From 762d6198c1e35c400ab8c32f989f1f7bcdd09a55 Mon Sep 17 00:00:00 2001 From: m-muecke Date: Wed, 12 Feb 2025 21:04:51 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20mlr-org/?= =?UTF-8?q?mlr3cluster@13d1aba04f1309b567076dee896d7c9321c4bccc=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- dev/authors.html | 4 +- ...aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2 | Bin 0 -> 11840 bytes ...n66aGLdTylUAMQXC89YmC2DPNWubEbVmUiAo.woff2 | Bin 0 -> 20612 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2 | Bin 0 -> 9644 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVmYiArmlw.woff2 | Bin 0 -> 3676 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVmZiArmlw.woff2 | Bin 0 -> 16848 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2 | Bin 0 -> 13740 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2 | Bin 0 -> 7856 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVn6iArmlw.woff2 | Bin 0 -> 10576 bytes ...aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2 | Bin 0 -> 19660 bytes dev/deps/Roboto-0.4.9/font.css | 41 +++++++++++++++--- dev/deps/bootstrap-5.3.1/bootstrap.min.css | 2 +- dev/pkgdown.yml | 2 +- dev/reference/as_prediction_clust.html | 3 ++ dev/search.json | 2 +- 15 files changed, 42 insertions(+), 12 deletions(-) create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmUiAo.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmYiArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmZiArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVn6iArmlw.woff2 create mode 100644 dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2 diff --git a/dev/authors.html b/dev/authors.html index 30cf3bc1..c4b331cc 100644 --- a/dev/authors.html +++ b/dev/authors.html @@ -66,7 +66,7 @@

Authors

Citation

Source: DESCRIPTION

-

Mücke M, Pulatov D, Lang M (2024). +

Mücke M, Pulatov D, Lang M (2025). mlr3cluster: Cluster Extension for 'mlr3'. R package version 0.1.10.9000, https://github.com/mlr-org/mlr3cluster, https://mlr3cluster.mlr-org.com. @@ -74,7 +74,7 @@

Citation

@Manual{,
   title = {mlr3cluster: Cluster Extension for 'mlr3'},
   author = {Maximilian Mücke and Damir Pulatov and Michel Lang},
-  year = {2024},
+  year = {2025},
   note = {R package version 0.1.10.9000,
     https://github.com/mlr-org/mlr3cluster},
   url = {https://mlr3cluster.mlr-org.com},
diff --git a/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2 b/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2
new file mode 100644
index 0000000000000000000000000000000000000000..b0ed6d697b45af5d168e2095a7f9d42ab5037983
GIT binary patch
literal 11840
zcmV-GF2B)tPew8T0RR9104_iP5&!@I09*6`04>@80RR9100000000000000000000
z0000QcpIBW9DyPRU_Vn-K~!D2^yKoX@
zk;X1E=$fuv8vTSdk6?oZ4|b5Ttjyi8e7MM0uSBSoMS4^GT}UufZ$={c{|jx-z;Qlm
z?$6V<{?9o#CaD1iFklqHz!e1bDHg^?oBuBx5%a2iQEdFkn)OBWuPg@mZT|l;7KO=7
z1ZVU_F^?h=B`JzFDHsWgnR8eHZZPL`k(hU|!nJo%uK!(mD_s8V6+A@u{(EM3X796a
zC9MJ%O4oqZO6fx3PTzvTh(shEF#oMV^GX_cFHbIUKiT=cN&IFuIIAK$sayoapP9p^
z{Z~WnuTH7}C40a^w=Nl2jnRfbKec`C9wxk(>Ldrony~**O}KkV!ohUiL@f{0@_!V{VNG+GnWE!Gw1*lYwF5%FJ
z4C|vd>YK6jSxNdLuD%mr-$SY&CetsaM3yXoS+SuO+Do)6f0VTSDvloaH^3OZ|B$v-?(?e(UGn_6&9BpE^|LYQ?dE2{qv^B(Gdx
zQ$qk#957jVxV=D1O!PtLueY+#^K*Zo@t5eHx(-crq2Br!j|X-B{5
zAjBJ#+w1E)wlQ57TR!cipZqBFE%vFjQc84vQ>BFnrUxMEk3l4(L0RoOb?cE=P*l>V
z-+)UD8dE{V#Fi*UstlQgL~=+-<;s()N9bFNweGC;Vx&P
zHivD(r~s4)O>m;Lc&&yKM@nALM<&z($n_rqTu6#AWtTHTrfYO?*?CAI1jxZRL^#9)eJw{%F^Fa{hkYRtGP6jTWq4o-2h06XzzrJ}@_
zNV0o@o-WMax)YRsXQqEV!0(5d=lkTnT>A
znfW_lludKohHI#{3;O?KB8s?^Qg*dh*{+_NK;223jv%6}Rds2~sw8x-H3n0)k-9E2
z#M62@gGz{Nl+vl{gsKtN_C$TvHrS>KI-#33$*_(nSZ9B5qo#!JA*eC1LO2Nk@Bku^
zfE-f#OM(Lp=)^#l*}G+k14xA$sDozcfW7FP&95v``lJzjmY><0t0ke*gzJP)AOZ=<
zMA=b-0i75CHgF)7Y5;X;2sHybXs_p5@+{|@pa_+Hw1eb&ybJhN7?3NlQ?Q4~QWy|H
zq!gq4NeYE38BT!@A^6}ysD=Chevkdm);K4nZEqo}Jxce4(nj?qbEx7j<*!OmZAHBK
z`4;+|x;q7DfMgs%xU@)g0}RVFE0lgg>sL4ON%>lB0V@isJR@bjw_5~ciDDVefyspJ
z30AKq^-wwsGJ9wFp0&Ii`C1s*Ah?IfdQp?|4HQ(#v&z@$&C{PtjWrn-eZ4M?emK3t6FhSF}HcgZW&y>z_^Ff%nZ@flW(H0I*^sVsPq=s
zLwx_h72zF-Kmu||X+;8v4qyNqIFLFzzrQGY=truVRA++?{j5=OZqNapw6`iLd&Gig
zf4&Y1@hHzrE?ZCHWS_H!WD|3{@a)uZ#Gr0%
z7+KH#BMtz?!EI^iW=T=cJ}>QNx8nIwyq*B!U6lYH%DwEngI|X=23MmCo79i!>MJZV
z5D#eC9Poc|aG7Y}z|R1HpD7Q3gF#5e07NhV-RR}*iaawjfGh9iRhR*Q51t8&%*=sg
z*(8QgbN~QA01Tp#_muZ7FE9JHb+JFqci0~J{2b-Kw^KlfZEC|wxq>$#SH8z*k$N{Gd!xE}SBZy(Qv;8H
zh@=*I%O^?@HK;o%Ikx9&(W*`R&UN@S9ro&!{sN#6*w^^IdoN)6vuA=na~Jx~F1)}<
z^XLZS%BKlCop*xFH{p?a>hs1JoZ7LoO{>!;^%$jhjDt7v`>vyO(5nuOB@&trHpOSd
zOAK1|nK<&CM+T{#GVkJ9iCyXqWGWi^K<&UC>a^%sG}3>YEHZE~L#$eZHcA6jrku9w
zRh)FKZo@QYEZkn!-?CaYKGxOQ(caeD0yWPzo<1c7pBfJOy>6%7YBuV%YNcE%7V^2Q
zP|%Cv^{baJ4qGn=`+K`PTbmo}YpW~EON$H5^-I+Wt-HKv=u`Y`cw$ATnAMH1bMiZ?
z^yCzjH{Ta*c7)27*p+RmpBrnvVT%fQrmpMaK=<8oyiCQB5BV+TTiM~2tyZYk-N4D@
z-A0U4w@3CN4VsDot6c1vBdZgSu%-yuS^*WA05e+KpMYg}U&SQ6IkcGiQpINH8G9XD
zmZ6%LR4`k1!?SCdS*dguKvR^1Aj%Em1I`F}t-#qm@{4jGPzGPd>}2Rqzdhcf0B0W&
zWQKd2qAecoX4C51!rmT3jT%Yb=lXIJ`efO5JBeU2rSZ<$R4MPAZzTs|Q~AyX`ASGr
z;i*q;VNm8oDjH!Vjz2V~wpd@T-&X4Iw8<51WJ&QFllSe*2#*n!9mNr%lng4;vOED4
z<*CYG;88WY6zc$03ywMhLh#Pw$xpB_hkJZNRE|}SS5A?S8WYyh*D&it2%sU{ZK4lp
zwiMa!egKy)TANLl7Bko`Rg}A{?Kv=)v}jt$Z`VhmG&tAfGFVr9L-dKmeZEXo*Vq_bE7g&HO${RimqDAY<`ifqju!CLzz1V@2FWBx!nj
zdiWGZ`f0}<#tV!lnbHolasDjVT+{p;-N!v5R5oR7Mn1yXhYCmV^iz{KOj_&b%M~4}
z6KrzNyPcJ-RM~Kwhr%$dA+1f*;8ZsDW3}0HYuIYrv!|z@`w33%J+ES;V5q7+iX$cu
zxsoFdP}u^{5MZ9~e%nrYe|B3@b3YGwM^fdn?xB7()b~cKeT=)GcRS_AiV4&C$l{Ws
zJjnD%``GM&C~&U^V_^8XW!=LmqfLgL;Sf^24%utqtIrTPF9jBzQNAqXx&l>oZrx(q2+0$ane8
z91RO>fy6Ddv@fP3DXGT^Sl*VTXRHU$W~Y>JM&RFsrfE3oL}C&hi3?&u8Fz+ZX@-K|
zD6nkSv*rSkp-~JjOti^Oe=?h`cpXHYFZH1sH9b%kM42A4{a};wxZ=W~>O(C9<^|AL
ztEFomRvBv4c?6M#%r2dHE;#Kt4&m(9=Qw~bptJ!~v-JY65K9EEHxulAJN12<
z-b2_C97JYLt(r5WTaI8yRjB6c?+3@0Dr#u1y=XoNf?Q&rzXzgcm6pNj=F2WwoN#H!
zY^K3tEvH=XGt}&s1eg=d^ifK|gmZ=oD0W*!=X-Ik74W6Z3fS%~g)&z0t(n|MpoPNa
z_i|~hYZ@4jO6i|8Yug(!ETu}mL`$G2
zE!){f5@>8B%sbuZTkr>Tq};Mx#RUoCO99xRgY=s6t-EkMj7^|-;#&cKB|tTO
z`^2=7iBR#-PDaD3(`IcSZ!KZ4Hs@{%V6gGNgkVVR8kbgHk(x#=$aLdWHDnB?^-4!#
ze8(OMF0YKql!ByGyBf7bAkEQAO2Kz5F8$b~8=$5tW2!PaVlQu|{>ev=-U*eTrJ^av0R7U`!ofaBGrU0F1Z=k@@uh
zECmY1zKgnR06TZiL(O|q&&u}HSe6}(9WH&X@5(1cD)^6f0cI*|U&;J;LK{-N^_1J&
z%1?_+H~${K*LUbm1fMF?{_gNSaQ2Xyw`P(Hw6=$o@vHdH#hH)(%Jy-%!cHq(Q8`k?
z3K-qiAB$l^;29wc?|9(uT>q^pUzw|)TzJjdRmZ93B;#_dD!T`_!E1FXZZdoaWOfjL
z@TsL%8-~^woTA$L9q{a5Fy}<16EX2W)pdS*u3ggfLSQ<>VSa0|$jPvi-&s0`;W#fu
zR{`(P9E;-xw;BV%~(P)r1{6&F?N}baN
z0D$uV0QUm;Isp1H5c~r04FGQg^s6=kQORWp;sxlk7OTjLJ|tPhTpSb|As}p$1nLTO
zBVAn{aBSlm+4Q9g{A5m#Z4;ZnI`zkwnEN<^QH1*!g0HI~*1=CM!X;OPu`s6T0=(sVt!#heqSP3
zA?*WBs8c7_
z)IAYeyTZmva-_G76CG;-A=qG^`ZCs*+ghO5*bhfxtBQo2Z0AlP(K}B+|FHel8-i=9
zkS}~w~n0+%ClOqw3OVP6xd_=*|?2vpi(lSZu&Rgat=JW*xA8C_Q
zlpc*a9NLRy*E^)75u|NgQQ`Ou6F7lv@|M}71MMR%od?OgYgd>?)JlHr&)CrJ*ky|g
z!v1qQFd<{;6yPI41khM4+4g37oedYXtf+b^Mb-2`aEj^5t*2t}VQ-5n4rZat&3v^%
zN<^L@h>yiMlimc8lB!GNsXOz2JLCMD=%zh|ixQP9EuawfJ@m-P!fqBrJCZ42
zjMlYTvd%gJuStj2aEvJ#AwyFpiH7HoC{Ts6ycX17Rx5gb^&E{bQC^FR7b8k~W%Yp(
zo|@Vv)3Iry%FxWFAB|^Us)W@z@PDg-XEi`Uj?uRL3MoxcyYu$_#o(4q2dQpKrI0p_|eWk_|MlW6REX8neU`aS4orP(&L`)pXO&^%T399D}S^ae{zr$t^c
z%9JaU7jwa@J?Lg$lo{*E{w$E6DGI+c9)C+Vw**45mwTzFCqyZT_6?WQ;E;hnS9+&jzqH`&ayZ0y~pd*!SR)%u+|Dl?m4CDla|@~G_Coci4YS3p?H
z0PlygGl8`{%%C(Qb6_g7XglNSLeYM5Rx<`)!A^`;)L}$+W)sz2d7B4w==*qkDh*Es
ze%O|KMo4$l^WPfJG~efs>eye^gKG9y)$CJ#*UVa7;|oZ?afgI9q-4p2LsU^$$c2jG
z!oYKxy}fK<-5?`j5K0heG!`0jg&iQgWq^m0%QYI!SDE&k7Dlp&)7WcZvNqy7Fh0e_
zp+i^qDcFu&KDNoI3@EPMm3DUC%T%1}U(UiSsw0{7>Ud(a-OibTp95sp;Uoe4j;Z<;
zZvKSoO5tD}r;qHadp!J=H)hc;$SCt9c%
zpYS_c{J{Q2uEjKQmt^yOOYxSDFXF@!$NZv+*BW+1(ltcP&KMv{yCQG2^4cPA=It3E
zX7C1yIeSny?Uum~O@~ZLj&I`7;@gyLSsLtzbDCL`DQ>p(D6XwZ9RkDcg^RNcX(d{y
ztwfg{wAOoj>;98hYtkrZ?J}N!p*h=(0Z(`xF!S1q)airbLwOPujg%J*GJ^DAjI1n6
z8zHJ(U`Z!yzDC&A1XwS>wkm*Inzfu`)j1}G1SEu_f|9b31a1qNo{M0n<)bCite)7k
zl4)+nKt?LQy(w)zsML>PCtISoDv6im{_Tvr9sS3snH5J_g?%WaJjr*w6k?
zWAejjxqhP}e};c2M^YJ07j>~haiwXVh5Y?7aA*z)8o(WHLB$c_y+Hvz;SojFTRcI-
zIdNQfJ&Esx+ad+toc?6%*WikcGz)(b)DRxg5EM`!5ngYXY3-oE-)tILP
zRAuXf!jf|$sSMt3f3mL|Gezi5vu=l-NJ^?nC4-8RWYund|22u^V1~hh#!4&qjHXL{
z!if&n)8L=o|8zeWLW?|}eEZwz(?Smc)cJg=?W6CnyLi6+1(`)lDhNy1iQo1JKD}!b
zCKVA&hvK$a?zb7H1Yd5)JO0RW+Q`j>@v5hNvHzxkY+87+?Dcw^*H&mU2f}9cCp<@lH1%{>_Vr0DX70aoEJA;CpW~_n~kL?{74LVA(l^V
z8Ne4|8f>Z&W@1QWFZGtTK)_A(*L1JM8>|5Pu{5>=8>YAd<
zS{dv)$WV&wM086!uNuXy9i-P^FqnfvXGGlGs79>E==k!zk-{*IyqxVHmFl6i|9(T)
zU&piqT4ZZj@8pYe*-DE5bFiU$30sZ0T5_0Q*q(%Lr&7_a?VQ41AL4wpW|PLPva`p-
z*$T_{S0FoApN-kqAYZ~d~)42OntjwJ<2z<#_mx7Jf6v?)S#`;h=c`LPPA{$(IGPODzJ7
zwxQy?IFofIx=Gfk{vg~r2#toRfm>Vxs9FXfUNYZGw9__fJ<T%nLbj(sk*}@U1)SMg@~8;63UXh;#eh=vcD
zYdN$*eei?TX>5=$$E`cIfeE=aSw$WdnR>
zSN~MBZfbcKblRfOE#Ht~n>tWA1i6IMZY@OMbk~Y4EkUk(XW{%qZ(&B@96%
zMo53ti+6Q1T~GO{S@yRq@DqI<)!pYepZTq^@i}ZS@GcISP-Uo6)~z<{rFfuiBh@@_
zO~|pk6TS6UewJt-YWbhAWivTB-jYmeQ_}K?lxX3^ox%xtScHvA6eE|So8bfq*Jg;G
zr$oNqI-RA;(v$33F3gn{+A|=fyH31#Q!qmzP}{@P?qHwdn1~IlJ7cfSsgc`
z1oiz7nO`JN^_Y(sgZt_ewdl3OrDx7l3%1d}{eHUi&(q0HOJ>s`_*-Si
zsZu1u@`ihsk?!q94EFa=$llG0&kc;FBlY64zVnPS-iU85GopeKi4qDE_WHqyH-y8U
zVsdC6fgW33nlur>%fCi$8dK;)(5WTiRAz2)7%LbZOcm{7ob^cdgrlGa&;W&_pl89e
z4$vGB)PqgHG3Ih`wP3|;8tnb8vcs$t9$^Wpx2aEqdT^J)Wy{8Dx3ghwOir;k1w165
zTK2;^=R*c91Wy0@oCRUd%@b^PvjpcNKs|_A06_!j5-}$kiyiY`1@&Og@7(YoLA8h4
zC4i*a$@7@=mFYFsJ!YLUv=u53xhPT&(gmz4e@-G&zM1@HGaXsO;VOby%=!qPB(4uW
zd$txzvTgJ(K(kT;qGFja-9-7~6NY09NfZ?)aqS=&8Bi&F7Sm@o3T9_A
zi&)QsQ_3kln2ZDxckiplPp6hob-V}7heklvOV!PCV%vO1mR3STwMvC!5u!Wb@XNDf
z^P>GSLqq(sd2wta%=6k1{WhqN@qwQvPHpEdH#qQX&k51Cgf0mu@#1EMRnwPpisWaw
z)uZUk#s0-{m#fE4b7eIbbBlDPv-tR;VhoX1geR6F_LBU`h;Bk@5iSrn{&5`ksbm~8
zKKVVU2haK*IdP9!B`dcX?m}%A(=++X3@DGt20U^tZVqmr)Mf&B71U2}V~N9pl7a&L
z*y$*8k}4^?KSZ2{swR^os`AoRNLZ-wx&eL!t4?_isU~i;V(_m$w~gt5ga<)_`jv<1
z=D^AE^X1A(x`^H6pOGCrQh3d9gBv2{?H?;$vpZQ
zOMd0_#hmimMQ-INh>EdqQ#HE4t!cU-1<$fH{l4Jh3rpf@TsaO`=DLUMPj>CbmCA80
