Releases: mljar/mljar-supervised
Releases · mljar/mljar-supervised
v1.0.2
v1.0.1
v1.0.0
0.11.5
0.11.4
0.11.3
0.11.2
Enhancements
- #523 Add type hints to AutoML class, thank you @DanielR59
- #519 save train&validation index to file in train/test split, thanks @filipsPL @MaciekEO
Bug fixes
- #496 fix exception in baseline mode, thanks @DanielR59 @moshe-rl
- #522 fixed requirements issue, thanks @DanielR59 @MaciekEO
- #514 remove warning, thanks @MaciekEO
- #511 disable EDA, thanks @MaciekEO
0.11.0
0.10.4
Enhancements
- #81 add scatter plot predicted vs target in regression
- #158 add ROC curve for binary classification
- #336 add visualization for Optuna results
- #352 add support for Colab
- #374 update seaborn
- #378 set golden features number
- #379 switch off boost_on_errors step in Optuna mode
- #380 add custom cross validation strategy
- #386 add correlation heatmap
- #387 add residual plot
- #389 add feature importance heatmap
- #390 add custom eval metric
- #393 update sklearn
Bug fixes
Docs
- #391 add info about hyperparameters optimization methods
Big thank you for help for: @ecoskian, @xuzhang5788, @xiaobo, @RafaD5, @drorhilman, @strelzoff-erdc, @muxuezi, @tresoldi THANK YOU !!!
0.10.3
Enhancements
- #343 set seed in Optuna
- #344 set eval_metric directly in all algorithms
- #350 add estimated train time in Optuna mode
- #342 add
optuna_verbose
param inAutoML()
- #354 add KNN in Optuna
- #356 and Neural Network in Optuna
- #357, #348 use mljar wrapper for Random Forest and Extra Trees
- #358 add
extra_tree
param in LightGBM - #359 switch off feature engineering in Optuna mode - only highly tuned models are produced
- #361 list all
eval_metric
in error message - #362 add accuracy
eval_metric
- #340 support for r2