-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrientationSpaceFilter.m
418 lines (402 loc) · 15.3 KB
/
OrientationSpaceFilter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
classdef OrientationSpaceFilter < handle & matlab.mixin.Heterogeneous
%OrientationSpaceFilter is a class object that represents a polar
%separable frequency domain filter
%
% Filter object used by
% steerableAdaptiveResolutionOrientationSpaceDetector.m
%
% f_c: maximum frequency for the radial filter
% b_f: frequency bandwidth for the radial filter
% K: number of rotation angles through 360 degrees
%
% Copyright (C) 2019, Jaqaman Lab - UT Southwestern, Goldman Lab - Northwestern
%
% This file is part of AdaptiveResolutionOrientationSpace.
%
% AdaptiveResolutionOrientationSpace is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% AdaptiveResolutionOrientationSpace is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with AdaptiveResolutionOrientationSpace. If not, see <http://www.gnu.org/licenses/>.
%
%
% Mark Kittisopikul, August 22nd, 2015
% Jaqaman Lab
% UT Southwestern
properties (SetAccess = immutable)
% radial central frequency
f_c
% radial frequency bandwidth
b_f
% angular order
K
% normilization setting
normEnergy
% number of angular filter templates
n
% Sample factor, multiplier to calculate n from K
sampleFactor = 1
end
properties (SetAccess = protected, Dependent)
% basis angles
angles
end
properties (Transient)
% filter size, should correspond with image size
size
% Filter itself
F
% Angular gaussians useful for manipulating response
angularGaussians
end
properties (Dependent = true)
% f_c
centralFrequency
% b_f
frequencyBandwidth
% K
order
end
methods
function obj = OrientationSpaceFilter(f_c,b_f,K,normEnergy)
if(nargin == 0)
return;
end
if(~isscalar(f_c) || ~isscalar(b_f) || ~isscalar(K))
s = [length(f_c) length(b_f) length(K)];
s(2) = max(1,s(2));
f_c = repmat(f_c(:),1,s(2),s(3));
if(isempty(b_f))
b_f = 1/sqrt(2) * f_c;
else
b_f = repmat(b_f(:)',s(1),1,s(3));
end
K = repmat(shiftdim(K(:),-2),s(1),s(2),1);
if(nargin < 4)
normEnergy = [];
end
normEnergy = repmat({normEnergy},size(K));
constructor = str2func(class(obj));
obj = arrayfun(constructor,f_c,b_f,K,normEnergy,'UniformOutput',false);
obj = reshape([obj{:}],size(obj));
return;
end
if(isempty(b_f))
% Set the bandwidth to be 0.8 of the central frequency by
% default
b_f = 1/sqrt(2) * f_c;
end
if(nargin < 4 || isempty(normEnergy))
normEnergy = 'none';
else
if(iscell(normEnergy))
normEnergy = normEnergy{1};
end
end
obj.f_c = f_c;
obj.b_f = b_f;
obj.K = K;
obj.normEnergy = normEnergy;
% obj.n = 2*ceil(K) + 1;
obj.n = 2*obj.sampleFactor*ceil(K) + 1;
% obj.angles = (0:obj.n-1)/obj.n*pi;
% obj.angles = 0:pi/obj.n:pi-pi/obj.n;
end
function ridgeFilter = real(obj)
ridgeFilter = OrientationSpaceRidgeFilter(obj.f_c,obj.b_f,obj.K);
% The filter itself does not change (for the moment)
ridgeFilter.F = obj.F;
ridgeFilter.size = obj.size;
end
function edgeFilter = imag(obj)
edgeFilter = OrientationSpaceEdgeFilter(obj.f_c,obj.b_f,obj.K);
% The filter itself does not change (for the moment)
edgeFilter.F = obj.F;
edgeFilter.size = obj.size;
end
function angles = get.angles(obj)
angles = (0:obj.n-1)/obj.n*pi;
end
function f_c = get.centralFrequency(obj)
f_c = obj.f_c;
end
function b_f = get.frequencyBandwidth(obj)
b_f = obj.b_f;
end
function K = get.order(obj)
K = obj.K;
end
function n = get.n(obj)
if(isempty(obj.n))
obj.n = 2*obj.sampleFactor*ceil(obj.K) + 1;
end
n = obj.n;
end
function R = mtimes(obj,I)
% Convolution
if(isa(obj,'OrientationSpaceFilter'))
