forked from Abdul-Moeed/machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnaas.py
215 lines (168 loc) · 8.38 KB
/
naas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from PIL import Image
from torch import optim
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import fire
import numpy as np
'''
A Neural Algorithm of Artistic Style implementation
https://arxiv.org/pdf/1508.06576.pdf
'''
class NAAS:
def __init__(self):
# model
self.vgg16 = None
self.vgg16_pretrained_weights = 'models/vgg_conv_weights.pth'
self.vgg16_mean = np.array([0.40760392, 0.45795686, 0.48501961])
# transformations
self.transforms_pre = None
self.transforms_post = None
# device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# images
self.content = None
self.style = None
self.opt = None
# image characteristics
self.images_dir = 'data/images/'
self.images_size = (256, 256)
self.images_shape = (3, *self.images_size)
# training
self.optimizer = None
self.iterations = 100
self.MSE = nn.MSELoss()
self.content_loss_layers = ['r42']
self.style_loss_layers = ['r11', 'r21', 'r31', 'r41', 'r51']
self.style_loss_layers_weights = [1e3/n**2 for n in [64, 128, 256, 512, 512]]
self.total_loss_layers = self.content_loss_layers + self.style_loss_layers
def load_vgg_16(self):
self.vgg16 = VGG()
self.vgg16.load_state_dict(torch.load(self.vgg16_pretrained_weights))
self.vgg16 = self.vgg16.to(self.device)
def define_transformations_preprocessing(self):
torch_transforms = list()
# the pre-trained models require the images to be normalized in a certain way
torch_transforms.append(transforms.Resize(self.images_size))
torch_transforms.append(transforms.ToTensor())
torch_transforms.append(transforms.Lambda(lambda x: x[torch.LongTensor([2, 1, 0])]))
torch_transforms.append(transforms.Normalize(mean=self.vgg16_mean, std=[1, 1, 1]))
torch_transforms.append(transforms.Lambda(lambda x: x.mul_(255)))
self.transforms_pre = transforms.Compose(torch_transforms)
def define_transformations_postprocessing(self):
torch_transforms = list()
# the postprocessing transforms to bring images to back to their original form
torch_transforms.append(transforms.Lambda(lambda x: x.mul_(1./255)))
torch_transforms.append(transforms.Normalize(mean=-self.vgg16_mean, std=[1, 1, 1]))
torch_transforms.append(transforms.Lambda(lambda x: x[torch.LongTensor([2, 1, 0])]))
torch_transforms.append(transforms.ToPILImage())
self.transforms_post = transforms.Compose(torch_transforms)
def load_images_and_transform(self):
self.content = self.transforms_pre(Image.open(self.images_dir + 'content.jpg')).to(self.device)
self.style = self.transforms_pre(Image.open(self.images_dir + 'style.jpg')).to(self.device)
self.opt = torch.tensor(np.random.normal(size=self.images_shape), requires_grad=True,
dtype=torch.float, device=self.device)
@staticmethod
def calculate_gram_matrix(mat):
b, c, w, h = mat.size()
mat = mat.view(b, c, h * w)
mat = torch.bmm(mat, mat.transpose(1, 2))
mat = mat / (h * w)
return mat
def train(self):
self.load_vgg_16()
self.define_transformations_preprocessing()
self.define_transformations_postprocessing()
self.load_images_and_transform()
self.optimizer = optim.LBFGS([self.opt])
for i in range(self.iterations):
def closure():
total_loss = list()
content_layers = self.vgg16.forward(torch.unsqueeze(self.content, dim=0), self.content_loss_layers)
opt_layers = self.vgg16.forward(torch.unsqueeze(self.opt, dim=0), self.content_loss_layers)
for j in range(len(self.content_loss_layers)):
mse_loss = self.MSE(opt_layers[j], content_layers[j])
total_loss.append(mse_loss)
style_layers = self.vgg16.forward(torch.unsqueeze(self.style, dim=0), self.style_loss_layers)
opt_layers = self.vgg16.forward(torch.unsqueeze(self.opt, dim=0), self.style_loss_layers)
for j in range(len(self.style_loss_layers)):
gram_matrix_style = self.calculate_gram_matrix(style_layers[j])
gram_matrix_opt = self.calculate_gram_matrix(opt_layers[j])
mse_loss = self.MSE(gram_matrix_opt, gram_matrix_style)
total_loss.append(self.style_loss_layers_weights[j] * mse_loss)
self.optimizer.zero_grad()
total_loss = sum(total_loss)
total_loss.backward()
print("Iteration: ", i + 1, "\tLoss: ", total_loss)
img = self.transforms_post(self.opt.clone().cpu())
img.save(self.images_dir + 'opt_{}.jpg'.format(i))
return total_loss
self.optimizer.step(closure)
'''
VGG Model: Very Deep Convolutional Networks for Large-Scale Image Recognition
https://arxiv.org/pdf/1409.1556.pdf
implementation from: https://github.com/FarisNolan/Neural_Algorithm_Artistic_Style/blob/master/N_A_A_S.py
'''
class VGG(nn.Module):
def __init__(self, pool='max'):
super(VGG, self).__init__()
# CONV LAYERS
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_4 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_4 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_4 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
# HANDLE POOLING OPTIONS
# MAX POOLING
if pool == 'max':
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
# AVERAGE POOLING
elif pool == 'avg':
self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2)
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
self.pool3 = nn.AvgPool2d(kernel_size=2, stride=2)
self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
self.pool5 = nn.AvgPool2d(kernel_size=2, stride=2)
# FORWARD PROP
def forward(self, x, out_keys):
out = dict()
out['r11'] = F.relu(self.conv1_1(x))
out['r12'] = F.relu(self.conv1_2(out['r11']))
out['p1'] = self.pool1(out['r12'])
out['r21'] = F.relu(self.conv2_1(out['p1']))
out['r22'] = F.relu(self.conv2_2(out['r21']))
out['p2'] = self.pool2(out['r22'])
out['r31'] = F.relu(self.conv3_1(out['p2']))
out['r32'] = F.relu(self.conv3_2(out['r31']))
out['r33'] = F.relu(self.conv3_3(out['r32']))
out['r34'] = F.relu(self.conv3_4(out['r33']))
out['p3'] = self.pool3(out['r34'])
out['r41'] = F.relu(self.conv4_1(out['p3']))
out['r42'] = F.relu(self.conv4_2(out['r41']))
out['r43'] = F.relu(self.conv4_3(out['r42']))
out['r44'] = F.relu(self.conv4_4(out['r43']))
out['p4'] = self.pool4(out['r44'])
out['r51'] = F.relu(self.conv5_1(out['p4']))
out['r52'] = F.relu(self.conv5_2(out['r51']))
out['r53'] = F.relu(self.conv5_3(out['r52']))
out['r54'] = F.relu(self.conv5_4(out['r53']))
out['p5'] = self.pool5(out['r54'])
return [out[key] for key in out_keys]
if __name__ == '__main__':
fire.Fire(NAAS)