-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathopticalflow.py
375 lines (307 loc) · 13.8 KB
/
opticalflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# coding: utf-8
"""TV-L1 optical flow algorithm implementation.
"""
from functools import partial
from itertools import combinations_with_replacement
import numpy as np
from scipy import ndimage as ndi
from skimage.transform import warp
import skimage, skimage.registration
from _optical_flow_utils import coarse_to_fine, get_warp_points
def _tvl1(reference_image, moving_image, flow0, attachment, tightness,
num_warp, num_iter, tol, prefilter):
"""TV-L1 solver for optical flow estimation.
Parameters
----------
reference_image : ndarray, shape (M, N[, P[, ...]])
The first gray scale image of the sequence.
moving_image : ndarray, shape (M, N[, P[, ...]])
The second gray scale image of the sequence.
flow0 : ndarray, shape (image0.ndim, M, N[, P[, ...]])
Initialization for the vector field.
attachment : float
Attachment parameter. The smaller this parameter is,
the smoother is the solutions.
tightness : float
Tightness parameter. It should have a small value in order to
maintain attachement and regularization parts in
correspondence.
num_warp : int
Number of times image1 is warped.
num_iter : int
Number of fixed point iteration.
tol : float
Tolerance used as stopping criterion based on the L² distance
between two consecutive values of (u, v).
prefilter : bool
Whether to prefilter the estimated optical flow before each
image warp.
Returns
-------
flow : ndarray, shape ((image0.ndim, M, N[, P[, ...]])
The estimated optical flow components for each axis.
"""
dtype = reference_image.dtype
grid = np.meshgrid(*[np.arange(n, dtype=dtype)
for n in reference_image.shape],
indexing='ij', sparse=True)
dt = 0.5 / reference_image.ndim
reg_num_iter = 2
f0 = attachment * tightness
f1 = dt / tightness
tol *= reference_image.size
flow_current = flow_previous = flow0
g = np.zeros((reference_image.ndim,) + reference_image.shape, dtype=dtype)
proj = np.zeros((reference_image.ndim, reference_image.ndim,)
+ reference_image.shape, dtype=dtype)
s_g = [slice(None), ] * g.ndim
s_p = [slice(None), ] * proj.ndim
s_d = [slice(None), ] * (proj.ndim-2)
for _ in range(num_warp):
if prefilter:
flow_current = ndi.median_filter(flow_current,
[1] + reference_image.ndim * [3])
image1_warp = warp(moving_image, get_warp_points(grid, flow_current),
mode='nearest')
grad = np.array(np.gradient(image1_warp))
NI = (grad*grad).sum(0)
NI[NI == 0] = 1
rho_0 = image1_warp - reference_image - (grad * flow_current).sum(0)
for _ in range(num_iter):
# Data term
rho = rho_0 + (grad*flow_current).sum(0)
idx = abs(rho) <= f0 * NI
flow_auxiliary = flow_current
flow_auxiliary[:, idx] -= rho[idx]*grad[:, idx]/NI[idx]
idx = ~idx
srho = f0 * np.sign(rho[idx])
flow_auxiliary[:, idx] -= srho*grad[:, idx]
# Regularization term
flow_current = flow_auxiliary.copy()
for idx in range(reference_image.ndim):
s_p[0] = idx
for _ in range(reg_num_iter):
for ax in range(reference_image.ndim):
s_g[0] = ax
s_g[ax+1] = slice(0, -1)
g[tuple(s_g)] = np.diff(flow_current[idx], axis=ax)
s_g[ax+1] = slice(None)
norm = np.sqrt((g ** 2).sum(0))[np.newaxis, ...]
norm *= f1
norm += 1.
proj[idx] -= dt * g
proj[idx] /= norm
# d will be the (negative) divergence of proj[idx]
d = -proj[idx].sum(0)
for ax in range(reference_image.ndim):
s_p[1] = ax
s_p[ax+2] = slice(0, -1)
s_d[ax] = slice(1, None)
d[tuple(s_d)] += proj[tuple(s_p)]
s_p[ax+2] = slice(None)
s_d[ax] = slice(None)
flow_current[idx] = flow_auxiliary[idx] + d
flow_previous -= flow_current # The difference as stopping criteria
if (flow_previous*flow_previous).sum() < tol:
break
flow_previous = flow_current
return flow_current
def optical_flow_tvl1(reference_image, moving_image,
*,
attachment=15, tightness=0.3, num_warp=5, num_iter=10,
tol=1e-4, prefilter=False, dtype=np.float32):
r"""Coarse to fine optical flow estimator.