zwggZgCjhHvafC)0~Oi*BOcG
zgQ~en>Zuhm+B=gSijHN5Uc=GiSf5NL3gRr(eE4mE@NRqAmy{T8w+xfXyd1)Hhr;h(
zpEmat*a5SDo92(bT}KL!`lAvNJGRBxl%d?1bWCTo6jlg7#jKNH+qhg}e`~>FOxg60
z^;I|JMh>yDmr|VDfsW57?DkIJV4B0z9qV?@b1Mp>I=SiO{tk&DqFi!0Qd`QKE;iDl
z3v!6f2$Dn@Ny&BDv2AHVx6QhygG(zcKxM2ps#_r;;*z%8v8^}t!XY5nyqXuaFJ8jM
z1BhkBn~5H__SSnTZu8Q6rBuoT78`#o5h-8mzqM@LQt|zl+|yU?{fZ^z#z;a6z#v(j
z1vL*9Xo6>Aa&)xzW_#!FTh6CSH;FQ7Ev+B(3K{YJkL&I-6
z5I`YFh_Df&n7rWw{e~EE8f^#_k(U=hj4k;53<;xyN{UQweXSj@sT`^Qel{L*+pOBK
z;NP>SX?Q#$UwCH8Zo&692
zRl=)(4bUz=vcLXkf2F)}lSmqT;wKYIFKn#;&6k%1GzX902|;7E(N&%R4WUKOL6uNP
zUs?ZGx_D;nA|9S}uHsesO)5@!8LP17pAp^r8h
z7a-_b2k?K6e{(j%6-D>?Bp9YiDkE2r>O!uVD~5*hrJE_
z%>cPgjg9_~J-I0Exznwop$d8;8f0!82u*H!1=={djo;998SpEaSw@mm(R0AoJf9|2
zMkJ$IQH~c{y?cR*AlDUYLDN(;m*{s;%op8pf>JSrsY>FET;1}F6&sQ|K#E@&E-*RF
zs8N(C=|S3MQ;4}zGu`Vm2+=X~Bu?l|1{kwTLmY1wKb69DsDC~g}V;Cs7v$OZQ+J|)E#r+A4%TOrZ)J$&N
zK2v~+?e>~Pat+2{V%!>1`2d|IndB4>3vwg<1TNJr1z7#C5ehksDaitVAP|g@tD%Gj
ziZ@l1eU@
z#1-{FiD`+D>JnpI#m6L5Pt1lW>BRlCfU1$>NM_13b2dP(i@7<-M=ic$TSZeLS8%RL
z)x{qn4z!#OPC+B8e17F>j2I@D
z>BkK=$2Hq-46C{u4F*AuLX=FiWvt$}Ljkmy1c)f6754dPSo?UXl)TL#iiTLK?(lG=
z*wbk|R1pQ_O8P7TQ&9{lNn_I4I$5iOMX{*9vfRH9G*hB3U4v;ln^v@jIFl>tTmrL;
z7~}TE;@{5(N5~X^>!R&au1$tQbEPrEEh+96a9`_RIFo3myaAs?=5s#iX{%F%yhQZ3
zejuW02-3y9g)Nh-)ir&!@{&!Q2Z+hl>eX=oCRd}EZWAn%>*~sYn+%tOwpHNpYj#Mszo;V><`+%G_N05?7>&
zhA$izvh1E7XlrTFH9hezmwV*DW-FR)ubDZsYz3sLWRYaEtt&1AH$*B+`+xyb8WY;x
zPLQu~)2<;YnHEv2J`dToOs=S(Rw!5K=_1x>wP{*!5ARxG!gx#=VcmDZ=fN61Ojk8B
zjV3E4#eP4G=PV1o@$u&1_Y0m;5N~-6kn8Ka52bi&$A6BBPtOJhdUKi^j|AAdL_<0E
zCQPs<=6A5o2-TFt$j%3Y0qy#oD;j9c5yjQ8RwY^S31i}i)N5xgiySN7yFxAU#%gXU
z(c@rRxA7ih!nv+?)~f_iz!hc~lBs{6ZL80S4Q*+JfjrG@4c@8KmcI0Y0tUe
z_;&?H{^n^^>oouXcxFA60Kkt{sdV?`di{#A-~gZ@000P-$7>Tn-Py+Hci1T|_jkUZ
zvtJATuLI(g=B&D(sD4*vk8>~PZY$iMM}?PwPmEE`O|Go%-?RCgVsR+9t3~Hl#TjQu
zd~hLtJul|#ZO=wM*e~3XcQ;=D+K*`k|9hI{=IUO{10Yui)UAdT
zS0AxFZZTH(@XCM>4GyJcic3CW2K!Z5pHwInHjW?*^}^@s8sp0yyyXeru!P2MESG=}
z)d3?*yZb9{YZepbu=n=u_T^Xgj23nVZAq>7|OJ})Z6Yi)!*QatFrf2
zn`P;!0qTt!qx{}{!mQ3l`tz~Yh(oP
z;>Qb-877eu`~QVZ(JL2nO}q<*tQtukJ9&ZMfWgfWz|$Dy5+zhn&>#sTg-XILr8voDl}`{Ll#X%>3Wf|j71#8lzPJiR@kF>93+uh?F`UIs
zF;d|Lb=HszwpO6tCvYqfkd#;^m?1AJ*eEeRJ3*n8DwQ=eLWgSEL-G-$6-0L1X9aet
z6q|Atk?2X~e6lMxhTI_kY6U*ZYn$Pl%A%NgNNdy$BT}WC_I8vM-Ru;k=2wpn{sC!moDFZ
zlF5`an#AJ?qA?f3WD=xi{K3QQIkh#Y854fMYWs#rlt!9{S-Is|l8;FI9IGaac+sWGu#
zI9sW-nA3LVRCjkqQ_f)A-VVnVsbs7Uv+J(5!ljgG+E#|yKe9e(#c!R=Y0UoU9olNw
zYb}O)gNs%*SoQUpi=vM&npIv+@m-t({6_wVWPzRjMWat&RQlv1_QImSs#j(8Mu~a3
zS)P(?T<(%LN(R+DU>;7vA26*?U1WWAECe70
zgm?!a424b`MwTV)m=UmX05+KZ>90U;o+Z#7?Bw)9Sw{wfjRP3Yr#Jfl??>ejlajPJ
z^9_n@CqyQdFp>&6k)#E|oF$lK$#9sfW-W*^N=1euNecAaPLg254dc+lqD{t9kj>M<
z#)CNmx0p6*PqkhNkAtniJc~1-K8FwMAF6RtIl1U&>xthED>TZ7Ocj3}GJ21(Y2y>j
z@5uNz-qCFl7`O0IbLu6EY}NPXnUU4IH;+j=CJ6~7ViJ)wQh_zX|Mx16Xw9mgSv3|s
z3&8^m9@q_p8pi@BA{G8q|+j2;y$FyP09%$ykJkT0Hqs@k#
zF}Zft*OULjd8L#qWHAmpF{S^1Rn3pe0)QmIrsh^;+J*(n_e__g(#n*sv^wTJ&DX|k
z+f~_lyWdTghbhjmo@(C!`1ZA*%0tWOOW*IGD(aO8ci@;ydeGf!+2J>bXqD_UVLB#G)=j
zrz}SK0KWfguU}&X(+aN`11NE4|Msih9b>acaTV^%q68J>1crQC*;WNLggyVM1kqTJ
zz_J3vGJK{!2ZqanH$)~Gk}DUo*kVYYJV?HLNTEVVi4sV;a!93WNUeHE0~OpMM`8Zb
z1GyaoC??5)B1<&{!GQ~a(_mw9`DWnz$yY(Zzq3W$
z12;M2&Lpa(OQ9*=^uai(a#*X_u)BArFzV)b=D?Uy~K?Wsq_Sf@w2B|rFCZ-ahO%9k^6_;&>-26_~;
zG!{{K<~udq`dq@Z_f$|{0sD99;#3BxH2j~W&Gi=n*Df!Q)hB(bA9cTPEl#JWn8*H2
zS-*)iGUMe?g5rwbnx-vk{=oi~<=kzLdbWGekzQ)qepi*#GS5%xu4u;nyYXO!)Bs0g
z#DdM}J9b==dGN;J%b%_QFc1_P3KzwQ0+IO8RH9^NDk>I@JZ|}OYqw3Z_1O<$v}l4N
z8xau_vKdhzFiRvUqrYR{=XpS;ks${3i4w&3*@s5GD$aw=0-P1dG!QX5
zTtM7Fro-d`hbLqb1f;OcK*$R^Z@7Fz0)GK8@(>d)0!1VwQBXvKiGd*wqIjqh(Uk;M
zGJJ&~RUp-K%yv7@pcUFVvcfKYg?6Tlvqx;VTF7(9L%2s{f*}mBP!I(up(8pl!$1sR)N)7;3xOE6z>Pon=|I(u
zvm&e{qQ~G3Y77&FmMM!U5ebi}2r(0$sUpNeSgeG_Mp(o`aS$nvLU9r)&LYP}#JGwa
zHxc75dZvpSk5tAp*+_y#nw+9PqC_q%(J6{Ch>}>LB#D{i4u-ZOoFpPARf4EQO?t}E
zL{rQ}tYnLus!#D@7U{2K0T@ekS;1g4C$M9$yb+lL=x_{~oH#>VgQRDC7DCv*KD-sq
zk1C&kl_Q`^6qKfDQT&A+bB%8x!6JtbO*B=3)%cZScx4`ag3QnRM=F~
z7?U|!k8nWE0y786fYb&pL*v?Hg=sunpe>DkXl!B9=0c=l8m?g(JmxT+Wr(pPf)J|+
zVyq(wv56qYHUhkVTw(~m^M8O44(jmgj&xuI`QCWZkr~}B`Y+M&TaY{iByouH3luAR*<&+e`rh1ql@{LL`M)@e(9SSq@$2_Viu%-1or4*H&jwJbj)1
zPp>{Nz2e?u#!Z;?*%x1Z^W6_x1nIp~_#zwWBrL$}`WW;J14>Ndk`Qnbla%D7BqN!D
zCM&3*gGqL<$q7BIaKnorqDWGhq7+9KMarX!I+|!x$&7#hWsVCV&p|{&g_X$OBziO*
z({&QiRp-#im~j&(^OxS_t8c!iAG^WE6JcoUVi92_HsPRfBILOQ6NL|9FRx9Z5x0gX
zUVGzh>Tkm2%rz-T5OKN)Ppb~Qr;$KRRFQ?!0{koDt9MKwj2SnPCYxX^Sg}d+5k^Qj=yfK6S$O<=$Q&0yF1jf3RY&YJEzySd&|u8C
zi8Q$v%(Ed*B1Hwb4=dPoeAh@zt4n6wxN+mgjkn^=H7Rd}B=kEhw06fV_pBc|8G6Vi~6*Hf-g#<|bX
zC&2{vxP%^o`w|JWE#{T&Fpn3ZcM}Q0OPFUMVNfuzxtt*C
z&{j_qY99|V9{nOIYJs6Z$1!>c!1IZr*<{l1D97
zssQVrP*tG>tk{!#IQ0pJdOaZV2}YF;pxEA80AWvYECQcFk}>vqMIu<>hSC)sh(Yz|
ziqVuHhHaP{yWg<4%iH1XPg8P3i@$pg+ald;qFsiV{{W*v(`Aiimb>7hOD?v`$M!X(kTJCT4*?6;`)*`c>_B!m
z#T5;KGN0(cuy8mwVUC{3;;<0k$Q-H#JJL}VK_7AlMO&i(nQGxwbyZzuRZx(MtMK{V
z{BPcxXQyhW&Z0@1h?zQm8~x+fXd5*neUuErppD28IDFBcX!1{PWN+5RlCtnZ$*%aq
zxNgVo*P=;Gqy@}OliT%
zc-hW(>*RdFfv={t>ph*^fY#g*4M+c(!y
z!l#3LNa^z_DS=N{f&*$dSaGwDshpQM@*iS)iTzM-{>2Z4PbSJYA;KpTmJTTf*ve;QQLv@9BHEP0H1@kudoid^YAdf+~0+(DGTEB0FCIp8Yn5jk*0;ZBP6QEVmP
zd;U&HE|{TEQA{WZ=G-T#)7tz@_!e`9N0tZx
zYHT!j0@$#>ilfNlf-Q^-31PA4R~q1vA^m9+$|=K$V7+s>fLuBrK7TCpTQ1up=(%ao>OmT6C@CkBg&c{4@TW2*+_MKJ_vz=6K9e%vmA>k%`DmWGQkHNkp=k
z_djN4ygyp)wswFKi*WmVM_qQ^1A``)C89&ZerJmGL`HYaS>%cEP269)pG{w7+*g1j
zV1bTr$*$Zxzt8QdZP@y)+GTC-Q2Vj<*4eJMx240c<~Qy4>%-Eo3$+sva3?qV&FFV<
zJ9w6vW8L6c^WFCEn!%61K%v*(c&pz#MT!j=G-TL_Q6);(63%&av|J+-b9IWtB^GIW*YRHjkaKHLs{}_6~#&1&(S{
zrP(Lr~D)Yx|F$30eWt0PXhn49^{eT=^?cJgPp
zYJDlI0y!kMM0@>t2()IkpqI+=x(jvzy5={Gn%d7Z{88K$hw@~~;AZnY7P@n{3W
zV-(Gcz|f}RM1T`k9`!2Vr|rw^r@cI59P%-P8tvFx6Ev9qzJD}!nE9gBCQ}AQy%^9j
z!&k9DRFhdw{KU1)qcCH+T&7pR75t!jzC0&G09F^mu`A)igTRBk)taejuMSGI++%3D1qCU;FdGQe5`cPdbJfgmQ1*ya0~b
z(fxVp%YM!;QVn$lY?D7j+rJ19B78GggFMQ$Zs9lPU#w|WC~~?doI{tE(@Q78R7qm*
zW*XkIa|WyL%krf+xDyv%Di-X?M7;
zUJJo>p26Z+p$p9$bS32(gW>3`^M!2MkGZ1DH#C=7E2
zL#Jr(5aL3;R*gm^TH+TrA}Y>|k8$3Y9kNiuGiQ#Zh2kr4Ld4twsP1F#5+p^YG9
zV4BY7EGZ?(TD%gS2j@jK#P{0u|u6(3N
z+(#G5K$+a^(>ugR7wH~;r8R1}u
zEzFEjU!aR@CitM^cG>PT^els-BBc@`WgEpcz|ygDdoS46T``!CIq~C(#6e%9EKcBn
zvXV+sJH-e9C0MRl5FC3w`^PEGfe(7a(yme?B{yi#F}$9LqD>7Cy+I8LG+?RSTwTBl
zY7e>YmNOak(9-_2T*L826AqSa2S+`Z4Rfbl@fS^?1am`9sz|O3~4(qRfuRZ
zdN^G96hE;*`F-a1_>5w?Pmn=OdsM7#xo~hfLbJxL%GGNe*&7@XXi1?F4{{!~hqiSG
z-Fba$h!Zbc$}T7}vD$z7wvplhDO+*DK3`N?y(zb81<2qEB_p%m5S)-nhpO?AepL;`
zBFR~Z(wQddbNMKQavEY1rNI}yg9^=t8_=Ix-^#9d%8`SFg}n)k6+ileN`KbwDCL-jZjp+K9<%!oCgxGjBmYbFFn?Y_R?xqmF)iRN{6IrdRlpngq2{ZQ
z6L`&*&BIW@i>DkF$*$7>Pw7MZMu`Z~dH7K>CqKrIPS3;^wD=`ZiARg-5Y*!?`4Ybm
zl>{A0IP@v_oQM10Xi4WXsetPYI1z(mV^`Aw+J_odb>_+<5Yw3>L?~AmIC7pQGj&S
zoi!xTFb;*_&=AXE09iKP)AY>;$|E_Nf3TCk28>dZ)Vej=%6DelD=U;^HcY$H>gls(
zy8K#6CzNi)jM+!}7vFv+9n-n}tdbO5DZOUNvq~Uk)VfuXR(mo&m9#Zx%1TI?P!)Oy
z1y$W=<6`q!Dpc2G)=rS6l#PphyJXvTTpAfD3+AdcDHBgM$JnlMLuTtBCG%20+O@GE
zHz2cu*IrzdiJ(_@QhlqLV6u3IJv%#+wMu20OJ?nfMW*d7w^w9wbMs8~O2!xlDAi^z
zRzwS~%|)hD(w0Ta@hw;@fm&Ikxk1vVMm1v9xb?VekW9&}^%Z5hXt$JX;3iDb!e%d
z+sYjErQZ+}Be{>;+{OCkmu6$g4%Rss)&rrc2LffwS;`GVs~CM$hqw-Tw22<3MZwZi
zbaP~*g~GI3t`npRC=8T6$fi3{9OVXZUb&o3t(ngSGO*BoazxJSMJy5l9$CR1!F#k3
zs1gn)#Ko`Kv}u;0Huz4WKEo4o(7mLI!(@HXNXoXAnHpu7v)z*I{wENTl!;3@0C9ET
zZfa>VG{^Db5qZ(lp2nPu`ItLb9QJd;cCvUZAX-*fq
zfydOla=>p2>|#Uf^h4Qt-V_|?=3SpCfP9qd&0C5QJ9nK(EeC@a{hI8?3#TM*+VoNK
zSjh9SBd{Dv7;>E&t3B!Whd2zs7Ozg_Q4Ma&n)k_Ij{)UGEv13qy1yvb2Hs!a$g3BX|^pf?)`uYt|R-P@SG4YZKEg&r|e=X3W
zfDPD5Ph0p|g`J|6ZpdI4Pqk&=1%TDOisKuk5CHwOMkd$-QN!IbWbxHrv&_nS$vXgL
zC0xpk)!Qxu1dAzURJhD8
zHh`wqm`WwpkBk^Q?xyTy<7FT|MtZ7z&R716|f$
z+i46k6dWpAGTO_KOf?CadXG6`0Y^a+*I088=fgAw
zIMr+uZ>^G6GlvsUwHz!85cFsggWL(u%@+&}ak;Pai)^63(O;HSQr^lw3YY|%#dB$^
z;lwtO2aKLX{UXu6U`1ea&Q!?oS8^vNWQ!vqt&Hbe!i~Fru<0)p4~4#c?yS55Z*K|NXz#!H5ZxOXMUpA
zMv9mwD+fiakBl9~>ZZ;b(NS#OHlqr@u}tfmmXU&9H?lJ*45LZzD7oQgeJ+`>G;4&Cwa
z8Ji;^$5pYpwIu{Him;K0j2bDfKXQ*8cqDdssKbYf^B0FS7B_e#CbPGDPZD;rU%CxsO=|MM@bug)O1gH_<2kLRDcnT0PbALh{5q-l*Z7GYZ!@n6x4zHSvTba
zde^GLUmoo~wP)p_jL1bgXOar2-a{UT4Nk8C^-zj%lw5B`wEFfn$*p8Xeq|sFbLCDy
zhQ1ye?W8zQ&A;E={}!6!qJB;)soarK#jkB^JMVqt_j@};f`iEY8D1cFKp?%o!D~;11(}5ro<2z^eRAlq+)|D#~Uvp2rRsn`K0y_bcsIadO>cs9B7?A!J$o<)5W
z$31}nf}xIILzdNgR|_7VBEC0mKM6(5-w!(OLG_^`0P)pu=f;@zskaTQlNV*+kUFe}
z0L0}pA^gTA2DJ0Tfd6yAI6qyFLJp*-4Iokapa3nP%vf!djqJahSJk&YEMUnq9I)!~
zH9Yjm4OBV(`~6w<0eu1Ssfp8B`?7p#%5CG@WI4G=g`Hm!+njjLSiWerSDji>bZTdF
z4Gq{gE$7J~W1dI~$rbCe;gwVZT;bs86WWr`7)s|F+G{j*w_x}Z}oLj
zx4u%AO>8-Qf|i)r^hV>1`cquyWxvZfsQUB9gC`S>w8VSuCVZ7jUlf1qyGrGj2HuMC
zjfOeRS2);h5@D5JTIbk_rcc%_$}-=!>$myo#Tn!22H!&0meLeMx(ilv!_O`|4>}tj
zOeXI*@!1LfkpypoKjPhSsr0UhT*>%5Ek3ji@McSxCuC15aELT1KE4Cdt4
ztPl_QH~ZGaP3c<*XE-06$@_I>^AS?Dcp$|jo~|QO3u2HI4V+?#JrR^XejebR^**laIqZLH
zI~nS7d7bYC7Anhn6Lr}PY@L}ZRJO75oP}O{&Alh9_V-;ct2|LpNbO*?mp40{hk)U=
z@GfNw0dJy<(Pm?I0neICGIG2|%l?ygmt{#-8_=BTbYN@;K>8{Pdcc?2T@Cz
zap(`DRf(#s*49e9bvh9xyfrR=&sj69VZ@Rci4pM3qtiT3yt2a9Zm)38!B?&aM6jN)?8DkaZq`Bh_dVSF})TZX_+oJJo6Vi=!7#>NJ
zPL(7yaj4*WR$&d4Rw~bmg8zD)GvhzHDzA0JR<+NS>0^A28jdEYpp>HcCMFToNR*eO
zDBLcVxN##*31BYbxGn0z41s<|sOg0sE2+pnW9d1}Hd;@X)gH)R)fP_Sl3d^K9Ec!k
zJeA-j#&z&wc(5yo@MB-G?fm}~ot=*rP3N73q+wgl5v;cRv9|Gy*C?bqnyL8`8yA2jtSuBb|L6ee03vpF{co-x;^W4f!B>ztT4E9d8qt-z&`|pcQD25x$TFp=L&dGgsr5JgvYGPc$-fU0ZA1
zGtURR+%R{_$s=Z;DSo~kO{ruGa@CHEvPeM8TLF0L_f01uHhJENwnRF7P^#O`eQ{Pd
zO_#Ohk?RD)?0S1%d63UkV^5{;h?=us-fLZcQImEX|S9UAuDe!f|`ms#GEb*XN&2690dKUZyftcE)4MiJoO5|Q%6wBW@gsUtg8>Y
z3&Aaxb!YxCxBTfg4qbfM$1V&uO3G^0$#?u_g9+7|4pzRyK3t!Ry-L%}rRbOdcZekOP(
z%FHhnj;{_yggKw`N46cha&+@m@^Jm?!_4mPN7DKWLn|_JeIuI3X(UkFf_}Oy2$dbm
zF9SVTtA;@9K2`5pwYZXBDyS1rRNG~yO*YyB8<)xGfBK`U72jMLmt
zC$x&#gwB3}xkxGBbAgMm&Gon2_tdYx&J4>Y95yGkH`K&@@ha)EXI@D3Ulw(@>#L;lua#cia8DQuuoH#-iB_oj~%4TVqQP*yZykxZ&ls&%J%BrDXQU^m6-KS8%Cd-nRzvn
zv(STCO=uX#EX6d6+zW0{%(*t#6@XuM#nlKPpY`i?ByLLgoT|0}7KdE6y{yf3_5S~1
z^NXl^br;^ZeQp|feg`gjW=?q?I_VmB`3CF*Y}=ak0dIwRyy*m(Tmxs*Dl@U%bT2l?