R = getResponse(obj,I);
elseif(isa(I,'OrientationSpaceFilter'))
% The convolution is commutative, swap the parameters
R = getResponse(I,obj);
end
end
function R = getResponse(obj,I)
If = fft2(I);
ridgeResponse = obj.applyRidgeFilter(If);
edgeResponse = obj.applyEdgeFilter(If);
angularResponse = ridgeResponse + edgeResponse;
ns = [0 cumsum([obj.n])];
R(numel(obj)) = OrientationSpaceResponse;
for o=1:numel(obj)
R(o) = OrientationSpaceResponse(obj(o),angularResponse(:,:,ns(o)+1:ns(o+1)));
end
R = reshape(R,size(obj));
end
function R = getRidgeResponse(obj,I)
If = fft2(I);
ridgeResponse = obj.applyRidgeFilter(If);
R = OrientationSpaceResponse(obj,ridgeResponse);
end
function R = getEdgeResponse(obj,I)
If = fft2(I);
edgeResponse = obj.applyEdgeFilter(If);
R = OrientationSpaceResponse(obj,edgeResponse);
end
function A = getAngularGaussians(obj)
if(isempty(obj.angularGaussians))
N = obj.n;
x = 0:N-1;
xx = bsxfun(@minus,x,x');
xx = wraparoundN(xx,-N/2,N/2);
obj.angularGaussians = exp(-xx.^2/2);
end
A = obj.angularGaussians;
end
function imshow(obj,n,varargin)
if(nargin < 2 || isempty(n))
n = 1;
end
if(nargin < 3)
varargin{1} = [];
end
imshow(fftshift(obj.F(:,:,n)),varargin{:});
end
function suppress(obj,tol)
obj.F(abs(obj.F) < tol) = 0;
end
function E = getEnergy(obj)
if(~isscalar(obj))
E = complex(zeros(numel(obj),max([obj.n])),0);
for o=1:numel(obj)
E(o,1:obj(o).n) = obj(o).getEnergy();
end
E = reshape(E,[size(obj) max([obj.n])]);
return;
end
requireSetup(obj);
s = size(obj.F);
s(end+1:3) = 1;
F = reshape(obj.F,s(1)*s(2),s(3));
E = sqrt(sum(real(F).^2)) + 1j*sqrt(sum(imag(F).^2));
E = E ./ sqrt(s(1)*s(2));
end
function clearTransients(obj)
for o=1:numel(obj)
obj(o).size = [];
obj(o).F = [];
obj(o).angularGaussians = [];
end
end
function filter = getFilterAtIndex(obj,ind)
requireSetup(obj);
coeffs = diric(bsxfun(@minus,(1:obj.n).',ind)*pi/obj.n*2,obj.n);
filter = reshape(obj.F,prod(obj.size),obj.n)*coeffs;
filter = reshape(filter,[obj.size length(ind)]);
end
function filter = getFilterAtAngle(obj,theta)
requireSetup(obj);
% Force theta to be a row vector, 1xT
theta = theta(:).';
% Use periodic sinc function to interpolate values
coeffs = diric(bsxfun(@minus,(0:obj.n-1).'*pi/obj.n*2,theta*2),obj.n);
% Reshape YxXxN to PxN, then PxN x NxT = PxT
filter = reshape(obj.F,prod(obj.size),obj.n)*coeffs;
% If theta in [pi,2*pi), invert imaginary component
imag_sign = sign(sin(theta+eps*10));
filter = real(filter) + 1i*bsxfun(@times,imag_sign,imag(filter));
% Resize PxT to YxXxT
filter = reshape(filter,[obj.size length(theta)]);
end
function h = objshow(obj,varargin)
requireSetup(obj);
h = imshow(fftshift(ifft2(real(obj.F(:,:,1)))),varargin{:});
end
function circshiftAngles(obj,Kshift)
for ii=1:numel(obj)
obj(ii).angles = circshift(obj(ii).angles,Kshift,2);
if(~isempty(obj(ii).F))
obj(ii).F = circshift(obj(ii).F,Kshift,3);
end
end
end
function flhm = getFullLengthatHalfMaximum(obj,percent)
if(nargin < 2)
percent = 0.5;
end
if(~isscalar(obj))
flhm = arrayfun(@(o) getFullLengthatHalfMaximum(o,percent),obj);
return;
end
requireSetup(obj);
flhm = real(ifft(sum(real(obj.F(:,:,1)),2)));
flhm = flhm./flhm(1);
guess = find(flhm < percent,1,'first');
% Multiply by 2 to get full length
flhm = interp1(flhm(1:guess),(1:guess)-1,percent,'pchip')*2;
end
function fwhm = getFullWidthatHalfMaximum(obj,percent)
if(nargin < 2)
percent = 0.5;
end
if(~isscalar(obj))
fwhm = arrayfun(@(o) getFullWidthatHalfMaximum(o,percent),obj);
return;
end
requireSetup(obj);
fwhm = real(ifft(sum(real(obj.F(:,:,1)),1)));
fwhm = fwhm./fwhm(1);
