diff --git a/README.md b/README.md index 6184c958b..584102772 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,6 @@ For full documentation and deployment guides, see the [docs directory](./docs/). - [Problem Statement & Solution Architecture](#problem-statement--solution-architecture) - [Phase-Based Agentic AI Maturity Model](#phase-based-agentic-ai-maturity-model) - [Architecture](#architecture) -- [🗺️ JUNO ML Engine Map](#juno-ml-engine-map) - [Phase Implementation](#phase-implementation) - [Quick Start](#quick-start) - [Code Structure](#code-structure) @@ -129,42 +128,6 @@ juno-repo/ ├── data/ # Training & evaluation data └── tests/ # Comprehensive test suite ``` - -### 🗺️ JUNO ML Engine Map - -![JUNO ML Engine Map](data:image/png;base64,.iVBORw0KGgoAAAANSUhEUgAAAZAAAAEsCAIAAABi1XKVAAAIw0lEQVR4nO3bT4iU9QPH8Wd3w90x0KWiTOvmSUVpF6HUGVcx8GAShEKwUtClQ14Mp0CiOokKdjMIRKIgIWIR7I+IJiIhGZKIhz1soZ4KFrWDrjr6dBgcptkt/5X9Pv1er9M83/0+z/OdPbyZ57uzXWVZFgAJuv/tBQDcKcECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcQQLCCGYAExBAuIIVhADMECYggWEEOwgBiCBcT424LV39/f8aL9daVSWbFixeTxPXv2DA4OPvfcc4ODgx9//HH7BSuVyvr161uHw8PDlUpl8i3aTZ8+feiWnTt33uHKz5w58+GHH97h5DtcIfBPeOjB3Ka3t7fRaBw5cmRoaKg1eODAgd27dx86dKi/v//ixYtr1qyZM2fOqlWrWqeMjo7euHGjp6enLMuxsbHe3t6/vsu0adOOHDlyt2ubP3/+/Pnz7/ase1shcD8e3CPh+++//+6777aP7NixY8eOHc2PS/39/du3b9+2bVv7hIGBgRMnThRF8eOPPy5cuPAebtrf379ly5bly5cvWrRoZGSkKIpffvll7dq11Wp1w4YNjz32WGvan82/cOHC8PDwqlWrarXa999/33H9KVd45syZZcuWLViw4IMPPmhddvPmzdVqtVar/fzzz/fwRoCiKIrybzJz5syOF5MHa7Xa4cOHW4ezZ8++cuVKa/KVK1dmz57dfu5nn3323nvvlWW5devWL774YspbTLmGlkqlsnPnzrIsx8bGnn766bIsh4eHP/3007IsR0ZGent7O06cPP+11147fvx4WZZnz55dtGhRx+2mXOHrr79+9OjR8fHxJ598sjmzr69v7969ZVl+8sknL7744pSLB27rgQbr22+/rVar5Z8E6/Lly3PmzGk/d3x8fNmyZWVZPv/885cuXbptsCqVyvJbvvvuu7Ise3t7L1y40PzpjBkzyrJ86qmnJiYmyrK8fv369OnTOy445fzWNefOndtoNG67wt9+++2jjz6q1+sPP/xwa2FXr14ty3JiYuKJJ574y18k8Kfudw+rVqsdPXq0faS7u7u5rdNoNB566A/XHxoa6unpOXz4cPNw3rx5J0+eXLJkSfPw5MmTHXtJjzzySHd39/nz54uimDFjxm0XM3kPa9q0aa3Hva6urqIorl271jy8efNmWZaTr9Axv9FofPPNN319fTdv3jx27FhPT89tV7hu3bqXXnpp48aNrb387u7u1on2ueCe3e8e1vj4+Pnz58fGxmbNmtUcWbx48cGDB4uiOHDgwOLFizvmt+9kbd68uV6vX7p0qSiKixcvvvXWW/V6vWP+6tWrt2zZ0tqJv1vd3Z1vcMmSJfv27SuKYmRkZHKwJs9funRpczPr66+/3rp16+RbTF7hDz/8sH79+omJiatXrzZHGo3GV199VRTF559/3v7XUuDu3OcntP379w8MDAwODn755ZfNkdHR0doto6OjzcH2h7iVK1f29fU1X+/evfuZZ5559tlnBwYG9uzZ037l5imnTp3q6uo6ffp0+cedpqW31Ov11intj4Rvv/12OdXz6U8//VStVqvVar1ef/TRRzuWN3n+uXPnVq9eXavVVq5cOTY2dicrfOedd+bNm/fyyy8//vjjzcfPmTNnvvLKK9Vq9YUXXvj111/v7FcLdOoqJ33K+G979dVXN23atHDhwhMnTrz55psdz7P/kOb3Nh7AjeC/7QF9D+t/x8aNG994441KpXLt2rVdu3b928sB7sL/3ScsIJf/JQRiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGIIFxBAsIIZgATEEC4ghWEAMwQJiCBYQQ7CAGL8Div3U4mLfIswAAAAASUVORK5CYII=) - -> 🧠 This diagram illustrates how test data, GPT analysis, and Jira metadata converge within JUNO’s machine learning engine—enabling it to reason through defects, forecast risk, and surface engineering insights at scale. - -
- 🧠 JUNO ML Engine Overview (Click to expand) - -### 🔍 Text Analytics -Used for parsing Jira tickets, failure logs, and comments. -- `Word2Vec`, `N-Gram`, `Feature Hashing` - -### ⚖️ Classification -For defect type and sprint risk predictions. -- Two-Class & Multiclass: Logistic Regression, Boosted Trees, Neural Nets - -### 📈 Regression -For sprint velocity forecasting and workload trends. -- Linear, Decision Tree, Neural Regression - -### 🧭 Anomaly Detection -To catch test flakiness, NPE instability, or unexplained drops. -- PCA, One-Class SVM - -### 🔗 Clustering -To group similar regressions or stale test paths. -- `K-Means` - -### 🎯 Recommenders (Phase 4 Preview) -To suggest remediation paths, assignments, or de-prioritization. -- Wide & Deep Recommender, SVD - -
- ### Agent Project Benefits - **Clear Separation**: Core logic, applications, and infrastructure properly isolated - **Scalable**: Easy to add new capabilities without cluttering codebase