zY?8TA<<_%&?Of9zC|*;V|H_B#YS0Fs_6vM_cz#wI3kFZmmq96#b~>jbhF4UD(`aRT
za*GTLl9J()LULDY(V28(itkPM7CiCJ#|N`Ti6K_>?V8d3LQTaKt;&hNw9P8p)_}iM
z)jdhmYG-)WBj~%{;SgceAW>I?=hL*AbOA(r=*OK@Mw?A2Wmo5tYCr=(Tqnthq{}&;
z4GQbR6?Lucti(Ewy{1pqW3O4q&q{2qm$W+12BT*KiBMx8up|}|$rRa3Po+ofCK)Xx
zAl&pez!NV6d^k4fAL7WpYZ{s6DYY(IbvN$Pwg%Z&EB;cobCOn}m=>Bwb8mb5LWD5`
z)S8-Hw#>?yacQ(AX~Uo!~5
zYRONYF#4^h!+P|Eio7ZWyCP-0Je8Z;Ez(%CIpsZk7|B?aP@|a60UhwZQ7@jG6&Yd(
zn?I-SqmXyyh%?fPNuQbrS%V>n1?-Xdq1rnSvwJZ6;)X>~YMGua9Lr-CwGwGnL9Ym{`j%(N`gX$7HnV9z;w4@8{yl0&P&XetNYm-@obKy`sB~Kc
ztDwWv^s~zfge&I&9&P8Ng8=Uz&!AHwj_kX}5jRh(oucWw^Ns^@&FGxdTu1E|8ju$r
zHKW(zxvq`R?C2)0V2UcCfAs0|XolD!V6bX<*o!?|un}-Py<-|5ql27NIS;Vv_#Nq`3fQD>*?W;0Bk!h#BwBZu
z?sVZ+>40#r6zm?z-O?uM&*!k56Rw#Mf6L@ZM+~&N(m|RW>Y0HM`fKf)~wJvh_CwyQI)a43tWvW1s
z>u;HRA+@KiqRH2jkxAXSM6)%a__FLD|&N`__I22Usi2Q?2xiTx#7V6emk@Gp)7{EJ(BsP_`hz2K?7ymM8L7-`kAY_@se
zWQoA7ek20#DbcQ*h)J~Y!b`M?{i25&!OY2$0h3A9rhizKcW!ET1hsa{1mLlZo&v2E
zOE2uAa>*GII1EmQCKl(-`S3EF5|tH2FY0A72ucw&3&BCADk7#U0sSivom_|qfxQ0D
zYYxM)R1E?TXFuqam$=6g&<
z)b_;r<8r6$^}(Yr}Ek;O2wEUS*tvamUJno;&v?
z#DWbj%+KzGIIck+uyRg+)J$$hWW_tkj*53fe-=KC2ol=^){Db}qHfwE;9~93O;<_j
zoE_e9@1ftkUv@0lSo3S)I4L$WjwZzJMropTQO77&Ij*ZTpVHl`I0H9LzN@Og((mQc
zT6$QjDrYu9frUlW+2~$aWu!6sO-hU+XXr1Z3wo`xFBylMMXMT<@6efT-L@;qx~PFXjarpV2VrSLI5NOhDh>P=dM
zBCorYm18yL&!k6hl1N+h+!M)f?2Gy3eq6A3=JfPr^^{WlX6*;Lkj+`Bo;2>Tn4upkBvQo)^pE;$U&L4kK(Q|P;FYD}UUnh1q-92
zfQ4&!k+Xf|+8tPo02Z&`{~x6wFkCK9J8np&@(_r*?G#RBUruR38;;&2!)9$Oe0MR7
zm1G1g9M9!}@?+9g2x$e06TkrD_jqzSgwoh%t6;IT`;g{cIj>_6<{gCpAW!zn1L3EK
zUiq}%8)ih@NP+=*KuYi90YQjr2+cJWpt2+i93^nQZvB?t_UNGE{iY5z3cQ)r?LRWP
zP7#V=k|?K{SzRO~?9;`;*+E}l#0s5SUrVD>%`|d7oldSZQzUAAkvcmK&0(TY3?>@G
zV8>rE9QMw<{6g25D|!Fhhu@Cwl1`8(0#naKv=!(;es^4m>QLyvQaO#C?Pk#Hoiuq#
zYc{!(iOi5nqzflTg8Ub>;;g?x1o_+7la-Y=Lt&SFs6!$Box^YMMf~ssBX=~
z6%&~Jiaul^yB8{{5YD9Yb4fG?E-SU17McaweD>9f#fRI#Tj64?7kfD1Pth+KvLs)T
z3^=)Rjx|v%jvyz*)K$c`=TiB=jA9EaPX+8*9z756{y7UIF8dbFzT0Se($j5v^6u){
z0Kd_9GP6I6LMPriZeN%4?4+Dsn3>37qfAlkP1PB!pnLJLA+*5SfaqVzxVK`
z24~UAP~k|^?EFj>l?hj=V2m718lmKX0Oxq&d|_S3x#F^;jZ(&xvC9iflL8=kuuk*SGzjSlfN_{Ptj{QRVx*ywuS<+B*R{+W8&&oV5|;Ig`I>Rs=-vK~EH
zVS}EDu-Z41cLmyI+-!Th@Yy%shnPe7=gh`WKTvI>;tX!sT5$~ZsZj_7OLWpQaZ{Cn;?unAGWoA1*@%h%yagDMdx+iwu~B3d0b(NPmQ`9IF!~R%Zzkxo|YKpn_jnOf_>Y
z<>PNMOsIz7@|cm7DR38(#w*KA<7Z_Tu;9!)sCFPh7m>pp+``Loy8wK0eXPD$`}tiJDx7
z4!pNO?J3`U;?l=9S!B4Lp$gXlNl*OGe|Ek*8#;@@oP;VlxlY&UWbJGauFjiMPq6z&
zYlkl)J6dmxt=)mazX1eo4~R@#HvH9EpNJJSmO71k`%aAr5o57l?DiDuDtCN4X|tQS
zZOo4^>BW>8VGDYg9=@nF^0N=Grr&P=uFG5_aTi
zG?-jt-p)HQZZK)X+2oh@Fs2aa7xNo@O=wf&N5+o0w*A5m
z-aOup#gvwzaZ-CzK?=*t5Sy$mFN6?ia5#aIk!ju+G(QOV3&&Pww!SO}2PZ}%_N1l`
zWjZ!8F$N_*H;oWE_Fi&oHX$kL5MbMu+XuWgCE-o4l95i#>JvJA
zgS!E(8Nb&}U&Y8ELXYY6%~`6rLG(ywzp%RI*L^<8{oFQVFadui-bHr#
zc6nWP#nDrRHpcEa1~7X6&`%Wj
z5zr5sWJ8ImOObZuTz@3}`PYkLegCe@Kp#0l*(Pc`v~RrC(UR?3?p|D6y#X(zb+m5MG;MJ7e)15ve-Sbh685di
z0fG*H*jXBSEQuA8A!)=BYK8PXTRTh5>O|yg*3M&q75uBR(43vzgu_$TOn9&G#Dz>N^$B>w)=mr*-X6vAp$a^`gJ!R-h%t4cR
zF()Wh6;e{Ve5iDEwSBw$1)HOG!o*^4!&9><9HkQ}kvNHqv>zQ0{VFB(m4AF(z*ng$
zU&Z#e<7qNGOel1~B7&#Wl&(OaMd->I0q8yxjQ-WpW6oo^2Digqr3ke&;
z-*p8EKZ&n?)#7S)#T)VTk2I6HXI|U;JpdcB$&6n+dc~{@%{;L
z!0Rt_8LI>CE0b_e0?fjD{`7hGqt|Ju
zA3r79^Vl@mDVw9GrZXs?K{j#@l{)6+I7C5%fHMZFu=P>0g%|5u9iRYsT$$Q|D93ySCrr`te0Lrjbi
zo|}4?beiMJ)4adDH{Qb-l4IgR{>!+lb(L6VgF@kLzRD(+8>Y38Ze%0P=K`DFd;5ZPlEQs$f_Mnp`q~9wW=0
zt)+hR;)Xc}s_AJHfN_YRrw?b&I26;%x}cDByNo-PUYoP=qbU$bFRO_pBsDI(TTKX{
z3%!PZ!>PepFgi8%EI3Qt!?g235hJ-Ztr?u_vS^mXxy&6|0-f~pLv8BN+Q&J55!nuL
zO<|C?TXINlj$|nmB_%}DSJkliF)Wim9qkI*VOT}!5j8OaXaPcn(niktyK)XG>#s29w?To2AXM~ul__p(yn(RemTC{9~b}d
z^i|c5HntEPq;X9!0g;E^6=Jfdp;B4C8(_|ce<*Bl%nfkr{<-(XRnTkxm-MI1FDje8
z7e&R{&!Cza^Rz5m=jyp68mu?2Bf=7mjErX8>W0>oaGkbf`)p!&
zpWNkW3u_0+Jp;w0#!K|IVmUy=4?DvctV<4P_~U!GfAO_5YSm88JFD9PP`5ge5c1W&
zOy&7KI_8eM5$q9sYy33#;DfLEs#(X$Q>|>xqLDq}w}_Cm@b2EIgNNyDx8K;HzH)H4
zfTv-OY=B*s#_7STiIR4*zpW4q@WXOndzdJ1e7Y=e1AC|XQ5eQgbwUwRX1--E+_
z4kV#Hx~<=QU}f)G#)meEy}A%<4Yq>qj|-Znub)nDv-JE^fZv}SmhuFA0O7_F#tQ)592VG*f>HC4+;=#F4N7048ceqP!`rgr75;*4}iqQ8D
zrIs2*AajqZ^qkC1Nay6f`TmMSrLYt(6-RxGE^%jx}RenXZb
zr-0XdxqA;Wl)J<~ZBTb84=y{VYTpu58(-f)Wk2Zm!9x+%X6fX*YmuEs>SXe)`5wO(
zQ4AZ4cZ|vv0aFmH?^hytBT!}Pt_JuzsJwjkP#v=0Jj`Z%Zb0id9(=1@xF6A$+F1C0
zAj`@yvb)@+sPo>D&4L<7C}t7MoE>1ScKAGuH1^LK}?
zjP|VNIfa6|cFCuxUnrfeY{Njjj%0asRB3&d&b%cl33qg@`^@OFd8>NP9_;JTWx#f)
zfiEx#3#xNMFMLzUuZ7c6KbKY
zTb^}=4-Pm%#Z={15ie}+3Da6l$?VAh0G&-^m_Pa~o&ECr@8Zo5OH1d&Be3-+8f4cn
znjx?_RZXP`2w72JGWG;yYL{x7o-wxV4!7~;9dv0ss+v$7^!pJqRP$`tUI>A4tBX7#
zwh1h7Z|Z|WxmiNoL`}2Bw&cH9LAdECrzB0SWQ0VfaGtwhTPi{+XC}k_80qlqdwXmw
zilqa`5?>MFxZA#8(h1?
zelOsv${7aTj&B8w44b6!`yIvUQv7H%ssig|SO@qgt6N42B@d-}#7PfPjSNqF5%crOD
z<&m&XH?+Vvsz0s(ytp4ClKlIG>j6M
z;lzCCm@6$T9qN`X6_mVUCkXz;D|^-`>TLdPLMBNhsw
z^3(6A7R#=+upO=@HrNp+=c_q^LFLi|;X`BH2zwj!n73YuhqAPZZ{1Ehs2fP$Y4c$@H-
zab5S4h2}V0;3aASu=eh@KVBa|Nk)rNQyvJR^OqN1~Rpv4L
zjL(||J1=7tMhg|9O}O@X?$?>RQkO{!Iz|PbMs@zy)mf_$ltpOo{?EGel78L-V%L8-
z9v#I8`TE_ZOnW6?6(o2h#%7YP>t4zz!M+qNM?Qa1FUIxly7JvH6?7vV*=
zFtl~=ziZ@Ax)f!hj0Yyd_R92E`khrugxFkF<>B$?vT0s@p3d5j$f)5S#vXr&O>R{t
z%?J6vqCL1bF0HxB#OzXECv7l<)t|5NKLjs%@I}A1orzp`0D8S-e>mJsvd7FhhnAO#
zsBVfc-|Rs=0VFLbHw+3f%t${QM1+Zd0z;Ra?I2ZATHM@aPA4e_1Fh?|=B1D!u$2Zz
zFUuAsEYc
zmG8y7p|DTy-!IFZy0#m;!^bo4L_At83Up0oI|=kV2M&bY$eYnL39MYn-)
zBCG-kJrSgcEnE-xc}RyDrCMz^$+=)V;k;l`<5G1bOWc#K%gBUP3}h3
za(>cHfDg`7W6nS8ihS3zbFoxR^U*7H3222JxcV#g-XWj(QPJZX>Fb)&6D`ab>^4aO
z5Ze4CUVdoUi7ItHV|hdFc*!EjNHj(48e(kO`H0~OSDq3snBZwCqe#N?>YV7nAxlyn
zG7N->ba2nswlOg)C-I!mLMyab(}R}0s%@(lJ#HB^0tj)?5$7fWh9lFupiB^`7}QJO&)YPw*6;00O)C
z!93Cwg4`sov%a1$Tmf`@J-^-GkjAUwoOkt
zO56CyyuP+(<>6ma&Att{9^!|upc-#?t6A?n|3`gIe8(eKj?eG=zQYzTw4=$Fc!dFk
z;hyUcHK#Ex9_(){Vec+FKMw2_eh9G`ht&+eJHiFg=Uh7uiRBWX9uGx~9d_`?V~HKd
z5ivIF^o~qKQw}3Mg09b*pHQDBuu7+5{<*r>ss5@KDX_PHGY)W6kYU-k3vRJrVrii|
zj^_~{vA{IO4m;SJaUG#qM^jBqOH51b0spCxY-ivg+5%Nm2s`*UV@X1VH~u9$jpQh0ESdc#
zoJ({=NKVy4hjBk8S-<&_Zm_L$Q12SknrdysSAQP+ddjKsYUr-#_*J^&<+RFB^v;e^
z`rCA2Vw6l+3tdS`LubFaS?p>TaT2sf&vxGDt=;8)EnE%{>tmB&n2=_i3iyt@v+zgW
z7?I-OBwVaB?2o3-!X&IHBv6$Q@zC)!ALTnGW7;5xsWBBCNfgZTovxLIPs`p(nI<-=
z8>1gFcghil(UqNUe7dGi!=S*5h}kg!1kUL+%)eMSh{c1B`E&cM&Z~Goc3RxWGcV|8
zP?e;a&?IwRFU)dxyHsG_#%34$TF=SnQO%~IUnZrp8f-FQ+6#u&_6_a6WjS5(F?3c3
zPIq9zHq$*Yz+@%n#9z1m_+j);J>GT48CM;!k?DDdYX;7y$L{pHiofjk@VpZHdHIpM
zoBrw0o^(Tj`MTb5yn;@7$#-TFnpt;F^v~oaYeaK=5C8(^2)S0E?u?!LPm19&0N^`+
z3D^bT*FVD+o#@-Aql?;Aj|D%H!uA=~n#2ZdE@zPSZZ>
zl-HP*)oS5-Pfql9F+g)wD3GJ|P)pJWwo0q`Dc5Uyo%tBv}eK+Y}42uG?Y;NaGA(GeBrFmd~6<7^`_!
zi3Qc7svIR%r3uRTR&IdIa>5Ijh5AQe-pt9y&R-MGSQYB@a>%-LU>PD>`
z3
zD>BMpiYwob*Rp+eRn>M?Xq~d5_VTaY5^Gv>e%f(pmvf*{jt$zAv)jRO)arTD
zT5#fH1OIzccx60LYi}rnK|YvJT{qFO%~Y3dl)lU{F6QH@objF+<65qrQMuwZjV$xI
zil6glXy_5k2eNC_{#ry-{k*oP*ayl!l9+d_m2fk;OQawbYTz+};KYYQn){2@YJ)zD
zW0Uq|u61QfI-A5S3D9_P$ysQ#=?=6?b;=3g_Dgiff<2OWs?liy`fLCIG}xR#le6Fv
z$=}_rQw95eqEn000(95_005)|?+!`WwjX*%t5-fSBiJ|e``Jf~f8s=b1cVML6#!cWXwo{(5AJ4>
z1(X&FS?s0#_m)R+rAx9Q$-MI4u9zKn9pW#gGkGqKY|6WPlOJ!%6t+^5c!uIL!n(OFl!Q>
z021qTP`;EyB-e!UIDuN@t2R8b#^q@s4nK~~*I2v&%)T3gt~?iUXmLqu?+CvY-}ZX0VW!N$^%EYcfQ2fRLWem6$8-oMIV8TOX2u}w^hpk10u0@7!76AuFN=rm&q_p1piff$=
zhz~trq*oX);w~gN>P-(&-9~;+Q_BZ{qmJ=u0t$GCjJypS8y1|_%VJXlgj=57=PoZa)&u6g6eK;4rh-TUzfJG
zE%{Ey>Ug%{mF&m{#1DJFeg7U#KRn=13-)IL+X@$mvd&$dMaA3i2qVk~jKp*A3e$mM
j_b|IPGVqIv`mitp26GE&oSMXm-)DYfz@mv!6#xJLdS3+x

literal 0
HcmV?d00001

diff --git a/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2 b/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2
new file mode 100644
index 0000000000000000000000000000000000000000..de646f8d4fbfcc314053710c299fcc60716999b0
GIT binary patch
literal 9644
zcmV;dB~#jWPew8T0RR91041yd5&!@I07Mi303}BN0RR9100000000000000000000
z0000QSR0NM95e=CKT}jeR9*mr4hVsM37-ZL3<|**x(N$`P5=Qm0we>27z7{%gm?!a
z424b`d_Fbom`?(_11EXOcwS`x|EB~xMApKd!me6C10@y0GUKCBJOTs>JDR)2XcRnH
zEK}2lP6~L$`;b-WUc;#=RLdrony~**O}PJ%#(M$#qf&HSN1AlabI@0Y`X9hw>eI1M60BcLuIBPC;oV0RvXU$d
zb?{UmNUjw7(Y19Q59~UgI145`tsY#~7P$7ae9QwTI=-#!12wOa5fJAFBBJ2|9i1c+b!2vhELEd&9ukrPW)b-X$u
z!9$pS3ZYq@-4;o=UAx<@+wGBZXPe{pTJMe;b;oUn&Yy;fVV5$Uzi|05=6*Wj??n4I
zfAbD_zsL9QMg;*pd3Gh&<=175I(BUKccZlw(?y-FfW3}`&K!ckNP2-#YhbGBsth_9
zuYvhF=|QFdJ4wG3wtiCt%aG+Ny1;^D^XbIQryuhHurq&(V)nqMyZH@W<;xzIi!6zF
zl+Uc51KnqR$+z$=+!^`3^NWoBcttp++$4b+4cxvPTbOu}?zqeS@!
z_FBf*$fK-4IWdax9Ftw8;)>NZb{n%Sq}w^8_k67JDPK5!&BiMxS2_bL|A#J(We|?s
zY{r6{H&zNZX?DvOy2AtM>(r2-Eqhi_1W%LD?zZ2U1s6)zuWs&BNkN%d4Trnidk?`k$n;u2S{ZhlqkM4pRaa
zHV&>d83fjdo73pK8NNssuFESkz0+ew%2yVVN8(0mbklToka7i5)lLLO+e`&8q{5^#
z(ddt)7uv00;-+;uwWHgLbeRLq`|5pEwSP6;HBIHdXZWDSf;R898?TGonZkpgNV$$_
z@Y^V*Hm|>-Axk6J6dq;jD5;aEtH)P2*XN^Ai6$b^$yhs;Nek{4)=xA9a+}Y2*OEYQJGet5FW}Z~Phm
z=6+MgpT)23KKrd^zxb#0gH|=Q4N(VBCw*aEmUMe=rn`E~NqK6uL>WD;h3@rPFq+pk
zWJ-e=
zZ0YO@{CktjCFs-Xz;$Qk>e9Np?y7vfP#@H%^<{ksZ?M-)*KbJyIJ`vhu8p
zY|nZg6n?vY5BVcSHs59(5U-eU8;x=O`gtDu*GQMHc8T3ytkXE7f%Z*okK$LqY+REz>I0uJ>nekeJL%H+VEj+-CW;$rbf<%M
zo|-z1l%9I>Gs$V=!1_%%?1b}d*I~dOBj$X6csS-_-8A+))t9k&vGk@J`}_FM_}O4?MynVzEgR0;jxw+Mpf!9mSmg-m9kFY>Qa?A=dcziJh(ul78v8oY
z7{cg3diXEMFP1zVOtiX|hD-inPNJNo)-Fj1Qi|ia+I^-djXFifPlJD8|3)nrm8oqZ8aELV8<9X6Pf_
z38Xnf#GjfZFwa`QSk7osov_k9Z@1QVQhLj69}A7WL7JOS#oUA!dojJ;b8FaY^Q*__
zKlj36jfH$#L!q0ky;enB+2;a|)JJ*;B0<0qKa-{r|5o-JQF{~jc~4UMv5r$O8tQqY
znI68i=j~QGvtrrgQsl>mJ>Y4gH+)~1U1SIDUOhJ4v24W=p`oIWCcN60J_~B0SHYBC;Dv-4Ng97kwvRVoM}HD%pwnEHWzW)Pk=rCg~dMA-s(_4K`^N4~#q-
zyPZ1u=m8Cj1xt*j1=)TIex@L>fr2%W%L)ynXW=OuZQD}WZp7j=>d=_M`=x214a=(X
zfGtB^1`m0_+owpZ0z(2+=5p~|o@_DES=mL99+bE8K-RO@aU8%MGZnf3IkhHIWT2^G
zYPPWZkgM&;gXe8&R^sE!CuZk7JdWXTWrHVS_=0Y?K6JShg~kMpH9>~GPTFuIIepyO~9a_zujt-$#7qhveMfPjJ!;P&CUuZ
zCE#s^l`z86i8YdS0vo2W*qfF6VpC&cL>Zqub`q+v{2r}337Z*AFYI<8w}6ibW0};4
z3Iq1U8ISf29ufM9iR;KXys3!9VDEkQ!{9ONm2~8y#pJ>SQ&JL`NJQUO?*+nIt<@Bx
z#dgp7G=LkN9LuZ>zrV?v)M{|ShbLcumu?ovy5KwlETgoKDykeMU4|T^Ll_fy#wkkRjt9M4>}`arsg!
