diff --git a/projects/llavaguard/index.html b/projects/llavaguard/index.html index 741ff73..0ac9643 100644 --- a/projects/llavaguard/index.html +++ b/projects/llavaguard/index.html @@ -367,6 +367,53 @@
+ pip install "sglang[all]"
+
+ 1. Select a model and start an SGLang server
+
+ CUDA_VISIBLE_DEVICES=0 python3 -m sglang.launch_server --model-path AIML-TUDA/LlavaGuard-7B --tokenizer-path llava-hf/llava-1.5-7b-hf --port 10000
+
+ 2. Model Inference
+
+ import sglang as sgl
+ from sglang import RuntimeEndpoint
+
+ @sgl.function
+ def guard_gen(s, image_path, prompt):
+ s += sgl.user(sgl.image(image_path) + prompt)
+ hyperparameters = {
+ 'temperature': 0.2,
+ 'top_p': 0.95,
+ 'top_k': 50,
+ 'max_tokens': 500,
+ }
+ s += sgl.assistant(sgl.gen("json_output", **hyperparameters))
+
+ im_path = 'path/to/your/image'
+ prompt = safety_taxonomy_below
+ backend = RuntimeEndpoint(f"http://localhost:10000")
+ sgl.set_default_backend(backend)
+ out = guard_gen.run(image_path=im_path, prompt=prompt)
+ print(out['json_output'])
+
+