Skip to content

Releases: mljar/mljar-supervised

v1.0.2

06 Jul 13:51
Compare
Choose a tag to compare

Fixes

  • #637 fix problem with font loading for report

v1.0.1

06 Jul 13:23
Compare
Choose a tag to compare

Fixes

  • #634 fix problem with categorical values in target and nan values for fairness metric
  • #635 add tests for fairness feature
  • #636 switch off shap exceptions printouts

v1.0.0

27 Jun 11:30
Compare
Choose a tag to compare

We add support for fairness aware training in our AutoML.

0.11.5

30 Dec 13:43
Compare
Choose a tag to compare

Bug fixes and updates

  • #595 replace boston example dataset with California housing dataset, replace mse metric with squared_error for tree based algorithms from sklearn
  • #596 change the import method for dtreeviz package

0.11.4

14 Dec 14:10
Compare
Choose a tag to compare

Fixes

0.11.3

16 Aug 08:57
Compare
Choose a tag to compare

Unpin shap version #551

0.11.2

02 Mar 09:23
Compare
Choose a tag to compare

Enhancements

  • #523 Add type hints to AutoML class, thank you @DanielR59
  • #519 save train&validation index to file in train/test split, thanks @filipsPL @MaciekEO

Bug fixes

0.11.0

06 Sep 11:25
Compare
Choose a tag to compare

Bug fixes

  • #463 change multiprocessing to Parallel with loky
  • #462 handle large data for tree visualization in regression
  • #419 remove/hide warnings
  • #411 loose dependencies for numpy and scipy

0.10.4

08 Jun 11:55
Compare
Choose a tag to compare

Enhancements

  • #81 add scatter plot predicted vs target in regression
  • #158 add ROC curve for binary classification
  • #336 add visualization for Optuna results
  • #352 add support for Colab
  • #374 update seaborn
  • #378 set golden features number
  • #379 switch off boost_on_errors step in Optuna mode
  • #380 add custom cross validation strategy
  • #386 add correlation heatmap
  • #387 add residual plot
  • #389 add feature importance heatmap
  • #390 add custom eval metric
  • #393 update sklearn

Bug fixes

Docs

  • #391 add info about hyperparameters optimization methods

Big thank you for help for: @ecoskian, @xuzhang5788, @xiaobo, @RafaD5, @drorhilman, @strelzoff-erdc, @muxuezi, @tresoldi THANK YOU !!!

0.10.3

01 Apr 15:02
Compare
Choose a tag to compare

Enhancements

  • #343 set seed in Optuna
  • #344 set eval_metric directly in all algorithms
  • #350 add estimated train time in Optuna mode
  • #342 add optuna_verbose param in AutoML()
  • #354 add KNN in Optuna
  • #356 and Neural Network in Optuna
  • #357, #348 use mljar wrapper for Random Forest and Extra Trees
  • #358 add extra_tree param in LightGBM
  • #359 switch off feature engineering in Optuna mode - only highly tuned models are produced
  • #361 list all eval_metric in error message
  • #362 add accuracy eval_metric
  • #340 support for r2

Bug fixes

  • #347 dont include Optuna tuning time in total_time_limit
  • #360 missing auc scores for training in CatBoost