The TV-L1 solver is applied at each level of the image
pyramid. TV-L1 is a popular algorithm for optical flow estimation
introduced by Zack et al. [1]_, improved in [2]_ and detailed in [3]_.
Parameters
----------
reference_image : ndarray, shape (M, N[, P[, ...]])
The first gray scale image of the sequence.
moving_image : ndarray, shape (M, N[, P[, ...]])
The second gray scale image of the sequence.
attachment : float, optional
Attachment parameter (:math:`\lambda` in [1]_). The smaller
this parameter is, the smoother the returned result will be.
tightness : float, optional
Tightness parameter (:math:`\tau` in [1]_). It should have
a small value in order to maintain attachement and
regularization parts in correspondence.
num_warp : int, optional
Number of times image1 is warped.
num_iter : int, optional
Number of fixed point iteration.
tol : float, optional
Tolerance used as stopping criterion based on the L² distance
between two consecutive values of (u, v).
prefilter : bool, optional
Whether to prefilter the estimated optical flow before each
image warp. When True, a median filter with window size 3
along each axis is applied. This helps to remove potential
outliers.
dtype : dtype, optional
Output data type: must be floating point. Single precision
provides good results and saves memory usage and computation
time compared to double precision.
Returns
-------
flow : ndarray, shape ((image0.ndim, M, N[, P[, ...]])
The estimated optical flow components for each axis.
Notes
-----
Color images are not supported.
References
----------
.. [1] Zach, C., Pock, T., & Bischof, H. (2007, September). A
duality based approach for realtime TV-L 1 optical flow. In Joint
pattern recognition symposium (pp. 214-223). Springer, Berlin,
Heidelberg. :DOI:`10.1007/978-3-540-74936-3_22`
.. [2] Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers,
D. (2009). An improved algorithm for TV-L 1 optical flow. In
Statistical and geometrical approaches to visual motion analysis
(pp. 23-45). Springer, Berlin, Heidelberg.
:DOI:`10.1007/978-3-642-03061-1_2`
.. [3] Pérez, J. S., Meinhardt-Llopis, E., & Facciolo,
G. (2013). TV-L1 optical flow estimation. Image Processing On
Line, 2013, 137-150. :DOI:`10.5201/ipol.2013.26`
Examples
--------
>>> from skimage.color import rgb2gray
>>> from skimage.data import stereo_motorcycle
>>> from skimage.registration import optical_flow_tvl1
>>> image0, image1, disp = stereo_motorcycle()
>>> # --- Convert the images to gray level: color is not supported.
>>> image0 = rgb2gray(image0)
>>> image1 = rgb2gray(image1)
>>> flow = optical_flow_tvl1(image1, image0)
"""
solver = partial(_tvl1, attachment=attachment,
tightness=tightness, num_warp=num_warp, num_iter=num_iter,
tol=tol, prefilter=prefilter)
return coarse_to_fine(reference_image, moving_image, solver, dtype=dtype)
def _ilk(reference_image, moving_image, flow0, radius, num_warp, gaussian,
prefilter):
"""Iterative Lucas-Kanade (iLK) solver for optical flow estimation.
Parameters
----------
reference_image : ndarray, shape (M, N[, P[, ...]])
The first gray scale image of the sequence.
moving_image : ndarray, shape (M, N[, P[, ...]])
The second gray scale image of the sequence.
flow0 : ndarray, shape (reference_image.ndim, M, N[, P[, ...]])
Initialization for the vector field.
radius : int
Radius of the window considered around each pixel.
num_warp : int
Number of times moving_image is warped.
gaussian : bool
if True, a gaussian kernel is used for the local
integration. Otherwise, a uniform kernel is used.
prefilter : bool
Whether to prefilter the estimated optical flow before each
image warp. This helps to remove potential outliers.
Returns
-------
flow : ndarray, shape ((reference_image.ndim, M, N[, P[, ...]])
The estimated optical flow components for each axis.
