Skip to content

Latest commit

 

History

History
91 lines (63 loc) · 7.17 KB

A_Bayesian_Approach.md

File metadata and controls

91 lines (63 loc) · 7.17 KB

A Bayesian Approach to assess NSW sea garfish

Method

The parameter of the best model, model 2, are estimated with 4 Monte Carlo Markov Chains (MCMC) using the R package BayesianTools.

Results

The traces of the MCMC show that the MCMC converged after about 20,000 iterations.

alt text

The output of the MCMC looks like this:

par1 par2 par3 par4 LP LL LPr
1 1.582301 0.6822409 0.08536556 0.03436937 -5104.798 -5101.415 -3.382696
2 1.582301 0.6822409 0.08536556 0.03436937 -5104.798 -5101.415 -3.382696
3 1.582301 0.6822409 0.08536556 0.03436937 -5104.798 -5101.415 -3.382696
4 1.723482 0.6332424 0.08708028 0.03938038 -5104.685 -5101.302 -3.382696
5 1.723482 0.6332424 0.08708028 0.03938038 -5104.685 -5101.302 -3.382696
6 1.723482 0.6332424 0.08708028 0.03938038 -5104.685 -5101.302 -3.382696

The posterior distributions of the parameters are uni-modal and symmetric. There is a strong negative correlation between fishing mortality (catchability, par1) and natural mortality (par2)

alt text

The posterior distributions of the parameters of model 2 were compared to Gaussian distributions with the same mean and standard distributions: the empirical and theoretical distributions are in good agreement.

alt text

Samples from the posterior distribution were used to calculate the distribution of the stock biomass and spawning stock biomass. Those data look like

par1 par2 par3 par4 log.lik rec1 rec2 rec3 rec4
1 1.582301 0.6822409 0.08536556 0.03436937 -5101.415 0 0 0 51876.79
2 1.582301 0.6822409 0.08536556 0.03436937 -5101.415 0 0 0 51876.79
3 1.582301 0.6822409 0.08536556 0.03436937 -5101.415 0 0 0 51876.79
4 1.723482 0.6332424 0.08708028 0.03938038 -5101.302 0 0 0 49372.36
5 1.723482 0.6332424 0.08708028 0.03938038 -5101.302 0 0 0 49372.36
6 1.723482 0.6332424 0.08708028 0.03938038 -5101.302 0 0 0 49372.36
rec5 rec6 rec7 rec8 rec9 rec10 rec11 rec12 rec13
1 942969.5 2151690 1606584 1519344 2575502 5068420 3652790 3469817 2724337
2 942969.5 2151690 1606584 1519344 2575502 5068420 3652790 3469817 2724337
3 942969.5 2151690 1606584 1519344 2575502 5068420 3652790 3469817 2724337
4 897497.7 1958160 1454550 1364195 2294326 4446068 3170434 2978055 2334480
5 897497.7 1958160 1454550 1364195 2294326 4446068 3170434 2978055 2334480
6 897497.7 1958160 1454550 1364195 2294326 4446068 3170434 2978055 2334480
rec14 rec15 rec16 rec17 rec18 rec19 rec20 Biomass1 Biomass2
1 3293877 4466441 3406995 1826319 3029519 3765319 7575271 125.9936 86.17279
2 3293877 4466441 3406995 1826319 3029519 3765319 7575271 125.9936 86.17279
3 3293877 4466441 3406995 1826319 3029519 3765319 7575271 125.9936 86.17279
4 2819025 3816542 2895193 1552425 2587540 3240658 5944767 113.9433 78.06261
5 2819025 3816542 2895193 1552425 2587540 3240658 5944767 113.9433 78.06261
6 2819025 3816542 2895193 1552425 2587540 3240658 5944767 113.9433 78.06261
... ... ... ... ... ... ... ... ... ...
Biomass11 Biomass12 Biomass13 Biomass14 Biomass15 SSB1 SSB2 SSB3
1 216.5568 196.6916 187.9461 264.6694 336.3326 30.33500 28.02512 22.9917
2 216.5568 196.6916 187.9461 264.6694 336.3326 30.33500 28.02512 22.9917
3 216.5568 196.6916 187.9461 264.6694 336.3326 30.33500 28.02512 22.9917
4 189.6608 172.8766 167.0109 224.2023 283.3116 27.85006 25.72940 21.1083
5 189.6608 172.8766 167.0109 224.2023 283.3116 27.85006 25.72940 21.1083
6 189.6608 172.8766 167.0109 224.2023 283.3116 27.85006 25.72940 21.1083

The estimated trend in recruitment looks like (same as estimate with maximum likelihood) alt text

The estimated trend in biomass looks like (same as estimate with maximum likelihood) alt text

The estimated trend in Spawning Stock Biomass looks like alt text

And the estimate distribution of Spawning Stock Biomass in 2018/19 is much larger than SSB at MSY (62 tonnes): the probability that the stock is over-fished (SSB < SSBmsy) is 0

alt text

The trajectory of the stock along fishing effort (x-axis) and estimated Spawning Stock Biomass (y-axis) is shown on the Kobe plot below. At the beginning of the time series, in 2004/05, the stock received more fishing effort than sustainable (Emsy = 700 boat-days, vertical line): over-fishing was occurring on a stock already over-fished (SSB below SSBmsy indicated by the horizontal line). As fishing effort decreased and larger mesh size were introduced, over-fishing ceased and the stock recovered and ceased to be over-fished. In 2018/19 the NSW sea garfish fishery is not over-fished nor over-fishing is occurring.

alt text