z+&sAg7><@b{FQ<9`0X__<|js4o}y2pmg=;fo8WmW^gl1RZwt^
z%*LsI!4Fh319XX&JS)Oy`8;a_Q%Hmd+LwvS$qY=7D)7WzEJN==8ZYRq=82l;NXBL~
zXD$7RH=F?J;%mvrL`JVZ9ysCJEzRi;cf}cwJ)QV7oOjM>@ZSq_W*@A+Z(Z3?P<0{wP-*Y^RQ%`8G+@{GA4Ps(LHHksMFbmZ>KC!m!6$BdjR%d-WU|C?tB
z;a%F}zOFT&W|q$VERnNH3NX>vEsbfoO?6zADyNSr9=xO){3u4?vdRn%BpwgD`r0d&C_@;98KfapES-mK&z#=tBX^EHcNP7>v`scMuqK
z=mmnv$0ub!Huxl{|ATclK&OfIZ&HI$Al@HQ)crI9k68rPvYqCGmI?$=_g{l(ITO_9
zKt7^cApGxxLN59WQi^dem5Q=u*oz6sMazm2cXyRsRLV%i%qgqNV#Ly(Z4}C+WKP-5
z6mQLnmeupolIj{E&5o$+HpYDxDgwcjtcx`Wk!o!zkJ>Ld)*2JB+LS0N61BCW?ik3N
z&;u1G@^Vq_VdxhiA-YhweUA_eIusGnaB-0a3kwiY$!jZqPHVGg|@s0{?!-;i(s}A-?@Cjt|ASO=02glu<%c5@O1G9
z!}<9?_EX9g+H)Z#$X=xoE}BR0MkqiY*8@SdKVnJ8<`;2p9v0?caiMDN8DRQ<6hXOghU&?$G41@QDP_I7CcU670fnj4?x-b(mfvvD%srZfRIwhS)zgScF=>-
zz=(gFv}HHB|GF2P^=9O@YGSQeKBj255~T?-pFnSZm?ZI!VHWcqQgRAn6+rtFKiNgP
z6=@PjDNZT^E9l0wpcrz1$V|GpKv8Lx-d$WmJ+aBF2_;&!13J~STSTK1fiRgbFsH@L
zLdTNMD{%sMiK$N+{Rz!E8YPyL=e6PHJl%wOb03?!mrV;Og?p*McnAY(JLqY#K;0!c#@Ax&Lj~!
zwhCOVF-4)yT1l_s1iNV*WE!p>;fY6T|CZ*msX!IEL|=
zaDL{ox;4l3xR3XoI;8L$r2*Tuf;*@cuar1<*X-M
zn5uiAar4~w6M^Rr3_KuS_pts3IJ3ZCF~_9*V1GYf0PSO_sWO{O{Jrt9zJh*x-N(;I
zO8pwz0)If9Dt^W2&3_>n)=eU-h)EyL1~XXT%`$b%ff24v`GaFK9MYJEbNUX*!%rQv
z%j2e}C2|VXm(F-aa`3vgP1T^IWHrPfIo)VIXr+6Jn9*JR1VLzup;Zu-$8V@!2Xnj-
zkr~0toHDgIpjU_9hIRmXD2lJ1QzLnm(C)RL54Vv4W(Fi>um7ygB!6eP|Fr9AT|LA`
z=Zx|8M{-dUR(_Dz9S?
zPrM;+@sxO&!f%Ks$e0OX^6KbpD#7(U@qAexV*-uLb
zyp}Q?%|*KNPIG&muI{}6H`8@_o!0F)I$434V3Isk&0-vwz3JQ(Voo49ejSrY)0`YI
zbMGqtz66uO(+e5O#)XXG(}^bg784xfp)=V=U8L$FrKNU|a#W$$
zo6?&@Z{%(1Af={vl7w4=Z&*zNN{zB?I|W<
zsQ&2^tBY;x-^8p%In+r7hWvoV8W#+^Smv%R4ZqVHGUxJ}s1I0hSYP)c2fbl}XO98hU`_i}3oTd5R^GoCb+Ud2Ty6
z0p1o{B#nxTl|;o9d9)>fnI7O4OQOT*C>#G9Tg)G@Z0^2j#{p_Ko&v0_2CR42*tG!Q
zRf#-AEec(W@U20kYDT;eMQBtj!gmJ>EjAD40D9oy=6}KdOEi*rT~2IO#-+z9JUAQ&
zf;&u>>(UrOVnC275_Gfxq8jf$2a-?DLAoFLhhZ@o0PBw&!CMFQJ({1I5LT(SSL?vE$=F26@~&U}Wm^%kTJ1?K24$(;
zrLDVZhnbPJzoNe)x653DVY$I#HWBS?`peoD11ZH)Vcy`2U+*MxE*x>6*@@
zxvl0C<^o_aKfe=|WRAijjgziVpiM^?`aRN
zW=X@)eAd7Pzik>qXA9ICPELFcA|shl=e>JPCVO3Z_$865n<5Yn#};l6y`=xkCJw5^
ziwZC?wA^rV4zhU@8NZ(Dx0PC)kEO*H5D0RpI{1;s3aQV$W3kR8%XaI^d6+-VHJEN+
zk?3U)V`I9vPvzyFl(fmN-N|iodwNsJ)EnsG>N_h
zu?DKmTL8;utk=J)At3-{&O!7tk?Tp>YwiviO}|*(pQ56>Nf>el7qXTk1znEJB9RecX;z
zrGTSnprK|uPDT3RSYE+y^ue5f%_P?3P$QgXE%U&~vrvG9nH`bEd2=++8TGJXjq=8XVIMn
zx44inMhQU9h5ZF~7hO$k4JZ}HtGyno^eV5}I88}zYfvJmHK;U~q4Azo=~dnjB#ILh=+2A_t9DLm
zm32z>LCO?LIhjSMt4|t3l=!Eu+zGGeYFG6{j#N>#5Yu#gGIm2_lj~F$GGQ
zS$+kahkx{*_HXd^HJWVOy*PysJ6Kx4-Z>z?kA_gJfkEn^02l}8<2ZIfI(IHLlBTMg
zcj0-mV;q?}Y_`Ehg1VHyT^%FL(-4Xpu&38aEKZ#S6_LnQ<#b+5A%-Y~DdTLCoYXjZ
zJ|UKzO^hsYY>EW+8tk?lUwM%y9;ww4P-1a(LaZ21EQM{M_@u_SX>#SzcsWq%VNLjP4aa9Lx2DIqtF{OG#pwlZZPcRDi^Y{hQHtE=V%${J{P34lpycQOmZDv*4+4W$k^6wY
zt$lpGANuBRM@NHEHr-FM^p6#Xhc%0B)|vwP4yIEnnnZ*8(u?WzTKGVmk&0v*RCVQf
z@DTJusTA{2zGp1Giq{pABSs&VTZx~8B#Im*EDenjj4+fPF;`_Jq+0{p-@MVIU(&nx
z5*|uR!!DN%voV6^y|jAQt;U3S#DJ*wP)zmV>ov(2vq6jNx6+G>urwIN9wY*?$`sJQ
zuaDMA#DjsU4Wlvn_5SL3Vm(V(PAu_!Yv*?cy|vL$ucW*{{`W;;G9iP%_E}|qp7r&)i4^7$%2Kr9sTOwAG~Z~
zllJq=zF%o{==I7bp9e}K)c)s|aW)pe39fx#kGTf1ooGzwtW&^18VCbXSE3@uK7em`
zG`NdXB#&TB4)3&oHT`EW!#%+3ybr^^a6>)W#7%^MuestR$YLA&0w3miuK)%;^FK}h
zx>md*f?X8SW%maVHROVm0f_xirjev41LoAM5G>1=w+ga!3h*Y_LMskhx#QgIoq
zC=*2@DvH^60?SS*Nqr!bl>CX}BF&;N?%pTy!ahoo?m1j|4G3{m2xA97m}}=wI>MKr
z8f1-{Ti5|49^QHjY9P5&ol)2YMBk0of9G=-Qxv5O?7w5;hYN@DYaZM7%dU}mhvU

*%;LB5YsRWLuIzmS^^Z-4TYyAb%)+{S?k=$sx9pkqduY}I ze+j$S?92OrSW;LXIlWj;DbS)N)uW^AhNI?Jzf~wVT`V-sbQ}fCwwcbEFPZM6>2Xtg zIF;;3r8>eL?ct8rwsdiMqsQv&$@2nskoi@Wm4TaN!`mz4MpCKa0n0R1FrYD?Gu2M* zGl*(*Ifl|XW6J52?ns{U!ZTP3Qfm$qQko@gT`|F#Z-Pl8rMibZObbX$_iX`<#U4?< zX>nZ|yO%I2?4){)dQ}zXzA~t1N!?;ZHt4lpqiNOz=dc7t?P5Y%U#~PJfblq?bTX9BbrbNAr@3JSOOSlh z0qUT3wM6t(kpYG|P$&w=Z~>N#+Y1FvYEkX`K1awJKSJ0KAQ$|2dN;XUvR8xo;X%=V7{5;huX- z7AF)Lf6!2Z zw%Em*=2Y36tI1)(C%tZ59BGI|l8ud>VYaZPJ>sisK19d_e*T%97S%a>c6G$^8(f4o z)9VL|y5QZYuc~StsT3I&neFXJCB5DxlgF>yT$qxiqkIZ@!xM9g8|HG+QDga*An&OK zQTt5Xo=3ZyG~bR|iKh*?be6E@=Eg?A2Uak!id|-LHO- zO1p({;-z3_guNGlN$BI2eFs8@5%aiTQ5NN#MbNuJhRI&`8uBEs3MS`R{+uA#FgS?V z^F|~EI{+P25)+y~Ex^(wrM`%#d4L1YC+g@-P}9?=MMz^tqSun(kKj&a&0*m)@hq9T zy?p&5yt{fYX@fIr0@2+>hVVI-E$7a8h_f|J9I8Fb=PB#leA}}u-4ti5xp@2(iXeZJ z#uw@d#`XF&i8`A>PG-&16bs5iIg2^h|0@9kz}d<#{AIytaL(V>IOqU?xBp*g0e~O< z$MzHydz~88bN~hz0Du5(=l^XG)PJMM-E9zr{Bo0ZDWNI)Z_$uFsP0&Ps4s==dZuO0 zz;jCiZ6(-?taFqv`v=tTYF`4g`cpyik=1=Ae*I8wWw5y~HZ)6dZSOao0X*L}eDZ~! zjVIT=V9Upr)rm~8)VySBoeqTt~uh`uj$-Y=t4?vp0uKcBS^%bh; zjjr?_c=cP8{f@E2yAYlZF4zfec{)+g>3YK!JtqCx!V6@BtaH02Oe61uz0OzzHy< zJf3Cna0b-h00J;+5ru^$7($Y624X)ycK{3oAb`i2fP?|y$x&9FPq4`**3bO^e2#V> zpD$1)f4+n#M@q` zWc7y3zCp%dNFTbTbq0QG;5CNSdM2edB-a~RT^YEgA+d0WatZ{LZPQ^{LxMeu=?o0l zAl?|_v@bMP9~Gkwbj^jvFG5uYia4f_g#?l`5TyhH27KNPmm9E|A==Rp8Q$F^!b6|{ z%A6Eh0tU?>6zvK{qq+qLVF?V7;E$x^>x0D;Vu}a%g2ICxAbewQ33W4z%lQgoaDhca zVHi7GK6VJGGuYr{YjCt(O=U2|kr#&8I`ZP36C86qh%4tt?_Xop78wb*g+?NoP{!%B zM`WiMu`?nQ6QhC!#VPTJ=D`ht5v$W2(K^)#wPECJ#>}Y9DMd-OO6^g+SBQ9QgmZ}hLt)9EAlP}#sH ztjR0)1%nblu03mt=<*NB%UVHBua@PnWG6q#@odRVG1fQG$O_&f-H#?s0cS~-187PS i`HeoioFZ%utz0xg?(ISPFCGnO(ClSCajp(3lsnWHUcCABm^J@gm?!a424b` zi5Vji=9IMpz+V;E#>}Cv0L5q|L@Qx9w6ZamlRz$RxZ+^)?u6X1?Bf>6QlK2>90HWX za{T9yWrQTNKVMh&-dCwZ*U%lfMq&@ZPBH=26RmwBj_Xr$+bJH1{pR~#BG-wKNO!#3}wycm-#sTq-KmmeKFZ@uL8B=9uO#IKW{b8O=ckgAy zBHSWk8X9%fhTofNl5UmWO-IV$O**JOyA@G2MQyzRodSrGoju%A&+9k2T|QFj+-iIr z&H25ZB+b1X0SiM)o-v)-ZkyRn3OU^N5%nGBxH-&INcEoP-YT{LXfpDrvn18_%cW~3+n)?^{bBcsDungF_tq-696O*cFn@mZS3{5 zHo)3ZYh`^lXI|RgBzRMDug{`7JcI+jOF{rJmru|;s0sl9I=}`o)K_P8J2^VM=BAc_ zd8)EAA?WZ(@pF~91Avag`jfO?o_jC8$hxAv1`(iZRMU_ITANz3wjhTxWdgvD3kCa3Z|3 z+kpn79=K$`<6d#wDo45X`|NYsFD>Ui)5O;va0M}b>mBN&W}UIue&kDsop#@2Zw8;> z|N2d|Q(eLa^8Ur@890oXu+OoYpQ@f|l@#T=4H#qiP|vUPiU+>(OW+QDW*l|ibx-00 z7MJ5rpE`MBYI0(HY;2tqpMCmCzt`=wTOYoYZLH^M)B;z0HQ#9DNmPTSzj>XKLKsMdPlIGb zFost5N497xt({^G0}KW14Kpbx`mTeM&Im%ybM?pEAC{I1DG7)Un_whQX`e1jhd@ki z5M>@$Um!Y_te8|N#wcfLusM=Ti5C60tWz28`sd}Z_6LZL$8P+z|(;hC*Xw@ZtBSL zvtN}su_otg^PTMW4Y6+Ik;r9qN$*pmk>015wqBe-zt6D05VdgSFI{xyvkd5tVLK=h z!Y(dN;?w@f_O&}z8**pZc4_zNs%jLxsq>aLau~5qjs<&Nr6N*Us0^w-&Y+R75oYay{)|D2bwyUoC1orC`_@wby9p^mSFE zz~$4j^Z=WGk0WxmGT$A!#t(VgiVHJK`>RE^mCB(?U4A`GBQGKu86Mi%cnAapV5fJA zQ9zlz6UNx`cX*{;_}s49$O$kZ%X7spE`Ldy3nUwkr7Q1yBLj_w*CEahcLEgMid&w` zfFW=fZm6!wqs*JKgR+)Ls(KY9z7oVEalRMP^n4 zLSk>yz|#An3gDjcbtdHtGvPqmCVE|MslDTj3F2ZFy}HVOS#W7 zDXmx@JmayA#<`SI6%F=!co0W@I(Z9OwPZfQg;Ev?F#AC=9g9;vWw?~sv`z%brh1DQvQX_^3z_hGYZt*JJh5<&4ts1lm)2XE;6C}Mq zg6+)dfV8mULvz*$;kENE^$wYTCq2O20y1J}aim)?v>FlwP6&3hxD(BW!yLM|>FY-F zC=J9zq_JNWtR0Dq{7KI1tcgrB-&G|pfl%lTIQC?z=m(PX0LLr=V|DEfYs#oa-CYR^ znJ0SI?RH0voY_+#bO>+-(P(1f>U-E+*k>~W<7A#qfSE-Ko0cN*Sc?Hk>Nr{Ju# zV4W3#vXr~N7mP?N4P6AXh#`Bau6U@hz%oL)FI(s9>}b-k7QnH90&;tk0c({kN@`MG zuPE*k|mPX(pb0JY}9(qKTVgAbf2vQ?p+zBHvd=^!kZ%-@?&oFYX3R*TsQbN6! zGc}qXqs#6fY5~}q?lvPu(rVOFy^)vA8pfSp@L;Vr-}at3%NtQ!C|=A=IrpFvYJ!<$ zxUz~HqH5Qu8t!8>+*qwyuPVYKrw2m1k@EHhFFYIcRtT&vqqN0I3p^zto&a#arYm&Esea#@qS_4W6VnwS|z3&(O+v~m(;R@O3FZS=u@AcEMaBYA)4rY-{wGC#lHC)K`44-XUxS`FLQ!G;*=8g{dR1QS|mn_H=1GPXsw722=yh?89)-DrFFy@dO+{{lD&9 zgTXmAzXm9!^)<+AAE*axM&2bEoYP-C&!0CAs=0w zU0_3A{|MfuHnPqYJbFPIPrIyiZOKh!b+b3@Q2}>PV96lmt&}X z*EUBCfKaI_?e=F1GLRe2NC^D~airJUyz6CcyXgmCQ7XzKyLSJc0!H3vIj~o0{;m!{ zR|a8eKQ0B5$C?EU&c<8TN#I~%&B5Fsw)E_P2$}p(i+qh!cuRRIFN1fCw~%MCD44Jv zL4aw-PqT8RQ2StEp!KA@C~{9->Fdt@Ui9tu!SL%>U#a%zZ+<`=`S|u*ZQs+^-)G$Z zvt=3o@t6ZJ{FF8S#TxrCUxS=3YOnI{49)q0#~oYjTh;+jF@{$U6Lj=4anI`oZnpLv zqZRm~^ztKPPnyqL zWWa9~9^?=<{k4%2?N?zR{=fv^>WZA8xh$kL>V0Rvgk2b7u>fZP`C8P0P}q8*2Plk{ zmPf(r=SpM=EKGFn{7Nd==PQ}@94k3@b{3r5v|^zxww-|h7QS&Mg36hRxhq3qkAmgl zs_a=kGe8=fMx~l0Rl2o&xIwJ;XT4Ur?8Oxr*Hm0tbG4~X;ZFUG?o5w3Psbb5* zc6q{b+tB{{b+tthPAfwe5~|o}Q~# ztK~xNKpB7K{XrD`GB(w#ROwT0zBmlx`5Pi7rdc-s9K9IV`n{ypq# zj$Uu;&(PD{fvXmFwY1`*szpZ=+nY9V+BlArMz++kxuIrjU{n1n_Umh}q5gkweSH=? z^-gS8SW{wksa92HWswyHmKT0;D{NvT$CBI=&UqH)B^G{?CZ5G~bQM!krbd4;i7`3$gi(Zv;WS3Vzvzb<7oNpnIE{f2qXUczoS-+zh~Npj z!7#sso}Y$~d%fJk-a6ExI~qrNVLx~hbFsRPBr3G%riq*EP;yHs$G zCJ-%qT+0!+8DX`1&2q>^r$8$L4Nm(qoLTrC++gQ=yB6!pF7J}FV)rh&&$i=t$L4CY ze=J&xW??ECg?YiaptD*8w=!YLWx1PFYm6*nL+n3B7Zokc)U2wItU_QAWa@L(T#-8@ zFhGn8o1lBenivukTwaC&V3YlaDppxgD-m)o$=#$_BV-X7BL5Le4TIy$=^FpZ>sD?Es%MB}tUHq4JF$N`9FNKJbt)3h5$_RFvfWO$J*w_@3 zcn2U1g-#nab~WPd(HVzba`WULgWO#D{ytVqQW*nb7LSvug{yfd?{kz-9jULh3)hE0sBC zfCwfgAwE%%mR3XzloDE^jEK!C3Qo~pT#VaX;O3$)BDagE|0ydYW5`- zt_x`30khOzP@A^)6yhWP+%8YSo?|FKG=LP`Rw}-$Vp1aUaj(v=8OO?ZW^8Bo2%txj zr67AbD62`@{Puvb0>Z$%tL~U;QW6w|8o0nqZXG#iLz+GXr!H&ujG5o-@O@e23}bwH zQ`7eUU4mRl;tZfj$x)edJh`X{I)*A$p=ez0zTJ=AzaP6;E)xJA!K4826abRvA)v&? zks2`ghIfjwa*9$u9*z?4G96>+QtNT$D#WI9S*FmXvUl6NGeL8si}VXE`twnlXfTN| zQ(kGtsP*l)diQp|F$vKmUK+KE?=2cd6CqOyM77gEwVk>=3?q#3L0k6Iz6ndaF;>nZ zLV)P~y|Ei*kyxDl&pjFJC)1pG5+sNW!S)}*uM1mk{+OdFO=-&91 z_@`2V85U#*ONcdVh&@NhE_>k)aE5sDg81-(9C8>E;1ncK5F}JMBw92iP7)+t1|&xg zBu^fsND-t&8H9}usZ*$h=pOHx?lX0w4&JA|QTYh3QxeJM9ckIY{C9 zW}6X2M}V`MiRA$3_8V;`5XghoeP)9)m929^r`qY)BO6IFz4cRcAA8oU}CujZLO!1z#;o` zf%SkGlNU|P-q%BOAG`Cv#TR1o6)twW%Rp&8y|L+W*Yfiyb@}Dsq*_u;R0j83x7ak> z=aR&;oFG&`Iq-KN&rkbA#VYL$hP|RZZ~BgxuVn$X)fj#CrY&?~&3zPad+$u=nZ*3Y zIi~KQugOr$&5PY!?Ld=Kex9+u^sZeCiV+`Qm6P{1+oEf4I%9Mr ztS_BY+erE;Z?=Y*Sz|qO7A(14D)QcZ`P*72of0QOlC(?0`_4s|Tz17(q(&S~nzd-v zrd^kAz4~zVyX}q#9vU)i#Hcajro8adES`C7uPOk()+9OQN&$wgENiTAv^?(w> zH6esg=?