@@ -318,8 +318,8 @@ <h4>6 Functions for real numbers</h4>
318
318
argument</ p >
319
319
320
320
< table border = "0 " cellspacing ="0 " cellpadding ="0 "> < tr >
321
- < td > $$random \left( 1\right) = 0.0953165 $$</ td >
322
- < td > $$random \left( 10\right) = 4.76686 $$</ td >
321
+ < td > $$random \left( 1\right) = 0.892466 $$</ td >
322
+ < td > $$random \left( 10\right) = 1.85538 $$</ td >
323
323
</ tr > </ table > < br >
324
324
325
325
< p > The most negative (closest to negative
@@ -504,11 +504,11 @@ <h4>12 Arrays</h4>
504
504
< td > $$n := \left[ 1,\, 2 \,..\, N \right]$$</ td >
505
505
</ tr > </ table > < br >
506
506
507
- < p > Define 1-D array</ p >
507
+ < p > Define 1-D array (enter "[") </ p >
508
508
509
509
< table border = "0 " cellspacing ="0 " cellpadding ="0 "> < tr >
510
- < td > $$z[n] := x1 + \frac{x2 - x1}{N - 1} \cdot \left( n - 1\right) $$</ td >
511
- < td > $$G[n] := f \left( z_{n} \right) $$</ td >
510
+ < td > $$z_{n} := x1 + \frac{x2 - x1}{N - 1} \cdot \left( n - 1\right) $$</ td >
511
+ < td > $$G_{n} := f \left( z_{n} \right) $$</ td >
512
512
</ tr > </ table > < br >
513
513
514
514
< p > Show elements of 1-D array</ p >
@@ -521,10 +521,10 @@ <h4>12 Arrays</h4>
521
521
< p > Assign value by index</ p >
522
522
523
523
< table border = "0 " cellspacing ="0 " cellpadding ="0 "> < tr >
524
- < td > $$z[5] := -10$$</ td >
524
+ < td > $$z_{5} := -10$$</ td >
525
525
</ tr > </ table > < br >
526
526
527
- < p > Show values of single elements of array ("[") </ p >
527
+ < p > Show values of single elements of array </ p >
528
528
529
529
< table border = "0 " cellspacing ="0 " cellpadding ="0 "> < tr >
530
530
< td > $$z_{5} = -10.0$$</ td >
@@ -539,7 +539,7 @@ <h4>12 Arrays</h4>
539
539
</ tr > </ table > < br >
540
540
541
541
< table border = "0 " cellspacing ="0 " cellpadding ="0 "> < tr >
542
- < td > $$G2[n,m] := round \left( sin \left( 2 \cdot pi \cdot \frac{n + m}{N + M}\right) ,\, 3\right) $$</ td >
542
+ < td > $$G2_{n,\, m} := round \left( sin \left( 2 \cdot pi \cdot \frac{n + m}{N + M}\right) ,\, 3\right) $$</ td >
543
543
</ tr > </ table > < br >
544
544
545
545
< table border = "0 " cellspacing ="0 " cellpadding ="0 "> < tr >
0 commit comments