-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathagnes.js
190 lines (170 loc) · 5.09 KB
/
agnes.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import { euclidean } from 'ml-distance-euclidean';
import getDistanceMatrix from 'ml-distance-matrix';
import { Matrix } from 'ml-matrix';
import Cluster from './Cluster';
function singleLink(dKI, dKJ) {
return Math.min(dKI, dKJ);
}
function completeLink(dKI, dKJ) {
return Math.max(dKI, dKJ);
}
function averageLink(dKI, dKJ, dIJ, ni, nj) {
const ai = ni / (ni + nj);
const aj = nj / (ni + nj);
return ai * dKI + aj * dKJ;
}
function weightedAverageLink(dKI, dKJ) {
return (dKI + dKJ) / 2;
}
function centroidLink(dKI, dKJ, dIJ, ni, nj) {
const ai = ni / (ni + nj);
const aj = nj / (ni + nj);
const b = -(ni * nj) / (ni + nj) ** 2;
return ai * dKI + aj * dKJ + b * dIJ;
}
function medianLink(dKI, dKJ, dIJ) {
return dKI / 2 + dKJ / 2 - dIJ / 4;
}
function wardLink(dKI, dKJ, dIJ, ni, nj, nk) {
const ai = (ni + nk) / (ni + nj + nk);
const aj = (nj + nk) / (ni + nj + nk);
const b = -nk / (ni + nj + nk);
return ai * dKI + aj * dKJ + b * dIJ;
}
function wardLink2(dKI, dKJ, dIJ, ni, nj, nk) {
const ai = (ni + nk) / (ni + nj + nk);
const aj = (nj + nk) / (ni + nj + nk);
const b = -nk / (ni + nj + nk);
return Math.sqrt(ai * dKI * dKI + aj * dKJ * dKJ + b * dIJ * dIJ);
}
/**
* Continuously merge nodes that have the least dissimilarity
* @param {Array<Array<number>>} data - Array of points to be clustered
* @param {object} [options]
* @param {Function} [options.distanceFunction]
* @param {string} [options.method] - Default: `'complete'`
* @param {boolean} [options.isDistanceMatrix] - Is the input already a distance matrix?
* @constructor
*/
export function agnes(data, options = {}) {
const {
distanceFunction = euclidean,
method = 'complete',
isDistanceMatrix = false,
} = options;
let updateFunc;
if (!isDistanceMatrix) {
data = getDistanceMatrix(data, distanceFunction);
}
let distanceMatrix = new Matrix(data);
const numLeaves = distanceMatrix.rows;
// allows to use a string or a given function
if (typeof method === 'string') {
switch (method.toLowerCase()) {
case 'single':
updateFunc = singleLink;
break;
case 'complete':
updateFunc = completeLink;
break;
case 'average':
case 'upgma':
updateFunc = averageLink;
break;
case 'wpgma':
updateFunc = weightedAverageLink;
break;
case 'centroid':
case 'upgmc':
updateFunc = centroidLink;
break;
case 'median':
case 'wpgmc':
updateFunc = medianLink;
break;
case 'ward':
updateFunc = wardLink;
break;
case 'ward2':
updateFunc = wardLink2;
break;
default:
throw new RangeError(`unknown clustering method: ${method}`);
}
} else if (typeof method !== 'function') {
throw new TypeError('method must be a string or function');
}
let clusters = [];
for (let i = 0; i < numLeaves; i++) {
const cluster = new Cluster();
cluster.isLeaf = true;
cluster.index = i;
clusters.push(cluster);
}
for (let n = 0; n < numLeaves - 1; n++) {
const [row, column, distance] = getSmallestDistance(distanceMatrix);
const cluster1 = clusters[row];
const cluster2 = clusters[column];
const newCluster = new Cluster();
newCluster.size = cluster1.size + cluster2.size;
newCluster.children.push(cluster1, cluster2);
newCluster.height = distance;
const newClusters = [newCluster];
const newDistanceMatrix = new Matrix(
distanceMatrix.rows - 1,
distanceMatrix.rows - 1,
);
const previous = (newIndex) =>
getPreviousIndex(newIndex, Math.min(row, column), Math.max(row, column));
for (let i = 1; i < newDistanceMatrix.rows; i++) {
const prevI = previous(i);
const prevICluster = clusters[prevI];
newClusters.push(prevICluster);
for (let j = 0; j < i; j++) {
if (j === 0) {
const dKI = distanceMatrix.get(row, prevI);
const dKJ = distanceMatrix.get(prevI, column);
const val = updateFunc(
dKI,
dKJ,
distance,
cluster1.size,
cluster2.size,
prevICluster.size,
);
newDistanceMatrix.set(i, j, val);
newDistanceMatrix.set(j, i, val);
} else {
// Just copy distance from previous matrix
const val = distanceMatrix.get(prevI, previous(j));
newDistanceMatrix.set(i, j, val);
newDistanceMatrix.set(j, i, val);
}
}
}
clusters = newClusters;
distanceMatrix = newDistanceMatrix;
}
return clusters[0];
}
function getSmallestDistance(distance) {
let smallest = Infinity;
let smallestI = 0;
let smallestJ = 0;
for (let i = 1; i < distance.rows; i++) {
for (let j = 0; j < i; j++) {
if (distance.get(i, j) < smallest) {
smallest = distance.get(i, j);
smallestI = i;
smallestJ = j;
}
}
}
return [smallestI, smallestJ, smallest];
}
function getPreviousIndex(newIndex, prev1, prev2) {
newIndex -= 1;
if (newIndex >= prev1) newIndex++;
if (newIndex >= prev2) newIndex++;
return newIndex;
}