%de$>=t)#uKp~jX63C(kvlvgn7bv!FeP2BKRYmggFJ5L`)hX=`a~^7fHJW zxlF4&>b%pG(O&^;ta0KzEw{VvH<1?<@l z^GWIp;giM}oj1Hug!K*)dXGRa?MQPJ9%D{zR%-^DbHZ?hMx<^NBGWfGHs83fqf+ml z)d$B0eLQ-U@rcbh@+);$Z5R3|`WfYmiCC;%`pFjaQM#(!ss)X2G(ROTNhQgi62`d8 zddB&zc1G*c$X2vax;^Hh)RdUp2@Ba8A9biTO0A+DIRACRX(ChXk&5fz1p%^3PT^*o z%J6BrL+&uCx4=6N+bo5ajRGjolmS3{gro3}`JRhR_t1cK_zSS(LOuhu5m0s;@E^c; zmM)+My$Aq^V~PZz28SSmZ~)S909vqnZg6P92q5TYtpf~zZoN}(1Y>|%fq@E#!P+VS z00;mM!5S5118ge*1ORI*d0#H$%mRfd(T2HEOFJo#&NvzJJD8l%=m?;RWg}%T#hr455$3Gx9XlLPjA!V{?%qUY|d1(_x-s!%xqWQrv1m9X&G7>9w4Z2iVLGLKk2J-9Cn zqVp9(tc>!By47d3N{wn#(q1ZrrD~f9#JZwNx&j?;fUG?3_QRy9_Pm#^m4Tmgq()Om z?$aq&rqZo*jLK2svL?OlPW#7u{0_y~-02dP_dF>^g5~+~cS(y*vg~*X79mcWY{hC^ zG3I$&Axw%qZ09v6gZN1-Z}IHR;6Q(0Z%=ot#oLbdw$_&Brbd_3VYgW=W>bUFpx0?N zYE`{b9GGX}`Lm}_W~q16$#^vEUtM0D_qv^StJ!$x^}@ma-Xw-W!qwHmzLJVTsI5ai zDuGO(PP{Z2vjo?7raN%;nl{F3HgMpk?vKfqlApA^kgF3u~#<1Y^{P=L;fAPvv2 zoOD&Vz&ef&9DA8&)G(5~&+Go!Otq`cYouI?1eF-$PZQB4UmK~*mjm?Iru&tUl2Gw+ zJFhZC%T6LdY$Sc48cK!+lGpEb?)v0H@CzLdWa`#>PgE-T>~LtXT16mw6di~2g2>SeRo7lXj8;X{;S^Le+1Q!HHJ=j3NvSn|=+Fj&Hh%Ja?Hmm2`6kCJ%|5PPE%)jevmCP>8>|d4Jg2yD2g|@r zd%=xRng%x$Z|_r!32Cb>)V{-1Xh^RK*jePk+LxNYh!MF-9;gQqNk&x=uPO-RO77kd z)k8@VwGy~i#c$y{*QxkYa-I{xUAY%}?K9{cjx+GMq9ccjF}|3TOH_|AYHQ_Ew;$c5 zy_&g<;B86DZW`XQ*&<6;s~OEkvM(KX*F3USS6<~LJT${~4_urJxgO4F$(HuP4FMYb z_0tr+aFjZUF0uE9Zd>?BGFoJsR(UPyLcRU9aw(aJs@ir%4BBMjX|q_*V{;Aj!1D{( zV#V}~FCxAc1R|e1wDfNo^D@ZwWfOZVGbdxoz!_Tl0pi2BlbB?MmS|B)7|dB&e&#HM zn%2hik?JaJxMnx@2L^C+Q-{7Ktfw)!p>fOG;*Dh}+9Y~8-{B9vCT)@?7eARI&&DEK znw_?zo$=)6+IVn#&=q4-wU(Mp&W$@3pFV<)#HKSK)0P4h;}rbF14AY}qXQKgT4w_b zqpW?^6>W*8j?$Sl&iRm9%m7r=b){Bp5~PJ!DYOE*o9h4?4zNkexU4YEc%!p~AS|S9 zFW8mcvz)D<7g$*u&`j$|h+;q}r|WEdQL|7Zq&Aon%s-aDkT@gE1`A=%WM!#O$;E4! zEvSxKi%GC-s6Y+sXD`zUBw)9J=kJ11DeN0G)!(ne;$2v`Pd6(DXUAN@)LjR#Td{pK^^lCpDmqs<+_NFaAT-2=dsWo7HqR@o)Q+srk5^XO(DKVs|*A$Wf zJ`v5n*Whd@JxatA;k)ev-4UGyyZ4yb?46zt_*Y_sDDMy=*t0L?xR!~tC)Syc>={>l z1A(~>MG#O|i}i~4VVth;Qu@{(xmGw~pS798A}`3q-@{tlQbnZD2-x-HHD6>M(U1Tl zyx^S`v4${AMBE#@vFG7sHvqFD=g>lDiX1+}O?1w00k|30oGIafbtF8f@3MJ1MQn|P;@Y{=KO5`@Xz1=Eu4_x@@(Ak7; z9l7tIr1by5Krv&i*>nAOGZ?|VJMY@C*8Wbj{QYm?b45)rGw>vd{e^H$>x_ijsE=@I zDYJr|9gIbbRWyEgFc;p`Fm+s@V>oj+NwP}$`S>FmmN_#Gz7QnFYCbY17j|y&h+0sMK(1p z2gW&E<1dXGigK9auS}_kq4g8jvjAWbMqcq!YH!DDr;dsHL;*o^5CO@&qK!(nOy>&{ zeFjotme=)**syGPN1x)qD-Wu@>sK+{e4PH&x7wcpw4sxLm%!y?tjD=;$7VI|`0i1v`HN*z99D;c4Dli(;oSuQ%;k$Ugc_0Wt432o1P#qXg zvO|DtLR;1PmnsR3G+X@k0^gZEb*UdBct_C~IwH%y>PG3hT=I+c(a_(XQU4g78j}*4 zvf*}hc3MO$@mQ%R}aSo-SrR0ew<2&vg~3kOwEzOqwb!H+dazd?74AJi;X+9p~iL0c@#2Yz@Z9z zcxVL+?pb0vo{;y%6FTC^*&V+tbQI40IdLJk({%1uYKd`d`*yKCSnY4xxHgfBmQ5?7 zMQ(L=MoVblu5k`jBaLAKE6#mDEXU?o|NCd|jAdiU`bV~dTYOn(LT z;MZEcBeZ z00Q=&9X-_%Be4&rr`kFQ-bIrl&2+)4Mp6ry)%e204Eu3C{cC{bn8jA5bo6DSON=WK zi@RLv$~voRx>N!DrAi-Wdvf$%)wt^|qE;8td!yGTv`tb^FXCPZVZIxE zm-=ICdCtJXfRdaoa?7Whxr930rUF|C2btvxI{qhZaIgdT*RiD+ob zKy66$$2MXIV6js_m>LiyK9H5h2bW^Yjvn%xcNM?io=|_uAsd<|+z+Jck&O-2-utDm zg4hhSnG!OqXtu1j(>R!999D*r_|!EJpvJ4|HIbP!%FAuy&_Lw)G%>q)`?SqGjgHDH2Wzb~Ut3-=@FHt*~ zg+2J)n};8%B~#L=ilt%sSe*u_S%L2Ww?PR#wKn)@+3QJFxt__e%r!#d0+=S;{?$)_ zPJ^59Uu)|hU}6FW_2$H5@#AWooX(af|7lcS8;8e6p8Olwgdyp&5bG|9xR+7}1*wp6 zC?)kZpn%ciAA*lV)ZE0QOt3(@db_l}-kQvE3}AadwqYXs$7$N>YQTLUK*Unm)T2uO zgu!8#gkM@K1}{<=ENjW&uL_KJ;xIqAU*wd&WhXezXid9xjnVH{Ek!7_cT)S!6pz z^M}?zyldq%bNkCHBuMh@!>ZBbZd@oIxnR@n-Etf)=dD92Lo-js5iBNV0)g0!S(CNa z@s4ow`iU6oIipUxrM~E}xu)L$Jtp0&??F@SSc|OPAe9DJFE*bfae6Rt97}fp$zo3! zjEVg;8XOcG7Ovd;#!BHA)31NFKJJZtAn8!dTBomL@ee|J^5aI@B_RmH2M1aJ*0Q;} zY~-le(Dgm%v^)tx>8y$p4$w$foEQOxM2SL{yd~>{iW8D3uv!CpUGCwt*m7(s_Rw4t zq}cKgP5b!R99cT9$OezELjuP%(5mAX(JVS4C@arPwbAE#>3AjkRNAtW^DzT+Syq(~ zdCW@Y@z?~q70v}G2E+TF;XH4IIr9zLe?kQysMuaaG3@8AP0T87#ZJWDSoiR4>=I@n zzSL)qmy&y=4=;+a-3V03L{-FR-rMxF^HnLlN9nZOl&a;E=C97y&n2`63zK;59$3z- z3f6RWvz(b=g`nLkh3o0Is;XI&DV z`4md#(hV)LM^nl+vNz!m_M(S$HW!2Y*-Ri!_g0J}cSbMqKfKb+ZDvlAN*Irm9_T&;gY-1Q!Dmi$>1%?=*6TGQ}zD5+uX{U=|d5`u|5bX3Bk_=2-`dmibS5 z^&uI~vkSE?D;}A37kB$qV_p~@B( zf)_BS6iAT$&~IR~EezZF)9U-n7e@~+Vn;5-S+lttQtr`;QT_hQmrit_io6o{`l|As z)ox^{KR4xqe;s^27=J@R^RHK33Lhg_-61(w8tiR(Q`+B+x%msC;I&;-dC-YgrMv&d zo4Z&Rbd6sZi@C2FJWi{vK1Ndy=H2gc?ah0j9olTHx^9wIKZJe|fx=Rxy&K5&seF)d zmA^K_ukgupFTeTWLp9!d7}U7ABm3@>A@7F1I|Wr9gWZJPKTM;t{ecWpZk-CvrfahR zZbkqouv#QOoWixqS1&dHi3@K|KXCJ-{d(09aCaBK^{_A}ot2Bu5K6MCqHYF91LIZd z3RP;!7@^X%CaOMGEvEE!R-Vr=rxx~-%~(bq#~&gMT)SRxZ`l;N+`z4dv<9ud)Xm>^ zEuGtHqd&w-)WQjdZ@$GDUb0NQIQb#%Trvfh}=y8J!WVpDv=*bb&gH&M_9z zjIfDlZiMwBr)QLQ-ImtJeK8^HbV-fl6yGp`zF`xl%$oNFGxP@=#8RRT!`7s_6=~eG zfijgVpQ9M$=aS8p2!nLK02-+VfvC^{R1h5PvvF+w zke&1&1bw*48@W#md8TH zXK)3Tm~0fM8b!xhQtC(mW1lo@$)UVR?zH*%rN^?N7EHBb;wZxsuVfK*S8gj8z-3uNrM6z;LXf~ zg$M#R`JKn8cLPx_*4>z_bzU{da-MGN!k*Q)M0;e>Ol-TATS=%dDAA>i2~dKhF}B`H zU^lpnVwvsG%c5um@~s&gMpHjUGP*SFnkk@El?fYd+!UiUdVjHJg$_I=1 zCgx2S?)0GcTwc9%8#Ab3c-3rLZ@2OSKDPYH*6TUFQtDWZnzwMY;f{&3?qc?ox^mHS z(_GMelqoZLsDdUAB~4LAY>6-3NVIZMuPbhXAp4c5*OfOwklZL5#P6H)kunf{%-w)J z*x^!Z6!q*g9^BEnRfDIOI6RTmAF? z{7o4t^pO3C%xK|g*16>{Xfx}`ZYO#3zO}fsA6-wd>^4YfqceT`Wb*2Rj@^vX_bZ)u z&zT&&Px1MRiWEx6m)_G`uXoFczIMl@q9zzOFMyPrp^sPCSyEEi+{ZMG^KO0M^20@$ zdV9G~WblbE!0QssH8Gr=Y?K=BaN5?zLm_ES!>v90t_xdBR=SQ;F-#)Uk8J_>u*H0Z^eFi95 z*|z^k?8-aiM;LgG1$^b|f6|-{3%P&tGPf!TNy|!0W7THzNg5P^lO0f6Ca!WVb<-&t z9?rqdL(Ao?k<>WaeUB-Gl98*WatKXk;aqy1?(UAx8D}7;P;A1M@HAN%epX>ti2}~O zoLG*4q9I$r7G!yiTm~*jLFxe@0Ca*3cue){`e)D@Yy2x$KiI5_3js>PyjLo(QTSHO z?j21kmodG(vW6rkuxeYmnMyvQ+c$~JfcTP1! zm`Qp)v+ENdQJ+nH}K{XcXcu zt@nJj#HV7Td(`q7oZ@*_U?oBz%}=e#%}K45771vymB)Y%AP&}hvCxF2*A+c2Z(O@x zZ?v5iHMtAD+nx z^3TI{1q%kvBw8$TKM@w5}`I5r(gqb z1tvP=>u1W0thS7r+T1EBEQ}H2XfbK2_~R8WR)~**e?{v%FRfWO=xWZKukU*vlxB2* zD3MYEX;G>&51Xo%QUx@7hv%v%q4eP<&kr8UgVvk$;pk9{c82=vWi={d=kmKN>zdKr zyIz`uZuloxW5Tr_tLKx40fcmxUTbkdZj`TvuHJ_V>(3t$s~3R)fJjG1#?m71!QSwP z9s125^G0mQR49z*|6kSWt<|pFAj(}O>nZ9<`?$=NjAdlQ-h5CSMameho3x%yY@!vZ z$Q)9mQ@EH`ms3ii_dL3>>eK?sVG=49nO0kpYKUNr2W`3~QrJ$z_ateC-Z^xkaKfcJ zgL$`i2~egvUwF)=IfJ`2p5D1#tEGea^;Y7>E~8kuB;+6%D%h}Qquw@@ABxGT7zPw} z;LJ{wa7b8$SR8G)e#5HDJb;HH96Z~_vd)=i%P9BET=d1a%u;o^tSXdiC&hIKMcc)$ z(&vUG>eKXSwglA@N_U^sMg9J4*MNo&I1ePI!ZiFYJ-~VyUKfRHjN=YdhujgL`DO0p z%Uy2hx<5LspgcZC%+X1*bK@9YkyGUQ{gDZWp9o*&w(Lc)e)#Y9g4U=z03=6^?FsaR zxlKj`qw_mko$Qv))~`LU(`Po*|?qX z?a5M~Iw^}wBbHfxg>@ucPd&hnH{nY-iEjH`Ps~5z+Lz2TS_r3YfJgVB)jQ{7Uqwdn zw7{~>>W^CU#1%bipW4fHC!QB_qP)1c5{k{_B;re;CN{u^k{pTVVC`w0D6Yael06>b z_c9Z-QLUeKz>Xy8!gqyAq?u=Pd3cnq5>Aem|L`FxgB>#f72>~kzx5O^eXdN6ozuWa zBo|kzZWk8udUItej8_ZSVCH1%-drBnmk^A0pf(;Vbg^SHlK$TrX#SuA4P zEN6k3MsSQ|ss;A=2M0DnF*lIUfdeR7zc>9w1MG2XEBy2Y(y5Qf)y_~_5NDn@CY+(Q z!OvV_t$#MN> zufm#gH4k$&5MK)LkenP~ zw-(bu5Sd_vo@`|@9Yv`%uh0=(@9XC229;?FpVPn4ZyjZjI?LFk-cf!H;yLbXI*jjcqKVHzZ6TmxS+QLcbKt zZ;n6Z&Q0^*NRBOd)-~#9I>E>7O?Zkn?szq*-e69p^I|p87ay(&PS0EVUYn(+q*V=0 zs`U}sleJOC>Wmf;%~v=&$&hu5=JQ@m*t=&Bja=pQhxcW>;T;F3LLSB?CVU;ccz)MF zzM``$8SB$K_4t98^c zj;^j8onxq2(4Xjy0o-3*Dqssptj_LVzLKl^px?D;Y1RqcGfdBvNor>V4O74~&A+&n z|GTvPe;s@5k#2Qc{O{Bg1I3R*&YY5J){5jbYJ1`-l$}~2NnPMOEhMI(v#83P>8>;q z4rmj2kHORq!59Y=1%^8Ee5d7dVO&^P(YU`j;8BO}I|y&P9bL)yuYf4z0EMLn3HL`6 zq;e*vz;nkVfhYjBR(@Uy09~^O-`?0X?tzAd<(&Fw+r9nu=F;{0N=#A4;M}+`;+IUH zg~Tg2@7szy`p_z3kL27pfRn^#ri`zMEIGa8mFn<=3$A zQT~NH)mG5JUCGds)ZaYTXVZidToB8p&HYq)c@LwiGjl`smpto~x^szXYg^AVWKNis znF|PH5PF|mu5dLBI(_AWh0F->&AwYWPx6g4^*TT*YXOlgmk|>SHTEJ8(adz$$FYI~#~Z{O*+Xif0XzGH>D3FvMrO9giF_P04~w}V3- z&*2Rf8`%SD!IC+^qPKRIh~xt_Ml(;(?mbS>k3$hc`k4Um;z2uj%I&%GJEK45^sXp1Qb8 z>b%FbW?MBdMOW6(a}1+-*8&3&F0_xV(C4uwF5b=N-%t8tiWBO2Z0GgP>-$sPI9MzV zq&F$iBu#?$BcYyV-QRBHK2CCt5}M2{lZz z4PL78X__u$+B77O3LhuWFDoaRv#I-ojfY{)_Ajl1ifsrEOELeTv2_hASELRIXgP2; zIX%-~n@7~ZkAn6frTVjR$}7>bG*j9IBIK9&So?x zeHqM0=B+0krYT$*8Kjb@XzwRB zM0g?=->J1+8p6lQ@TKL&rfkao;MPMhcYn}p;>L|Db=;H2q14B?%Ed#`*WNo)6I!j% z$0xd+#fMk_0{S3?K6hDoW~@S&oK=#G$>Qr!6>*@4mDCGq4P|*Q4jNI)AnCJc`?C{s zgvi@ggnne6L256RAD)|*MOtH0Wa@2T2xe&EM;Rb6p+@K$q`j2TQO-bm;tlAJnn3#w;-gzZ}{9y2QIt_HhEW ze^!6g%^!$v`;+O#X~4*j$Kc|c35K#Ay1ZGBO)E`d=rb#JME*5JMr4(?WMi2$@)Hh;z=c0M(tKd>(*?P)u za^r-2Q0K}TF?uWtg+6e-IZ!LljJYp&H+EP!1M^N_gzZmskjr2ZP+#-5Iz+fe)qX}MqYU^jqc_*^?Dk$y_t^9jx z(KX*zEi2qZqlvuYzo3EmcQ9hn*&ucOt?Oqyh2_N&9tFf{^0VW%_l=p$xLNH#zjk(} z<<4|6owhdEk=0~S|Bzd*;nz32sYf6skAO4y)?@5okJsL9#1-s?IcWbSnl=p&tIR?5 zueD5e%z!Wy!3rw@Ev(%1+U6zzltiuF%qqcbs9qP?W8Lye(yAFA06HusSM8ymrR%?- zN3**JAz+ft5G2OvAdkV|!h;609meeI{i>-{IUV$YJoV71p@{RG`wA^XLeh~~VEm*~DgMQkbKG*>D*)O~7&!XyAH7vgnmd!r4 z4s$XNTC&Lo5It8+iL7YVw6e9;bRoZGZHokyM@JGH2e?o{tgbGZz3_4+N0i&ows~2Y zhugZ41hwu9GJ*KN61pPi*9^6iTNP$i%rU_N?X3W*vt-(mFhAC$RcQ&ONz)@N|8M{0 z<>i{svI{*qZEeqYfZWypx3aP&-w0%(OtK_@*DteTHRb}7E}AHvS88UFj25?{J7;G; zQMNNDzpAaF0zjG77R(KQuGqYapDL>RH%f(DoWFlPG>HToE7%Q(X7oyzY-_|F3To`nk1 zowHoBbfVjo+;L0;RB;^OlkXxQJs8i~c&mBJV~1vGs{xA5W^9od17lrSt@KQ7O#wUx zc&*f_1zJN`;ryf;l*)?~^`rjByJamVQZ1*wG}M!5HR17_RD_4%fo2N>m4 z%Q+lM_ikS4mt!qBr4yD5wDotA<%t1eYmsy}(*80mZ2;YiJ5vM#M@)GPKn-PpBFdYj z>^|vmbY1Lk>oGKrf03K(r#6AB)aGs1g%J^3wSYKd%5!P)FVeeoT^CAnO!Df8UFfV^ zwL*faMs`?~!&BMb*7I|@Zr}h4>W|ofSSZD@hB|0Kf|`{ul@HEEF{+#VLeKBIj(Z!