catch errors)\
- test wider range of the numerical output
-
perf.mint.splsda
- only tests
choice.ncomp
and how alpha affects things. much work here
- only tests
-
plotIndiv
- one of the better ones - though only one or two values tested for each case, maybe just a few few parameter tests and any remaining methods (ie
pca
) and expand on how many components each test checks - test for
rcc
x2,(s)pls
x2,(s)plsda
,mint.(s)plsda
,sgcca
x2 andsgccada
x3 - 4 datasets
- one of the better ones - though only one or two values tested for each case, maybe just a few few parameter tests and any remaining methods (ie
-
plotLoadings
- tests
spls
,splsda
,block.splsda
,mint.splsda
. 3 datasets - add some more parameter tests + more numerical values
- tests
-
plotVar
- needs tons of work, only one test
-
predict
- 4 datasets,
mint.splsda
,block.splsda
,pls
,plsda
- add any remaining methods (eg
splsda
) and test for more parameters
- 4 datasets,
-
tune.block.splsda
- only one test (one dataset), no parameter tests
-
tune.mint.splsda
- two tests, one dataset. test more parameters (not just
signif.threshold
)
- two tests, one dataset. test more parameters (not just
-
tune.spls
- one test, one dataset, with/without parallel
- needs work
-
tune.splsda
- one test, one dataset
biplot
block.(s)pls
block.(s)plsda
cimDiablo
ipca
mint.block.(s)pls
mint.block.(s)plsda
mint.pca
mint.(s)pls
mint.(s)plsda
network
nipals
- all
perf
variants - all
plot
variants - all
plot.tune
variants plotMarkers
(s)pls
(s)plsda
rcc
selectVar
sipca
spca
- all
tune
variants (pca, rcc, spca, splslevel) wrapper.rgcca
wrapper.sgcca
explained_variance
get.confusion_matrix
impute.nipals
logratio-transformations
map
nearZeroVar
study_split
unmap
vip
withinVariation