"""
dtype = reference_image.dtype
ndim = reference_image.ndim
size = 2 * radius + 1
if gaussian:
sigma = ndim * (size / 4, )
filter_func = partial(ndi.gaussian_filter, sigma=sigma, mode='mirror')
else:
filter_func = partial(ndi.uniform_filter, size=ndim * (size, ),
mode='mirror')
flow = flow0
# For each pixel location (i, j), the optical flow X = flow[:, i, j]
# is the solution of the ndim x ndim linear system
# A[i, j] * X = b[i, j]
A = np.zeros(reference_image.shape + (ndim, ndim), dtype=dtype)
b = np.zeros(reference_image.shape + (ndim, ), dtype=dtype)
grid = np.meshgrid(*[np.arange(n, dtype=dtype)
for n in reference_image.shape],
indexing='ij', sparse=True)
for _ in range(num_warp):
if prefilter:
flow = ndi.filters.median_filter(flow, (1, ) + ndim * (3, ))
moving_image_warp = warp(moving_image, get_warp_points(grid, flow),
mode='nearest')
grad = np.stack(np.gradient(moving_image_warp), axis=0)
error_image = ((grad * flow).sum(axis=0)
+ reference_image - moving_image_warp)
# Local linear systems creation
for i, j in combinations_with_replacement(range(ndim), 2):
A[..., i, j] = A[..., j, i] = filter_func(grad[i] * grad[j])
for i in range(ndim):
b[..., i] = filter_func(grad[i] * error_image)
# Don't consider badly conditioned linear systems
idx = abs(np.linalg.det(A)) < 1e-14
A[idx] = np.eye(ndim, dtype=dtype)
b[idx] = 0
# Solve the local linear systems
flow = np.moveaxis(np.linalg.solve(A, b), ndim, 0)
return flow
def optical_flow_ilk(reference_image, moving_image, *,
radius=7, num_warp=10, gaussian=False,
prefilter=False, dtype=np.float32):
"""Coarse to fine optical flow estimator.
The iterative Lucas-Kanade (iLK) solver is applied at each level
of the image pyramid. iLK [1]_ is a fast and robust alternative to
TVL1 algorithm although less accurate for rendering flat surfaces
and object boundaries (see [2]_).
Parameters
----------
reference_image : ndarray, shape (M, N[, P[, ...]])
The first gray scale image of the sequence.
moving_image : ndarray, shape (M, N[, P[, ...]])
The second gray scale image of the sequence.
radius : int, optional
Radius of the window considered around each pixel.
num_warp : int, optional
Number of times moving_image is warped.
gaussian : bool, optional
If True, a Gaussian kernel is used for the local
integration. Otherwise, a uniform kernel is used.
prefilter : bool, optional
Whether to prefilter the estimated optical flow before each
image warp. When True, a median filter with window size 3
along each axis is applied. This helps to remove potential
outliers.
dtype : dtype, optional
Output data type: must be floating point. Single precision
provides good results and saves memory usage and computation
time compared to double precision.
Returns
-------
flow : ndarray, shape ((reference_image.ndim, M, N[, P[, ...]])
The estimated optical flow components for each axis.
Notes
-----
- The implemented algorithm is described in **Table2** of [1]_.
- Color images are not supported.
References
----------
.. [1] Le Besnerais, G., & Champagnat, F. (2005, September). Dense
optical flow by iterative local window registration. In IEEE
International Conference on Image Processing 2005 (Vol. 1,
pp. I-137). IEEE. :DOI:`10.1109/ICIP.2005.1529706`
.. [2] Plyer, A., Le Besnerais, G., & Champagnat,
F. (2016). Massively parallel Lucas Kanade optical flow for
real-time video processing applications. Journal of Real-Time
Image Processing, 11(4), 713-730. :DOI:`10.1007/s11554-014-0423-0`
Examples
--------
>>> from skimage.color import rgb2gray
>>> from skimage.data import stereo_motorcycle
>>> from skimage.registration import optical_flow_ilk
>>> reference_image, moving_image, disp = stereo_motorcycle()
>>> # --- Convert the images to gray level: color is not supported.
>>> reference_image = rgb2gray(reference_image)
>>> moving_image = rgb2gray(moving_image)
>>> flow = optical_flow_ilk(moving_image, reference_image)
"""
solver = partial(_ilk, radius=radius, num_warp=num_warp, gaussian=gaussian,
prefilter=prefilter)
return coarse_to_fine(reference_image, moving_image, solver, dtype=dtype)