% zW{-*QU$^C#ew`}3*M&ZfmNjlN_r?c|4ZD+d85^fy=%&1>bg1}H1cnE)+E{`E_k=rBcC^*p!A{3Nlo}ETyqbJ;Q1}5(j_Oe2i9NOH(B%KIesBgrY zE%1lDDCtSbGafQPH8Dv6MUP4?1w~#*lri3Yr5m3rkyVG_@IR=Hu9joFIu?tUh+e? z8leYD2k7-H+tiWY7-o7vNipUaL2|m1k8J>?j$iP_+qbt)|9Z07NBX$`**{sVkA=MO z&_l}6YuE~Am2P(EQm*NuQHcCK*cu8%KNl+He@+Hsf7v=nM?5I=GjP~;ar(Aa|4bme zF;8evNJqezYpl%{YUNU8CSlpZ=^yb@ROU;%9Kt}YZ^_3qYVRnhuVTQxbqaw>$foWT$Tpil7r3YmB&wG7Qq;i zj2m;Ie8A5<*N7``j=hZSNHAThgzLk|zAXyW$u8GoK#@_Z>NG=%t1ig{nS{>F`=MH)<$MMuT5jXge1-6QWs+R<}=`lRbYwQhrU=xH4cSvZ1A6T zhKxFa=CNqJSFnB+WEdF$2)7zOv)=1aa0nRVQ;9`(t6R$DPX!F4DULbL`eLa&)` zFd`Fi<;bL|_R=@nFXIj{j`&?1$Ff{h9UfxG$4rv=NvEn>P8N&K z7CExqXOHmc2nQtJx2x@Jwy235p4#e=GLo?f1<{3ZeO2dE^IuCt^X;E6%T<2y zy*)NYLA<=AxdoxKbn|?V@4w{bjqB_B1DD4hf4p>VKJWKuQ}a>l{;koKVdETTRL_0z za+Ei>UfnExk3aE5bT_gMw|A_$7*xvI^X+hai?S%L7>v~hx>+qoP`(@DVyUZAE&Bin z+;z-wklCy)6Dynj;5fp=Dup4ioo8kug{S~LNIBGgQcaWd&k>+(oze&Hpl}j?S@%{y z)2^Iy+$BIBg$t$BM{j|B@{H!mU|l&o@!!i>&gRnf}h1L0a(R;VloCv5pv)*CY2Fp zo&e497dYHfm#ALkQ(xqHOhhR~Yh#3hI&nazWnEd?oKVxc-Bk_1M;*iiW25HIW_b}q z&^bHFEb8$XpklEcT4C_NuP(xb!}d;vWe%uyiYQr_%#D#0a6%E~RzoT||4PuTH-i9b zG~jT#(#E_f%S9`5?I`T$%gpahX?KSTV0F>+AT8+&>LOXlfKKeI3dVtfo6CKcx!}ai zl6+hswX*`X&Vpfa*3Kv}N}#I}90a55)NCMCp3u^oWJCRHlS zOpuDSr&@82ZBy(g72+t`H1xVS-@(c(m0B*@ViE7PR4#)L8WK=Jp@lkZ>g9aScbiBq zd;~G-%bf-0=&bEKu2ImSQI2h<>+v9>AlMj{Ub70owF}$&h~8t#gF~IFbxNa?9YTQYlhK?M){&I{-oBk@l^n_}5?#Xe|>-j?w+-Z)45`)Hwx zuC*eB#g5;#8&kB>sEE0M;KhhWJ!?Q=vtT-I*~R%h#@YU|*zyRJXWZS)?T;w;pJQ28 z>l4ihxZBq3XuT#%{{8#!NCZ)^bKl5Vgc8JP8_1CTCK=}GG?RZ z)3~zhXKODGu%r}j5ZgghtgJ>gUKLXzo+X4>#bN@4TW0A^geq#;-yb5sG(^T@-cFHN z3wa!lO_MBr7PCKOA~~q8#UjS=SHFav5D4~n9&0LP*8BN3Ti#)S*Ki(FjFuVWE(qq^ z7J@`k0FM*N82r}he+0HQR_B9^zu72bFaI?52_HKFsJC_H;bWnCjHpu+s;~DwW|{e` zIFSDw(Y2LdkKiMP^p}BW(z_-1duIHVN8%qKORXi4Ro4-<3DsjDJ&F_hNZsF?*qmoE zzqx~b=If_Hlstyi`fwBNAdlx7upz7pY%PTr8fT1&c#L}I2)7J& zJD63Io|Vko=(yc*Q_8$q!NP^h_QZnNtzn@VeB@TCcEB1%aH-rIJ#u@x0oNBbhNzur zjrukK1OQ)bF4Z;_O82k*eV5`E006lD)4>A(0H!~~j{h@llDE;Di2#IP{}w_(;EqiK z5IRQ_7PKsa?vCE|bly7AfBwKnDVOPrMuL;Bwpxl7ZEfRk{K$?Gl$-R609FQxWxu0g za!DMwtmhJc8Oi3{f70l8F#0||ytipD~^JRkYpS=ms>h`7C}z>Xs>uZmWEP!TqEe_~bk^B=~r zd>h_V2+D_+nCw}nrk3{lr8J}Mx5W-(QxxtFQRo>X@@huWHWX-^!^*RaU7uoAC;26v zbBO>W1n2@u@g@Q?+(_QdmcGF3b}%$hq)ug>uay1f0CXmasr6s!gi& zOyvtxA$QhL93B`|nl7&$yM*CfB9)DF+bZ6M;!9V2f;}Iqt>)L@7Cq$nDz`p3kuk?g z4l5corZ&TJp<3OFQpmpoLiDislco%&4e4E<@sj0o6ejr_1@6xcs_yvH8KrA03m93u!JbHKI{Xv6%YZq&$@ zy>&sWC5=A=tt)ru6oQ%hYhW1+kL2d+K#OW#p*bh6MfhP{# zm7Vmq2)TVYP3}-cw25-89r}MLPT&1Q2};OADOO13R4#Pv5ISR~t04eUT6ib|VM{m$ zA%;V(1E4EI!hF@bFo1*dX4XK?gm)3PX_Zk4N670ai7l^BxpqBJMMonXzSP0O4v=NJ zIp$SN)QX!}qYMjf|A)XM;i{ZFWnA9i6^h%0LRXxIL7(8+KAo>1;kov_ zxiH18z=GL%20s30?gjONQ7}tTn#ne^HOuPr9G`|M&xop$khFj;a6K!Oxjn_4T@vP& z&L1YFV?7$Wvd_vmW9dK+|gyokT8 zh~N5<((=6-nxBmbe))~>I;d+C;Jo>c+YhHMTb#W3)}3!TADB2Sr-BPzyY3B#cc z)gN+D-OAU_;Av(7oB?D0PEjwOs)ABqUQA`Frzn2#NPJm}Ce8f1oToPOC4rP0?^Qdw zQstUeIvTO{DhwjVB7YTocOSxx(go7T*o?v>B7} z8Ki(tPGTEHk4l5G1_!NH+8>=bk^ z33}N!=w`B@nMT6O=nzTB6etoM6D<)6;n2j;q9siJ{|T@{C=7r2kOXoW(Do Pab&0C?+heW+1Nz@tgQ^J literal 0 HcmV?d00001 diff --git a/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2 b/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2 new file mode 100644 index 0000000000000000000000000000000000000000..47e69cf8aa8ea6c5daeff3acd53343d5519602d3 GIT binary patch literal 13740 zcmV;dHB-uWPew8T0RR9105z-t5&!@I0CzM105wAZ0RR9100000000000000000000 z0000QZX1zi9D{lWU_Vn-K~!D3 zcn2U1g-#nsYc*_JO7!470HH|xn@5qy0b*VxieTdaki>?g|Nn&KWDErjm|E5UgNQ5> zSzs$pK*6fHszqyQrBw@791)eLqQMO~slJny#N7tl=tBH{uEE^vb)I1pthC@!2RDuNRS zD(=u-x>FNNZE0iD(30#@+c&zauI1gfZsjfQ#)OA>yYD-7yKcXkk7Y!JfHGRK9BqVX zCtosz+{N?Z#rtQnGfAynRmg*{c9g<3eJhvBoV4flOffd$a1i)iz zQ4|zga$kB`Z`>IskL;?dU02Qe9#DoLq8f{X)ZNK+dYe8J5!rtRX;Np3EJtj~GC%qW z^p?Kh6mjp=>)2)au0wfQlK7?V_0EK6SDsN|HCyW2H3jItkyaOyK2C~`>&$Gr<|!zb zq5c5UP_N*&l=$unULx`F*VJCRPw(ydxo9GtJ)`qa-D^szfO!JDF6lG`omP_Vo8A4b z=^Uk%qI{I}-`EcdLA~QvSWp6J01rR`EQG`Od^WAps%~qn-94}m5Q1zuKcI~8CwepyT&^t#M0Y>*Md1iqqIsnY>}mlwJ^B2pq)8 zaU9%ZnN>hd?HR+gXcd)Y_I|DJ{A#{r*L$Fzb*!_sloCP-As+Xa!n0d-T7MKIMY6s;1umgk$ zKsEpmfX4_KE*$_Nqd@?_5eC6`8z@Wzk;gZwDnQW5DtS5ZIHRDh64-+SUgJO^c z-R|_6s!9-Whd$`4Rout~$^fLa(j(T-6{brO%e)#y8+m|%yMKU|t2Epl#W#X6R!2W>u!Dy901~&q; zyIgrEd-4!4x6t3(nn~AExtW_enyYy!xx;zURvNCm`2{MyGJ*Lzhk>v|^d?P}A2WTI zwrCU%skuKoTb9{e%t(&N6$Z?Bt^x3BFu&Nv1I+DM)AFzKG+zV@XOw1lNQ9#W!V)$fX(Kv>xl;sjPZyrH zMLoI$2=Lw0g94(&ci=ST0KbkiF<`2;K750|7=BBVJ|4qLp7WU#rl$<@Kyyn9HKEDu znL+J}Yj?)g^R9Fd;gjZvNyBIQHN93fuvO=#Z3R&g`IBh97KXn1YQ8W3b_22{t<5 zU?T|8hbD+Xi<5_WX!*bGU(e_i{oQ8pKl}$F{L2`X}zyQ^ZE}l_W0zts)lS}F#06KL=K?P(4R?3z! zfpL_V&bJl_ho&O{FTfSlK^cmQ=OK4P*AO0m-+m4jgmQxa#uWJu*DeYXi99KQLWxc+ z5>PTpshDeEsL;KbWt7J_-ZAd(KL}dyJDfffPW1S>D_vh=4KL z!H)w^=L|~+10`GV3+}a)!bPleeyB)M?t9>UA9(0Pm8#rz&%53W8)T0F>0QU>$jQ)a z#v!=$=I1xvVOMR}eza;fg?dxQvvzH-6=#&UI^c=Rrt3@l!52GK7TD&z!v;-Sb_&k8 ze#{mFj`(~sYl+Ls{34E~^+|8i>on}Zx4hs>o)|OjoXg&+2lXHCH9T6g{4>)I-B#&z z=vnz))>9Vg;Utl1)TYaTQChO#%kN{KhX-2hHEz~|D?Ox2YgYWUc4~iLZ%=nuXGgnc zcUx;qb5mo3y1uSfRa0G6sjMh3D=jHj$cto!1^LpvTuDxLR%S-JI4w0fNtBo%6vW5z zd0a07*FZHB?kTHr)Xq=)GkaS_HHve0)(tC5za7EN>w{rOu%}}8&!m24to4R1ESRp3 zOJh&-2G^TqaVUV#Vxj$W-al=GYFz<5HNcg zG-LvdsJoEB(|W<0grClvw||+%u=9+HW6RRFRwMyQ%SCv4U6eE`QVTOJL&{o&R}e>bP+_bdb_0Y^9_+Uu!N8o~qZw|e z?6jSulo|WZBm$L{eQ8jT02bUdD&&SZ&pbh8%~r#c7ak63hp0_&f0=Q6BbONC$$keoOjiM-g3D znuPm?eOkX>@6;G}oU#cMoCXUyKI zT^IL1TWysaDW;5DHL^fIx!Xqo@U;wt54S=$Q+AvXn7g6UQzAig9Dge<0vr1cr%M@ z1~iE$BW|L+B!Guhv`)n)V zw0A282BObv4=^r(dgqiYaaNJ-=?Vfj@XhWUhpIb{V;^#*KUV^1*_@}&0k`F*X6rjF zz?HCEJ`+?|1c905|O;+AlS6t1_*r|p7;u>Z5rZv zcQwEUqI_yGxF5b{neIQ^6CgCez-MjbW0A?V)ix=Dz`!Di*Fq2|IBTsHG{)oX!WL+W zeHgLc)gg3SM^FbUqs`W7I=8&zyj-rWI*wQ3fR-Lle@;q~cH|>c$*( zPuCX}&&67{ll4tXBO_tlX>OYL*{R-MabU$JRCaOE1&*pmiW-;;1?A`D90n2n06`NZYCb%x&5TzVpa6ZQ9cu!agZ7+UoxHw~MR@%pjZkQp?1 z?4p>T(ZNA%z;?$2M=AkYm2flAJ{Oz;XP=@v08R)aLdPE}1iTpShnafvMm?0<1G{)5 zoaG(^BBcX$xh_lQn5`2VDMe1am|!nUF5%LdNRHXAv2y;OR|w4w%_8sFQkX;*NnaIH6v3arp;Ybpv3F<>Z_& zt2fek>E_-Dbs}w6U~W=j0E}7#*Ps5EoZXo=-M+O4 zc!%BWA)nx=%zr2pvt#U08QY;Z9^+@+c1v6JX>jG+@5A{? zCB2DY?WGD z&FT#gT*@l( z3Q$J?gq}La{}*ys!kUiQ`Ha;J`iN{p%@lZ^&QCT4m4F~_Cz=Xh@|Z55Q*WWJsy+m- z7%rxw6m^frJf|`z5NhB-wB;MD6gGMB=1nIQWoO85x^3J5-@NO0>dlQ)$W%1cOp${H-K2 zGd;IjTG%lg`ufWDEcXc4l=}^?|LpqH!ibD;mCwu#I>AV`DPU=_kc@Kn#;WRJ|b?{eb1B@t)4nS7#meFK7|f(y{UDs+(#*w z|95qwNS6XgbcZ#r&4DE&QIw(qBC$wHs<}=y|;DJt8(YdbJk3=W91|t6-rlPI-GXw5%??70 zYWDWryCv6pM~3BUYB$C8?kP956`TmxL2pIcDCTzCH7FCL2@a_ZqOH*w9VQ|=3fRi~W zZL#A;UYlvfZD(k%($ohr$ZCzdrZ`eNc53f_o6RtaLokXZdYno@9Dq&Sv&>?y*AW7; zI07*ij$~|ojGs0m308Kp2gJf!b__E@y?F9G@p?52;n$YCa#8VK*&?6*1X#4mz8_TY zH0lpD=W?)IaO&`p>S+ltDQ7ovI$5ig+4~sQT5{GScB`#OX4f3*Sh3AsCarsJoxMU) z-k)K>q%NdC!~yU(WB>Lw1JyUHrCtjX61I+ky&zuq<|BmaTPJ_qloN4|> z?Hbpoy3g(Bg66!VJ3d@R?$x~fe)om;kED~jq(7&}rj!2EUVJX?Ti9&by@4EAwUP_= z4Tx$A_Qe(U1>UF|FQ;7385&9|Xc&HfvOmxzQG^Qf)f>XU*JSb56Dk-9CSV zf=1>B=YATV`+3eG;qg=KiTc8a{9`?zOO9U31XpT~2@Q1dQZjVnOV#cNsP;9>L}ABJ zVzqocPP*6cR!i+}#vNt9mX}+sapeV&xXCjPTv+6+&8$-me<@|U+UtPp5&1*23|Kp5 zvT8C~f9Ij1xA()G`s*WWl9>9&&_rP)i_?yg?q&u^j;H1mJ}`8fVDwsNe@CVD+LSs* zug=cCm^G4XcKxtOx$e5t$H$y*A6p?Ibo;y(bqmntM*3JnZuQa2BOVN&=Kja6NQjFd)<%DyIE%N9tv6wT`S+>Zmo`2Qa za9_2W!r48#i_Qtg|Q&tW4MbgM7t$6o%jU})l}ivE0_mp5OkQpfl6isWF) zr-2INc@>TMb1Xip~nA|UmZZ-CMEYf zAn)j!Hkvm+A;?CFYsB!o497b>JG(Kx_ zKRqx8r@ytvwuZl3JvNhApwM#5dLwRFG)T@bv}&Aj|C$+lmxctcaojAXv443S zY!m|Fne@;mx_;y{JekIShJOOjJMao8dTL(i~s z_Em<^hJ49`w2%sGGk1pmx-4>UD_4qVn<>C4x3}o0Hpl2th_>O|Mhj{4CAWsqS}`_i z00Q*D7*Kz``}|J}g}lA;l}HAgV06Hw^Z%T5!YVraLf6tJRVLFjbPhXWBTyN-q8vCT ztPpB^a&v-56pxngi|O)WKW>ULEL!f^x#HMD0yFeu6`Diw#TmW6l05%$#XbFl9D0$$ zix-jW9mOZ+y4c84QdAFB#%>jr7Fse607_7khP6$baa_;yLZQD+R*UYX$em*=e=fv~^7lC!R)0x!NrVJjVzA{bgCmp#XmmkU2!vvztTK6!a!js0qk=z-> zal?0vmuaE6WCG4>9qdo%S_Z||(Ac{xFhK!-v-FIM_|Jq;1!YOrb0oe_)ajcm4Vtdd zFR#QA^Ln{h5B1*c@B`SnnQTdk-J z6s+9&p&A`LfIIKLQiXouf7eC2vW)0@+d#^RjV+4a0vzpKe7Sj~j`67T5TCmNo zb|qp&U38kZ@y_RYB`znUJER#c6v13^j8eB#v7PxDO%(p__ZV(#3C|BuNJBXB%3!9L zdKJZusIShL@y}Q5#D%BY-}WCFL}b*5Ff*wE6k#@n8&d6+$71l1(vib;vL&`gH782m zS16)4SErqzRDLnqa$TeujlQF%G{oL+9XXL$2nOfbRlDhztJUtqWdvbhTa_@6Q_AF* zk_M6}$)rJ1St~Q6VT_Mr^(Eyqru{-A>XyChSuMPq!HxArn$uD9%a%*8Mi_fr+opBO zoERBN*MX6kwd6HMWRf56B@n>HyAjI0_7{tp*o4?gJ+l=FLU=CwW;#jc;TZrtfp>e)YyB@$8u1cI4OI8rl zUs_EgqK$V^9um?coNO*c>pob=aNZRl$0kTxMdt&I_Su{Dw89{>R;G54}|! z*Nef$yn_;ORsXWc!2`}1eh*PCJUAkf6G9$XjlYgHMv@;AGa?XYhR>+#lMYX%l)7^* z=-4rLcPD0oA1Rxy@)jxRCpuCWPv&X*M3N}4CZkW2;N@A27*@+qQ%TlIitpY`;r&4F z#7?_7S;?Fm5I5Ed_)OdK@O@dK_uU+u@w?I7P|D4vf~h`5HJjWufn550UxDYlj}0s7 z<3n*Bs_X;`N{ZbPi3xE1ZR z3uVoCZ9bk)YpY4f3@>8Fm3j>(QIb3c1!Xni0_9|+BfpJsO^hf04*u}$z~sq^lUj?n zyKK-4hW-BjQ-{s}L-}7QL%Wln?@#14_QXgA4o|4}Gh?z+l47!~O$rI%6w)-aI_rtDYDY}u0(g&U2Y`E)!hZ@c^s_jIf!KL z?OwWn=)~@g9x&zl|L6ADna5XMjZ5RJ@xnllSRbJ@cFOwRZ)N{-n%eY&_HeK6gl1(a z-!D3#Ke@})8?ox8%O750{q*P4*b=i@Gjgg5+X|XOk2ap8dU>T-ms7B9{k7}&i#1(W z3kuHHt){W%<-U>ZGFD`3;jXspZF)yH}l7*Hd=l=V@MeuQvC7dwcE!dDntF5ySl9+mkO1Br#=fl3O27Wq$;? z<54#JnDsZYpIcyFbg^Gp#5_ko)mdErnEFWzMyv~`>4HDCkUd$$$aQF%&I0o^YNOYD z^OMMreN1mN{1-3R_CR%uX#w2_}T_=U}y`uiP&^>;QE-cb`m-`T^y zvqZSix)iv#W&K=ElTaMpKFC*@`pv#P|8+^#z2Rob>c`3}ZkGc$JG1WYZge?cZfEEjb^)Et?`OYP4sh6-3|?eMf2t}Q z#L+#L*)M!mU3a%*kjuX+(e0W0Y|j3@Y(n+M!-)3#|%(TM9~OE*4Q+Ib#dB;j%jCGq^iY!0_5JC)}a;N}LD2ju1!h&OvX z(!nIxv7~RxQXK4yBOA>vl7HHN5N_<&wrSmLxeN9b=jEXp@V^Z+p<`b+w;j7g434~- zdNXLWh1Od4pBzWdKz;o#@+(UI^|v47bm5sSQoVnT9Jwd9Vbo6d{!zE@UJ8jgNvDs@ z&SMXG~x8ZA{@F^el16_F9g@rtbYI9_gy7n-W9 z*czoM|04@a^K+kdU2l64JwY=^gGE54v>E_(4T@r0u(i_Ik2a!N9*(HsJm-*;?wGiL zqI0JZm3)o6R0GcllBBEbVoL28v!Wt-k_OjbwS~m9UOyz#6-HpTIac1=1$KmeT?B`U zs`)L{&Xcc_0D#L`@sS*Pwj#K|BoQ`!SuDimqqctKjV+?fxF5W-UV-#ZB6L4&DNK6d zK1A<6G|Fq;p}ut(jiy7`c^ed71tbP#(!2Wo-tFrp9L^Pc?