guess = find(fwhm < percent,1,'first');
% Multiply by 2 to get full width
fwhm = interp1(fwhm(1:guess),(1:guess)-1,percent,'pchip')*2;
end
end
methods
function A = getAngularKernel(obj,coords)
if(nargin < 2)
coords = orientationSpace.getFrequencySpaceCoordinates(obj.size);
end
A = orientationSpace.angularKernel(obj(1).K,obj(1).angles,coords);
end
function R = getRadialKernel(obj,coords)
if(nargin < 2)
coords = orientationSpace.getFrequencySpaceCoordinates(obj.size);
end
R = orientationSpace.radialKernel([obj.f_c], [obj.b_f],coords);
end
function setupFilter(obj,siz)
if(isscalar(siz))
siz = siz([1 1]);
end
coords = orientationSpace.getFrequencySpaceCoordinates(siz);
notSetup = ~cellfun(@(x) isequal(siz,x),{obj.size});
notSetup = notSetup | cellfun('isempty',{obj.F});
obj = obj(notSetup);
if(isempty(obj))
return;
end
[obj.size] = deal(siz);
if( all(obj(1).K == [obj.K]) )
% angular component is all the same
% A = orientationSpace.angularKernel(obj(1).K,obj(1).angles,coords);
% R = orientationSpace.radialKernel([obj.f_c], [obj.b_f],coords);
A = obj.getAngularKernel(coords);
R = obj.getRadialKernel(coords);
for o=1:numel(obj)
obj(o).F = bsxfun(@times,A, R(:,:,o));
end
else
for o=1:numel(obj)
obj(o).F = orientationSpace.kernel(obj(o).f_c, obj(o).b_f, obj(o).K, obj(o).angles, coords);
end
end
for o=1:numel(obj)
if(isempty(obj(o).normEnergy))
break;
end
switch(obj(o).normEnergy)
case 'energy'
% E is complex
E = shiftdim(obj(o).getEnergy(),-1);
F = obj(o).F;
obj(o).F = bsxfun(@rdivide,real(F),real(E)) +1j*bsxfun(@rdivide,imag(F),imag(E));
case 'peak'
F = obj(o).F;
sumF = sum(F(:))./numel(F);
obj(o).F = real(F)./real(sumF) + 1j*imag(F)./imag(sumF);
case 'scale'
obj(o).F = obj(o).F ./ obj(o).f_c ./ sqrt(siz(1)*siz(2));
case 'sqrtscale'
obj(o).F = obj(o).F ./ sqrt(obj(o).f_c) ./ sqrt(siz(1)*siz(2));
case 'n'
obj(o).F = obj(o).F ./ obj(o).n;
case 'none'
otherwise
error('OrientationSpaceFilter:setupFilterNormEnergy', ...
'Invalid normEnergy property');
end
end
end
function ridgeResponse = applyRidgeFilter(obj,If)
obj.setupFilter(size(If)); %#ok<CPROP>
ridgeResponse = real(ifft2(bsxfun(@times,If,real(cat(3,obj.F)))));
end
function edgeResponse = applyEdgeFilter(obj,If)
obj.setupFilter(size(If)); %#ok<CPROP>
edgeResponse = 1j*real(ifft2(bsxfun(@times,If.*-1j,imag(cat(3,obj.F)))));
end
function requireSetup(obj)
if(isempty(obj.F))
error('OrientationSpaceFilter:NotSetup','Filter must be setup in order for this operation to succeed.');
end
end
end
methods (Static)
function F = constructEqualLengthFilters(f_c, b_f, K, normEnergy, constructor)
if(nargin < 5)
constructor = @OrientationSpaceFilter;
end
%% Approximate cone by height of triangle
% Largest central frequency or smallest scale
f_c_max = max(f_c(:));
% height = sin(pi/(2*K+1))*f_c_max;
arcLength = pi/(2*K+1)*f_c_max;
assert(isscalar(K));
%% Normal constructor
s = [length(f_c) length(b_f) 1];
s(2) = max(1,s(2));
f_c = repmat(f_c(:),1,s(2),s(3));
if(isempty(b_f))
b_f = 1/sqrt(2) * f_c;
else
b_f = repmat(b_f(:)',s(1),1,s(3));
end
if(nargin < 4)
normEnergy = [];
end
normEnergy = repmat({normEnergy},size(f_c));
% K = (pi./asin(height ./ f_c) - 1)./2;
K = (pi/arcLength*f_c-1)/2;
F = arrayfun(constructor,f_c,b_f,K,normEnergy,'UniformOutput',false);
F = reshape([F{:}],size(F));
end
function F = constructByRadialOrder(f_c, K_f, K, normEnergy, constructor)
if(nargin < 4)
normEnergy = [];
end
if(nargin < 5)
constructor = @OrientationSpaceFilter;
end
b_f = f_c ./ sqrt(K_f);
F = constructor(f_c, b_f, K, normEnergy);
F = F(logical(eye(length(f_c))));
end
end
end