-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path_optical_flow_utils.py
150 lines (113 loc) · 3.74 KB
/
_optical_flow_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding: utf-8
"""Common tools to optical flow algorithms.
"""
import numpy as np
from scipy import ndimage as ndi
from skimage.transform import pyramid_reduce
from skimage.util.dtype import _convert
def get_warp_points(grid, flow):
"""Compute warp point coordinates.
Parameters
----------
grid : iterable
The sparse grid to be warped (optained using
``np.meshgrid(..., sparse=True)).``)
flow : ndarray
The warping motion field.
Returns
-------
out : ndarray
The warp point coordinates.
"""
out = flow.copy()
for idx, g in enumerate(grid):
out[idx, ...] += g
return out
def resize_flow(flow, shape):
"""Rescale the values of the vector field (u, v) to the desired shape.
The values of the output vector field are scaled to the new
resolution.
Parameters
----------
flow : ndarray
The motion field to be processed.
shape : iterable
Couple of integers representing the output shape.
Returns
-------
rflow : ndarray
The resized and rescaled motion field.
"""
scale = [n / o for n, o in zip(shape, flow.shape[1:])]
scale_factor = np.array(scale, dtype=flow.dtype)
for _ in shape:
scale_factor = scale_factor[..., np.newaxis]
rflow = scale_factor*ndi.zoom(flow, [1] + scale, order=0,
mode='nearest', prefilter=False)
return rflow
def get_pyramid(I, downscale=2.0, nlevel=10, min_size=16):
"""Construct image pyramid.
Parameters
----------
I : ndarray
The image to be preprocessed (Gray scale or RGB).
downscale : float
The pyramid downscale factor.
nlevel : int
The maximum number of pyramid levels.
min_size : int
The minimum size for any dimension of the pyramid levels.
Returns
-------
pyramid : list[ndarray]
The coarse to fine images pyramid.
"""
pyramid = [I]
size = min(I.shape)
count = 1
while (count < nlevel) and (size > downscale * min_size):
J = pyramid_reduce(pyramid[-1], downscale, multichannel=False)
pyramid.append(J)
size = min(J.shape)
count += 1
return pyramid[::-1]
def coarse_to_fine(I0, I1, solver, downscale=2, nlevel=10, min_size=16,
dtype=np.float32):
"""Generic coarse to fine solver.
Parameters
----------
I0 : ndarray
The first gray scale image of the sequence.
I1 : ndarray
The second gray scale image of the sequence.
solver : callable
The solver applyed at each pyramid level.
downscale : float
The pyramid downscale factor.
nlevel : int
The maximum number of pyramid levels.
min_size : int
The minimum size for any dimension of the pyramid levels.
dtype : dtype
Output data type.
Returns
-------
flow : ndarray
The estimated optical flow components for each axis.
"""
if I0.shape != I1.shape:
raise ValueError("Input images should have the same shape")
if np.dtype(dtype).char not in 'efdg':
raise ValueError("Only floating point data type are valid"
" for optical flow")
pyramid = list(zip(get_pyramid(_convert(I0, dtype),
downscale, nlevel, min_size),
get_pyramid(_convert(I1, dtype),
downscale, nlevel, min_size)))
# Initialization to 0 at coarsest level.
flow = np.zeros((pyramid[0][0].ndim, ) + pyramid[0][0].shape,
dtype=dtype)
flow = solver(pyramid[0][0], pyramid[0][1], flow)
for J0, J1 in pyramid[1:]:
flow = solver(J0, J1, resize_flow(flow, J0.shape))
return flow