>n1;W=PEW6wgXVEgE8K zJVNd8%Y}AvCm1TNb+y zjhMdfP+uUf91?fneA&2z?E1zl1pLHUTkp7A@0PBGj;G2U$n7-NzW!5T93|jIHDVwPZ9BlTlCO zQQeCA#G`V8^+KD?pxr#8?KJrD!su=Wq_`;$zDgWN+B`Miak-M2H??FmILW9d@u&`` zVezQkmw#s4Yy>w~(mdtoDNfV;DY^AM*2klB1$6W1?qmun9+lUM8;{C(SkJZ@E=Df4 zc}@Abd@qzKjw6dpD%+vR&`iy)uG@x)Zfmq!$D-{vnf4-_&tXKrsC$H#p^HD~q35FkD}(PjzY%Pc>05Y^G@ zhkT&U&_Cyr+E<;)mfFR_n@8W@2I?u?lu?aJm%ndIm8#oL19ano<8`*?udXwE1&>f4 z)96UueQ4&&#>JTH(wjbr@x6y`Oj~K-8obe}RuIMk-prbU&=?+5>60-u%DdZF7tKtb z-bN+r%11Ytqc?AL(%@^HjUOAsmQJiw$IHi1&$qoE0;_9l%=ND%az)eBIrc42KBvxw zfA(dW4!^UEDX7%R#OO>`PeBwhzrMlHV>@fDFuxD*tZY#7BxH4)rx@rN9xnZ4STP6KASE0`xTw@ z4^lp-aeqs^kPmMQW%K~__a_u&K+S)x3vyw6lkFsUbab!%uM9w5W)oQ~p2^YCe|2Wv zw?h6YhWZ(>4zbt})tlX>A*`-r<7BmyR8v!Bp8z`hzvrF1y0X|kkfojpNL%8^rK$H5 z15JIY%9+Z?St+OT=ZD)XYHMaspzr&m-=LI>vYVWEws<( z8_-=}SCOCgW&NE7)<%4fegipX*YsGgjE?ODhdpV=yi)JFL9TB&Tcp!_eQpDUX~%|2 zhcXcpuRV1$n~RVuc7B&b)^kr(tu=vCDOAcsj}qa}j%>rxrUS+crCYH}s5aEd@@ycHuSPgbL=^!q4B> zz4@P}3+Ao&h8;+ZV~3qpy9+RzFd8FzdN{7MkmX?Bf@+aynE|$v`?ep6T46Zq0`8EHwv0&7uTZ*-V9o4Y&HXv>zVjv5HH_d#O_{$F+E6yBx zAIC;KyM*>*IUeWO&aF16kt^}&r>pQ2s4bp?lar%%l3vg|>>Qlzp42hBov%RC(oH9kZxOX(Dm;0wco z5ZogS-xT44-_+RoxKVL;)wjN+6q~ni{1M=%=1ud)T$~C2{PbzaabC)yLtHZ-z9o4H zaZmUK0MkT51lf_dYl^$Xrtv#qnkr(okSj}%>|a7GoJgMBRMjFvS@TMCb+Sfaz=^p8 z&n6;eA4CEQd}H4#(tBD|X^pcOpv0g_huu3pt&AUwV1c(s{A+>^xuC~p10-iS9Z(s?=HdQ+C{~YLNk+S1QgDdTvTbMGd5y> z6^n8I==d0(G%j;SgcY{Qre~hD&bPoMr7yX*RR`ydfIG>Z*@oxl#xr%=wbT(}uOmwB zIAW9T%FOVp`R$6^hAI=Sj(9l?i&ZAM-IJ5Yip_pmTE9rcR(@(gA|?JTSz$fSr137_ zZJ619L%fz22JR2ff+c>dcEf6SZ_i?iBF89=B8w$XBxBPw2#B<39s&<6jRS0-CGAlZ z8l}BzXP3IhbN;8=6=LS?9km$1Q1t2k?-aN2Rsuq;0uz*}yM~!X;exR09n}<>kMcnu zybJAGiN#^^v&m^qfiuwWAVA)%H)?G&cVR)n`UVMR?|Q79bEY4?{8nz_^`|m@D9j(2 zx2+w3S)_Sr=3JA-Mp9;VKHhm+HygN!S`gmk(x-Q8EqzrO4|ajF=(Cbo3y5xgSfR}b z*ZkZTjO7i-QkJpls`bXESO!HTM+2S-Ugqp_mEu|6$)3)#O5tYpd`x1OYG$9KTlele z5ZjK1eI%as@(5a(<|2&_Fxiu9Qk70aAZ>#{x(a@@3jFY7ASoAD9wT7{0YTB0drB$- z_A>x1O@ct$1bEsiXnAjcySI(sB9NKq>~bw$=7mB_oiygzHg~~&G2ztI0JWQ=T7s0- zHN^*A)w>uU)YhVv92B6F4gaNKXWPkGh^0+Hqiw+Vu8J2zUGXN`&jF(Bna{i{fU5(Y z1(r5J53Hg)U_9`Yegdb5r^`{uOi+5_t#Sp&C3&rBqeHqspprvQeFtra287}Du%$AM0m zqe%~~0!Y200>E#LR!kKgUP4rbE&z7SXAXCsancVoG%X<{kIb1e0fDw5ObbK`JGc9c zy@cRS3SjpD&JXkn*?U;9qg&uizpw*nIJlT&Ha@;k0iYPPQbyh`-2#!R(GbH^Z`s?* zxr8iuSwN-?$m8)77-yxQhBjK5cyvU`bla}%6xFGwC_bV*fjLnXO z)e3Mf+tmZ!3o@nnOjj6Z53Hh>U^6fe?_PZILUa(RYYzgZM(7j=`0akxz^*nG&=t0& z#?%~p>Fa@48N4;aZ}zpy0Tzr?LLI2^j{t6|f`V3lu(RU|_EZUJMR>4R*IHpwp~(|?o!@%w5w-h4%@sS~ z1unD!Jn209rPC^)7Neo%=283Z@lID@8cS`}wIg)30mO1%m;}=jwx4ruwYxp||Hc@!nwXh>2nenDf^Pmz6yBtGi9H99awPt{R6DYv`0RRC+Yw1?n?hmOO z{=cb%4FKTNPbfbC;D>ju`qKYy+bHWU03QYb1lAczO91;K`XQ&b)!~4oakP>cR8)BX z-JFNo3QnDd#?Hd29%NE+8KxG^ebK4qi>qA*T1V(abf5jNQzg@(A%D_7`m2)juAm-( z!GlLcKC~;pl`+hKx3vh%Y$!7Tx!FaUk;u*6D992F)wbdKA@4MD{irhsj{RL;(xW78 zNp4RUNZTBa*lt@ zbR7=12yV>>ZhgSf-fLg|>&W!UYx-=C28tXf>7xdF$KC}u&o&*h;kMJyuwj|}Q;trp z*J+*C)W`@L?rLfOlD2GUfG>;~UABS_2*@&U^Msr+9fWbri7z!y%^QS~ zjKSGJNH>tP4lbRK+%5uPc&MboF>#nOvKAex|2gwd{YBM49R*VMf-KIrxxDoXme!Tw zBkZn=;BkKNkopWiCd7yVJgbWk1^8L9e9cn*QwNcLKrhiP^61fki|zWm`t+W1_4(9r zoM1H~1^+8rgrl`>T<9qy{l06D8S;=zkn)2>{=2;_I;58=tIQhW6>Dw=Ph*ClTIhA z%%S8J58|B~#vs@)ARvs1GAJA#M5U7f;f@UNmX3Tkmkbx-M!lM-uTK-(8f0L~5YrSwYpKa3 zC6Q{NaeFSh8m0YQa|18aa>cS?ctum07ub{@)^S7alv$synncM|Gt}AW!T^?DQ1z2} zDOGmQw*T&_q2-Cu=I=w$^svzQ8XDdRf_j;#zYTSFF={UnRF|P zj8+_%qWthBlpS`2(rGB^hT^VA730fK-V8<6AggB-)?yT7Lw;^2Erz@@E;kt@(U21i z+5UqpZ^-mkGMpjZ8pOt(kY;=dsVWaC%8;ziNYVz8ZkH$x34%-ziZcYl5HHdZS3e4$ z8+f#cOI6@7NX9aW#^6!dWLz{!vNn!JIetY&Fvoj1lS*LFkitS#pofSM8sbU_p^Xa; zVj(a<1%JPIkbPM2#KU=zya=RV2fReuqX}+^;Uyeza3Mwzh;%z!3G93c&NzdUt-;aO zghMdi^w@a2_L10l`^CWh!NF$rjNJM$@$g7g+#87=YdzMA8Wbz46bG|pR-TkfBUf&g zKR3*sa<8#X;?2U)fx@M*bM<~h$=sW&9}G3g34k$ zi?i}r%0@14=ARc#^zMy--qh%4g4}p*X4vmnH=i_K7kfTBby;qcvvs4t%pg82C-Y)J zhyL~4`4yaY5$Nt2&%88%yeR8pGwL_A8%jC)~EDnfrDlsk;owS1t W$zFi)LqQISL(Z9if!eGx0RRC0y_JFh literal 0 HcmV?d00001 diff --git a/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2 b/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2 new file mode 100644 index 0000000000000000000000000000000000000000..bc95855cdb4d03ee9a9999e8a4152f94dfcaf123 GIT binary patch literal 7856 zcmV;h9#7$SPew8T0RR9103NUa5&!@I073u&03JyI0RR9100000000000000000000 z0000QN*jh=9D-y9U_Vn-K~!DpgVx+O1(M;WdHy9K*kvR?Y#k^VR^7rVp3QNr2wS>Gk}Q>8$szup&p5$IrS^YtmqK>FP+~tGc`Pzvor=eaa{E5slTGT&mQi^2aP0+ zr_fcnRj(tKni(<#|L>k+nh}!B{ye|UKli=I0}H`u!V1uyVqt-mb0~s^iK19*v={1} zRm)S1#pQ*Xb^eb zEeE7S3l=oQX-Yu(p#fDbH40=mH5R0_2b;zOY#COr$j^O ze!2s$JY!Iuk3OihW8qHiPfne0JARggVS~5(Hz15G0PAQ@|60BqurSj=LQcp}QbrrP zQS2(*AbK~(1IHY9Shu#vn(UewxIb}sEM25FsgEM1f#6|IZjUFE8?D;H(yZA`lm zf{*Q{x{(Bo{8;yL_PvRAesyb0%M#fU!H7}Ly4H>d1Q;+OY4(Bv0haW|BCuu$0hbdT z1a?4x00#g&04$*}UCj}wr4xMS0EQqG0gIQU=7QaONpn3gfdF{CR4!?NYE{~LV1%VK zApncg81^+oz~Ecd5=J63s2Ktn(El}DtgkxFvgD7LdIUJUc^VxIwE@5wTvG&O7V`j9AjX41 z17I{G5Gsa&LJly1e6xAioB-NZ1aM6O$SioE=`aqob3nQ9_@bFW?8k2h0uvAl5lSRN z6tP(GBoZY{g}}CNFRYz@#E5ruw@#}DyCKa}t1{Mzd1fK#!uMj1= z`1$lJ6^aQoaKUB6j4|}UfUm2w9d+1TeYO)_HxI?SStn~}y<=}?ZLEbgv2|lNvR2m2 zv}`SF(AcW90DxRLBq2mf%@~9V;-ftg0{|A}Dnah6w_;ILD}gc^qz_FH@Z1SXPv?uff;W%!9J1^biKHxs%AEPKxr(uXi9#n@%3a#m>xyH^<)(cBXHCT~#^K{T5=PMJ zq}}?Bx#$RMBhmwJu-zU%&COY~Aon+9uZSQ1x=T6@n*QKtd;vR6IpM5p@m{>Ldq`^1 zob6=FuJb;<4n0neE^?vxpTb(EGHY$pWxFAh_B!cH_zAgTgRMr)IUwL=K((eOC&v4F zd%C+iJKA-dH*MUoe%;!()|TcbZDWI`zD`|RQ(aYAp(-ycEh$ziisXd_c_*B`e{pZn z?{@CqxqYkMYBuV%*I&w3mMdw@qcc96tW+yWOyk*Kwa28egwOdxaL^E1*Xnl9=I2Ul zr&yyw$kXe?Sgz*!PAQX$7*_sr?LN1=Lrb|_0+DnMBu_WFt#(h-;A|4?FwMmg+gb7H zt`;zM12$v=I?~4xvq<%(A|2nq=Fg{b&^X2w!@|TxS%cB-VFnH9lvJ85&lI@=5%|A+(S(9_+xWW56 zv94Ak>ol&WSBGOuuZ|9FIh&wf9kai1%$)gC7uU#+Kq_lS1s_+&GN0^C+dX5j=v3ME zu}?-vIk{exq%0edYfdsbT-0K$6C!0(CU!_FW-yDjfd*stm}|^Lg1DT-5u@^fj#uW7 zmyVZ@*JjpdRHR$^i+!hmk&+n6uO-$~j(lRh#gfWD-7ZyH(Y+U1kTnb5dRZ4&;=6mf z(;fH7pLu*}e=S-MwG+kQGe*&1(|~Pubi~7Z+sxD@rl%r>rJB z=0Fg{SB0k{*RMqCypkR!hmopdFe)eHdOYReFKO z9ff<&6mJ&rX+%;p-sNqnB(0OW)G_s`2w-6IPHbrFbh0C*9mF^xv(2$0t~Bz3cwnk? z`V{DDHJGk6;8TaZdrB{mQ>4{Eb%v&4V&NehbX*a=J+zbrIa(LPEtnp zEtjm(_M276Y9O5V2FjMqOWl!E*Z4F`ATBPvVNDs;Xqc-(MR%8)HFvwcYUM5-DVdfw z=NR`*Jiqu##)GMc=FZ;WlL_cq94b~`5N&#F!0mPh9Y2Q7Lkk(C7_KO4`Wn(=tqkh~ zz6vd`L9?7z86u_yE-|!6m1Va^WgAvVB*A~c&q%u+K%gt0JzUV@GM>2baqHos9!*L^ zwZEzf6L)$Tv>u~A(*marsvJu##-71J)U84-K$ogj5~8zszU|NtP*yfZR?YUeZ$SYi!fIfio1@pwVHOO9M8x5BZ3URb>oqQcjx=zeRl>Vego^`c@Z zA0G%uja+pre9UOrS{cN29;G!-YEVCgrxJi0>2@)xAd0}4O;h{}D;@Cmo(zwU9E+gl zLDZ0~ugO(@PWkcY<>rnBw$(n5o*5sLUcz$DX zCdFG)^9>|+-~$Mjc-jBX0G)bO$do?B1KSCmhpfsfD>I$?ds>S%^~97yAWq6b{bUbW z>H!G63-1Hs*M9g1u939lYsq!tXJgO z2kr<@t{;%&ek$xwiJafM$e;=0;Gggol<)puZ!Q(wF5f;AxOn~J88b-wj!!ID3c*W`vl;bxJx0#8YcCvbPWMk6-=@$rY-6KlNYLsN;*_$$pdF)Dpx_iO-^xc$77PLE*qN2jR^yF&pX@(#WtS@UUxB`-3$Blo9=~ktiFK@)(0It3ba4W>tZMIp?$r;w1k>$BJj|ybM zL`k&982Kjz1Q;-YL2&>8fFS^Y_y9-;_$Pqe4rtu~_W>|^k-u_Ek2ca;s%#FvodA3yU#01U7!#1XT4?|-p972SZnKFy?RFo) z8FV_-XtjD0oc2A3JIx^>mR61$o!v~nZCn-nb6K$&aJfpR2fg-q)yIXgz+T5}w?L;; zStMM_yS{N7b2@)2tFs~Zh5nqe zpSRDHtSHcY>`W-%68Nrp z)B*j{cl&pKcUL_ydRx8Cy_4^*f2YkE8JCu;&>7yZ)|~m)zje#&m%rzg4e@XA-T%ne zQz;B(Ms0G#)~KsBJyViOQ4K(XUCDG!sf#n zwS$36+8mDw4HK6J^ws4nqpO2bDm}+az0$mTvsJBOsil1x0kN7jF15Pr`|B=Hr!5=*z%tpyR&mRB@pU%daXb@}!03wcUTO;EB`oY5CB*5E{s&gVy@TE-d> zv+R*X-<#cWHh*N;($6j5*!$VY)sWGzIxP17m=0zB2A>q!P(tNYeK*z4 zN8&q+^Vj=Gqdy8KHuv;cefa$LytU0KiQ!hY5yLXpGrC8i?k~Az{$p%@Ap81a$wXg8 zL#%h#D04~tO<|kpvU9L5bYvi@LtBvM!&X{8NEx+XUk?8$S3vBveA z@pS3ho;dmT-J`AJ;c>F;%s3g#$Mv6$hDl*{#o>{GF%CifUS2zVH`0r0{{yu}Wq zKX`bBiLIZz`$1URJaRSkbQ#=#IKO+j2PT|e|I}E{etzDGtWIvQP4#z+_exd9Pq5y3 zG-W>)hTj{`lba?PE-m`0$i$+);37r%*prGPCxvnGxta0t=VJD~J=O5G8Ts(HZQ7)r ze(T7b{TI~7`hN88yTrmN_-kkK?IZJt=ihQ9RmTU=z`MxWIq!cqdF;)LZ(KZTO0H~d zg03@#lUBC!m+mST7hA=8*}2AKi`;mQW8VrM9D8%_jk%*f51zhAwe;|kN__+YXX8A1 zQ4XnQ9$txwLLaZsZyxX>T-%oWB&LDvdmqj{`jJRUQAbc=L06EZM2Eko8R@a{iBava z(Fb2=tlp~!9LcQ2I*UZtT)z9MIO|*w=dVtVM@fsjg5`zbVWq`UW5O6|X6DaCXhx2; zpI26rpMQwhb*em-G4abkgzD_Z3!_kLnYbH&1SwbT&!~Os0{M$r@|x6I3k`P;H`%i~((> z_ifFD0sPVwsB!}uP(=9+53I6G>?r_7&olLe#Imv}%rv+gTu0&5jF8nr!YM;#e!>@` z%|+*Js3k~BiVkm!9CS5V40wmbVATCdGfQsE zx=)1qmDt03R#AKvGT3W~77P9(C>9J+kGoYpT8js6iz*%%1v>4lg!Y6fDU4BjfZ~!V zc-5q2FM*+D+Bu*ug1CsXiy*pyRbbeGBu7YK84(r@29Rjb@}CwRcA~^VFC>cr!^nLw z_7RNY@@_t*#C+)*@ntu*#F_0Y@@?6v93X-7 ze8+Ri_fT7Q_7-3n+E*ace5E*}Q~>5KgaiOAxePlw21A5~a>oQH<{0LkW6vhZ8^NwF z>#&-K67E-QAJnfgFSq4#r_=ty0W_{>LR}mG)i=Eeu=RA|m;soQ_MiS<$)me7w)V>S zu~wJ@5LfmPSgjOXKLI#vZ*f(xZtWfaWx6f%@^!OYHr~8fF3o}3QopCOwz8G&1>}NW zHVyaL?)R$(CRi74M~BxRVh463ZRP2oZ5d3sx`89>cuHt`MVNb#=^SwS+q@0TZd2G- zD_j2DKRG5(&4Iq{)jsG8ShlsMqd$SUByz#j{BvsVYpS0fJ2U~#_n@cmdlsM{XQ%z^ zSm&?EYw_@4txg2sq z=pRhOeYX4QVRtitimh|I|LwaZtOcvv4cW=`^=DowJ*!3F`V`Go>yqvU)9Es` zLb*Q3xp+bV*FVG`_;$`vN;e1uc*UoRQOl{a(B{PGH{!zr;F7bdaf&?P*TgN zC>Df3WTHC|0usuTU1{e)bedV=$f6GK1)_yVZ9SP)K1#v_Q{GUECMn<0@)c!J*{W-{ zP#BxF`}FdY)8Sxv`!+gQdA6!u>+nd{Eh@yx*DrCbVGgzsi+t0GCoKVoFc|CEApV&W zktPY${PXRC*R|-|7n6FB0TY(G=<1V+kL|Q)4}?UZ?3pgn!d8rVrNS|1^Pntprf4N> zq@vhu{mM02pw(eSW$k1l{S-~!)dyDJH5cOO2%uy3MeI~0M~L;*@YCLJJ-Y&k<$LkD z>jLD|wpe$7-Yxe$fL7S;FwCiX1?dOLITE%gYP-yv>^J0&5NGi@j8pSy#*5XQ0uXYO zIch#9dhX6Og@ycTh)J%Pv*5sJ^Iej<5Gd^X^}jz? z>hyz>l9L5Rw7h;Zjf}k;N6tzyu~1Z$d-Bx@bfV_Q$&d8Z?}{IX_k$`aVO+0E;93U2K^)$@k4Zo5wJC5hG!+u%eV!>59SQa{3K?^s|yn2zImYb)=& zZZFTlv5>5dxp{#AgnKC={WhJ|hfy?8+fQqe#}qBW`;u-EH}?qTtOoDPMNDiuv&}hV z=0>!dhq+5;wK>ddjvdV*Ba9X2Fncm~51qr=TEEaO`gjW#wUKQdTEtE1VI!JH%owvv z=Ly`5GfJFQf@3ikqaOifW#lw6)5pzSCXSMVMl7|{A!$?H`HitC~cp^ z<*=w3a{|^|n$3uBqH9O{_8BJxEK!Dbt`B0+|N za?MsMQsaEvG{VAE-wQ*28A@uFsieY8AGORBQhz`NKPth6Ei?xvx*o#ZYTJ&5Vi5V} z`XZv?cwr;buNv zWzNz>GmFND;|pdLujVlmy%fcXFc0FI@rvTr<6nnwI**arXrc=Ik>2mtWwmzd_| zwndPf5DNeXfB^si0-&p38w1dW3cQ<;X-yt%X!I*Lgg5!gBi%L1s&F3OBTQQS9}L*!WvTgQ8>woV)JUCMZ2wscUDBjh!tKOfjS-gI=- zLg#qf2JrF_cvU~pZL$cOL-7ea#(~ntcWK7ME+R~!dOQNTJN0*gkX1LengU$uZp2|N72Ny)Zs7Wj6ufUgTjPQbyn-Kr`}fCvy&QwX8xlnF?Db7u ziQk(lTy8vY$K$4f$7Op^d&c*R?S%kfNH`M8kbnV;uW5k&b!Y)xGsA?Fr*jAc05}si zQ2~K5GL~4`dR@RFz=s6_9Ow%)aI;O4l2yNx2_ZsHKmf+zBMJx%!AW9ZS!uEv0Cl$v zrN^`}KsJp!CF;Ft>66k%2h@@@ANEx%lka4CEUTuxO0`NzvKgBjG!gNANX^o$Qm=x> z=w>ryWRp=syQ;DwSsG}w6hu;$$`+k0Dah3*wMtcOobUx!NWaJGFyZ(D_%+=@-WdE= zbRw03FS=BCbFESfw|VLRNceISqH0G(W@4gIBdRiNEk+AVO5@V{d>)L| zDphNbZBa_7Y#gAF8aPr(O~s{blDf4{1Z9MUQB5q@J>in4HY&=!)7G0WH~kx%X6&b&nWpU#jhmhXO@1oTf z-bbEs;pG|uFGnemtzcM|Iwn&O%h2u8WkZ_q=B0|1r-*&YVl|TDVTqiQ(gq3DB7vDG zo(((>!(z#Z7&1(}QPB=R1Cik)Jt91aCkkc?3(+DpBm=8LoOmI@BLV}&@b}ZgSC|ZM zFEQM032v?)Jl8;bTe-9|<2lnt-!N`VIr1ZU{7@S!Icx+xt~JH6q8zN~>;r8b6fd+1 zvT`W23k>W3I+nIkRtF2r{mt^&{;WJR8B1moRPty+l4mR;#Z6H0}Uy5ESz8AkJgRFc}Y1VwfqW z!|rT2E*8_!g&6vm>z#6ePL-lJ$Sl;OE&p6|-u8;K3iKp>+>m!$xaKrMgEu_`1HidT z(GTUUIfKL8AUlm=aakEo;0;a9;LZCk1`%djz&nKJ=DKnx^6(s>$c8s0~}$;#xcMx(h?c(4mC zGLhd*&$lh=l*hT@@HlLE&7oRw$!sx{;-V?V1UFaHZ8*gv>t_sx-mm4~(Jjxfc61wt zLyxQE>BUE8;KC~PTXl?vMiP^UaKHXNlbdAseF9cRLRpq1frJ4-)hbeTtP#flH}~d! zPqHmTkd<+y0U!nO|IADPodGP83*?^ed-h%TI0f1-<`3}O>>uKyEJVcuXC#Us1}Y^{ zN=SuBDJf`U6jn^#)Ct>eE}G4`8*aPP?OfgU!rSim?nmxdJG9PPSE@@`BSL{P)E=XB zH>g2Dz2_R35)+T+%Gtod%n{iCudGpZFAEEYoG03hN$j01kRlMOY(&|XLN`COOc_0; zxc}3o{rN*6X#{K{t*wQlb+BskQeHpxL0JO7KBb*5Fo3}7r?$`CBiu`Mk^^H+>Hn{W z0Pa7e@rLY=O3`s0Y0@>%L0=h)j|!mc4e;Lk{Bzf!J%bO?DuJgij5bHxgH0>aqj-15as*sfKoo zgSehzoL~Q~Q({5gpOoi>=;?0Ht)n?%*0;_wI-A1!l9_peH|OnMu9X@Kl*43G-kZEs zeERZUf5I)eQen4q>*v6yn$Hft`%Uw<99+Vm58`0hbM;e;_0ADz;Wy;YCIg^|%()eQ zj)7c>*wm31YxOOblMpAfi`hv~Dv9!?D>43G?-9foc@{k<6*Du@T_;dj%H0ap2*`{> zFm7w@Qr8@WHpLri+L8dmzy?=sR%l>j?roC)6EiB;ocrouJ$Vd5{mKsFDK%$b)<+^+6R|a@*O@FGJ<2 zvK)lxgput)!kllDRba9}Gv&3byy!fXj?xmAnT>)Sbdyc#36#mxK<)@>ZETxLV)v$` ziT(edQbfwmSxB#P6XZcYlt5|cvfM?;Q^Y(};p&5&%S$AMW~n=Qojwm_CuFG6n9bmqu-lPTen=P&9U1M*y0j$HA z3!vPPNBCQOP&@*H&2|XVlLmPqlA%K24fVk&Q5+UW{mx}03*l95wT+6zhm^qOX=paYxWV}MzzLMhwvzbco0$?k{-gnZ`% z21BLaVMT?Y3PUB9m{N`QdHK;EF{x)}VQqGI4h;=j-!vE_VdWs>;jl+=aDAWxSDhq$ zOPqOy0NA;umdp0S;)xgW8KgkyT?f~_W5yn6k2VY-mb-@;K4biZQg>e53oB;GFWceA zbLjvPu=bO^z-z!|qvZly@;krfg;`6kS@Tgmi~qHL4&5Se`*_Kz+r+PrC#d=SugSU% z(Rg&)bQv&i#-a~g_tK9djoYX>UgzAdlXQ;AT3S4De0az+IMCnM+tc0E>F#K6Yi((6 zYIHdp9Cn-4Vy>?<84Y?}t+qy^Rw)&7nN%Vc39I=$ZdE0R&0;d>v<$f1ujay2dxoww=WY7+Siom@Q{dEj8jzcDZ(LWD19BmI*ssk!zRG!?{LA zmSs1eqgX~c~xpNGZ)i~)IOehm?A0>3mMvvw^H{)jA0@ra*qBQjt*8HD)d z#0!q?nx+A;AqkBIZ}^!AMV`vhnN%GO#`-Dr&q~p`K4cOe81|{PRo|?!=s4|7+2GX5 za67=&rfYyOJ3a1%3NfUa)DAV!yCm@U)oedbRYxb>K*u0Ndr!HKGLbapo#M_Rv7eMt zI(ULOeNu4p-Quq0lVBI9-OOL-nrm8pqZxOJ;ErWvhCV`Pa2z4iCniaZSnF5I(=DnK z7TmLTYwskvBX|5<7(!{%VvNQoZ0yB&+B0j|YTkp>v1cB`uYFiLoeB!K_MDtzvgcgEt8UiZ3kD3POlR0lhlLPManI!i}_ox>Q^}Nxwo{2}EwOi#xiX$e+BLSMdJT|@I zJT+_V2kxfaJ@jtUc7)VW)f7a$%Z}e{N_2+nz5-8v#OD*Er(&t^tt7(INU_RNm!&E} z7~(_Pc=N>}1}xrl22fQj*r-#3e2IdeRA9++Xw3#* znTFB2aG=%4&0%Y*5sIT$N;UdSVh~g%GaPV{wpqrT6*~r5ciROj0`wF`T9mZLs804A zf@k5|ofVUYHyy_T^e#VNTf}8~IW-Pa+iz;NUSI)DiJBYBjQ#WbpJ}>B*a{AwS<&V~ zU)KlM*s6-Guy;vMW=j=ysI9|jE~o{)gF=7TdL`Y^aD0ATWbx9at!a}XQ0Wa<+9;|s z30M&U0RCnO{)eB~^CP2}r9oh(g!M4>$#B64pjfFZI9sKD}q@Kly&u<<59Q~*1^ z>>{6POs*w(KSY5M^~l~RMu@>l8;wz6TwSx$1s2Go6`LIun$k@am_TMM@>FW^G%t-; z$+d*xcq|eu7!>BSR|>x)56P2UA1jy|!DFIcq_a8sz6hU7@hIEr9ujzJBvhPcP0M{Y zYHoLQV24FiPH-^+4;s*p66sWV9w~H57=r!gvVp%cNTurw5>8A^K}qd{QBAd&6d6yY z(4U&?j|I5ab5BBT=rF{t)$b2Yld3Y=GqGkfl*xV2rp8{dgarM8Pv!$dYE@Lw2sO!T z8=neZFu3L!tlObb%!o4aQHO|+Mz_JvtaIZnRM~~R=Ef+i-Gl-9bfm@5R!&<>9vUZh zg|EMX$ZQ};C?z+I|LI+XCDuwYViBE-B0=14MKdp`N^5@GHakN=eA812lS;1r<>r+= zEnt8kr%}w{xZU!P5T7??-bTlewaUDw@ zIZu`kQ|Iyt4Hf?{aRVxIYfs92bRIW!@n^l^K5g}<&Q)K%9bPV}=}m+jEz@W>JjQyD z)GYErF4kg?)bZZ?aq(9%+B^Lo?r_!!S5)3AZVBk!;?JT+2+|1IxZy#&xps^nulVGr zw@!8Es&%y@(amoTl|6i`Ur}T@i~2$Mwh}wAu2dA&Q2K@iE@sal?LU}5hiVSxFV(I7 zXmc^!a%F@Mu*p+}wmKb0=!g1LmqIs7QOQNCZD z^tEydNqzz?X)o81KDB%|e+eJpLta-jT=`?Pxgu>u@5tT@R;^wukqW{n!Mk2Jb)7AX zI{L(&kOyB$2-Ze{EZzD*n4)smbYR?iqtECYfENK1uK=ch4e%Af`+)H&_Hw4y8rnQE zq@5&iN)nhnFoI;+vozg`Tf_n@7RwrkWivbnc@ReBc`;NIwa$ffk#jb*cVk&^t~kdP6X;86ziFC|rIDULvlw$OrlQkg-E_*E`p%DRBC8$~ zSj${=wbHz8dCP9_I1;~O@htF)700ggFv!4^Di|vni)_w|DHr;Z= zjnk;WZp+|A0d>rEWQ*y6IAkaY&a}X*vI{WAKH0Q-HrEZ!@c#S>gc;`RE6>Z0Lp-yE9lUYxH1pC6 zq}&n~BBA+{i8gb)GD|yuDH52b2JKrul+18}=#yAq(#ca-vPCDEW*w`Dpbb^cf$N!nX0N0iV2w{dHmN zJ7jE0P%?E)bF+=Mv>I4dxPCQC-}5TMRISpNNMPyBnSblAiCYKP)7ZdG$>A2tj|$}b z?Fbn65Jo_8>b0#)pfAPvTVnxZj6W*(mF9jxa!mpmtUFwwLUb4XjtL2(SgYK8-3XOf-x1p^*^`wcYSBBxu4A`1-SVlJCEYZS8B;#Y7TyOtQ7)6E%*z^3gZAP zOTj0%7}VUs)@Phkrb3%=ZV2$39_H4=*Zni$+y4C)roZMeohNKOjMW@I7M|Su=qUs# z%UwX)_e&NJs50%yMYQ~r5V!I!{B}$vagFn%HNxLo7cP>`!pY1AC3hk7)im|_A^xfL z*hNCUXez@YtvZ(ZA}|(L8#SL@PbP^I3&{o)r9SzJ+x!o50cj;s#Rx3LfT7rvu0xOu zcL8?;UpEb32zzq40=2jp@cbY`qOBQ8vz9P$O-?Fb+sh(&BmuYO(-&AJ0nHtPP63_rPY_= z@QtsN>TFs4BqPP!X}eIQ)11fl80p8g0S?*Oi5H1FaO75ng55M$tj?l_|7J1XmhtFM zC(a~aKa>8K$G{$c0N_uky*-!8c=_8aRoUY$9qBy7DM~|6>6)Xy_=dCpD!o~{g6hz7 zjvp}i5Ao@ars68H0ZA35v~#Gb%`AxpMN_Hs6EJ_f73K|_+g3OF(A&n>TI4*}pvM#u zbtsB7xt&RZw~^Gfg_O!cmauIPO$%fl9G^=+mCLhv`GyhHWx1(j%{6?1?P$4C(|D$2 z+bCHsPhWf=IvGbc`0G;F8IMxW#Y8Sbh<_UMblm+)GcfSArv0u*LZ0ccT*MiNzBab4 z1sr^8XBV|v)IqK2jVHI9__x_{X-n(wdZ@KsGWXbTZmBxEwp8|;cl(&- z4jYllw3d}QD%oWYTlvv1um5vSLM=m1Kap8Zq<>`iu`Xw+%A~^<6ZL3{BH7I(!P`mN z+Tsel6(tm+EjVd4@pR+B$ttDQTdf~QU6s|9tUJdpRyw+F=NSLn)KLPZmgU()O*)IvbZZNqi@XZ4(u>XDX> zotjKi-6?E6swR_s^x-CEh<5Z|-P@&%JYZzYUq*JYrxU8|ON;$C$Ol z`45`rEIIcSlaoBHd$y7_3&o&7E4eFQ_SgOHl&q`tVdKzws+HkmO#fDW`Ih3pK8bJs zu&>_yvpNdu2l%&uJ^naKjn@nI1~o&rPsF%fi@pDJ`u^ohh&os9dl!wK_D%TyFy(vi zi>v(R74$-L?H7!*o*yYcxFrRiJI``<7hG?YlNWyC>V6j9yLGsV(>GbwV3=cSMspvz z8@qAawy{OJ%G7g|j!LERSK?@3yf@OD;H0lK2{wn~qCG5sYll%=m-cP$n`z$u!Z)sxvi**(?+EBLWKJaQOfhxHSo`On*%)P=l;2XnWKirA zgN7LV_Yz*7P59*O{nS1FV;SrIbD*`h;!Pgae~$fFaU5?U9)E~@snhM=m#y4jqcNIy zcCT`k4_;b-t?~4w{VVGt@G8+O3_5wo?elyam+uIIKH63H7d$ZxAET<|GgRYn(UX4l zK+)5>kr}F7JxkS(V4gy@a2~J6IZh|`2-w7dah_A^D8F=J=iWJ+pY}~OZ@)7}mk=*F zQ~Fvhh+nqZ$= zH(N;RnxHt6#Q4vwT08d?FpeBfE)8$MBvx?CrRSOP*XRu)9_;dcvH>fd0)NJO85K2MbB({L$$jMnL{K!5f1#rH&sK`9pNyQ$8Jwg8F&y z-i1KkZAIO}*6t5%N1in=t9OVxniDZIzO9*#vrSeD2k|$&M_gXr1j+n zqjI85YF`z}XXKKK!5--v(vi9UF|Yy14gLCZi69NyQuNd^cam=~Ez{~f_y>ntl!sdJ z59)`OXhx&A$~;^2JTL?0Crpv77Ce_`%%k&ijOYIpN@etR@D*%x8QB7#gq07F9ay@W z;}6!ftbVL-?6@szS-?HCW!ZrC^z?sV9X$_>R)4U=A511%>_nExMJ6}IkI=K|aie61 ziwwgwd;{#s-2ehE|1u2PS@yhPcBM*dT%?(Y${!qRRUT}?KQMciXeP}HzhSQIX zM@&*JmNK@orIOwQVg2b&j*-SQ=FvD-Jk^Srf>lDCcR2my)Q??RgOy)+rY|uSO&7VA zDa@v;I^%>R1WZQ{+awx7eF58)xlo%`nKdLZw3Kjahq-97Lz-gItdzpf1g5D)+Y_P^NR1Oax!{l@Xr zoLXK_mRyxLZ`s~>BFZ;va%t3t5}qNaKN_mX;Wltb5|Oq->?AUK0$XSeJCK6gxTnL9 zcG5I3@&O}oH~Fs-nO*UuA`td1vI|?-h0N|O#CAd=TL1{y00IjB^myl=`@%y$x&KqH z4m^+R18Y|Qb1?yGEb%AZ!;#fG-3HDd_ZLwRU@y9F8$Zjja(c2<3e2?e>%db{vB8u} z6WB^fhWP&b@$OXM#b>QOr&uP*5K^hmn=?Myc%~@U8#CzTs!Rd{p-PI>RaXaaHyx|V(frgYj;#@2$#LP?wzMgJ zG%wAh>@I>&*r>QcSftJj_y;!tZ!iA}(j#p1CA}54KH~ZzXTuq!2iBpJCs}3-FPbz( zv)b^SOfZB>?`UO>Sn)L5-KPq}XiozUhJJY&@U{eU6WUqw+%fB`G8&g@)**r&qzMnK zo|Wx-AKy*_NOZtv#oH%!aGCuXxhAHd4)tH3jX<*}O~WE}Gcy6)ZSfx9ioQRVs7d&!K&UTb zR;qKe=oyJsVr>#TY%t+Ub#=Rhj%&6H7jre!+XllK`39KHl{Ti7aE$3#YIJG}Zi+dz zy*Gd@isr+kGadrR#k9j{iW5ujwnEUTe-k%wH(@{IfUG%pbe=P;CT>4cr9m%QHv;#W z2=x#Rn$|KZFI$GbIv+7G_aH`y>pXHB2Z1a`p6QGk#6|l)4%c;bMEk?nMq3X?;zC{w zhOKu&R&m64T_MR`cMnwmcm=p{uqE+}mI%yv^!1c5YR%t`z8`&~g<6we|7&6V?`X%8 zTmy~0?}&Ku{Bc~$Pk)J0va8Jntf-1ZFMx%Hqx%RFL>UK4J`lVTKF7#=I9L($Jr`Dr zT3m!I=IP)$k3MvclIt!A|e;m%^^?!}25pXr_*dB}zLAq>j`ohrTDTTt;Ma zO=DOIdjusi@x4fH8JWf?&(Er*Mdjxt{>=|vk?j=sX&VoYeU~Y=I@B7QL!2qH+BIsM zeShKYpXM~VOr#iw>>Iw(*{`R+b%za>R+9ur20D@kN(H3q!-E}j-%h`FCkzG_-I_}` zB^`{>qYPN$$*9rMAfSY1X#SMYveWP#+_YxOabgS7}%x4Nexz&!KU#nCCpJ16nI8|RqAsVipt+*9a$+N& zPUz@k=~)8>)dn#AB$=IuW8(Sc_{vIVkvk#@1CJUwRO=}wH_MxfQ`w}{tgKh?3_OiR z$)+Oa;(S>+skxjXYM>UivMOmE{WQ6Hgu|MsDXJ^}puu^r6q2Qb%2gZZRdd^YhkZM2 zj^2Y73ey@@dNzfl^&4S) z+K|VCAAh>m%Y%Q$OfC8wD)Dn!YSAyFziJK9yD=pe!Lgzg`iqRLX9!AW#`{-DBq^!l z!0!@D#fG8^VIvvWQdLRo?&ru=103qK0aK4TZLyy%c7{UAvHrT0RK~rOJu%-cLQ;ct z!W^C<>6m^2h>?vU5@0>Cv@)-|an54jK0|7Mc`z8T+m{FB;NT#L+ArL<3Mdad_nimM znzQa~Set2k)%`_7Zv%+b(|HsEJF;Vv5L@f!*bQ47`2ooI`1{!R-yJ#NlziW{c9Mb5 z^;Ngq^l4^WCEs%Y*PUM`i?7{PSQg9uc8yZ1ivZ%}YWq;B4(EZZPT3MxnJo+c(%lI* zs@>wOgtm|8RQF+`2Grfs*T9zfx57gD#OAkL++2nwm0t%QNKW+mn}32DM23-k0);c+ zJ_ImY17d=hU|EXedPrUO#bLYqXgraO1t+jH`eol9wMM;&)5w$XwdHxa3I7O|hcN9pM)Qn;b1xL<|$vl*w8QwA{1@vyGpKS+2@{O*j|LHtKlVyUhK&ch`?~ z&Axr)X=a|7A43p%t>xi|=KTBzx9~JCL+*pBn3TqQ0oFNG6ca~<&&w2#$C%qEYxegy zcza83Zi36g*ffp-G11#F=f`|B^`-kdr|Al~F1{Qll;D_1$Q-il1k02=s)X`Y6 zf`k~AFT4fXVEL@3ueH?Zgs|2;Vt(T|4w^b=ElhofBHG@RswN!M=Z+XmWeiNW8J{D@{veqltf7RO z%~#`?BvjO5lTEM5m~+~PNK*3(m%_Ox)CX5Do0Hp<=jZHpXH(akqdB@tze&`Wo^0^1{^ z&!4nXTh$_YL5duMYJ}TsUHClcpBO|Ih#XIV-U1ubMI{i8SNl!(F{#vf6ePMq+ z&U0T;zOctpEhwOE><@*1=wZn@_Yt2iE?V2~u#yi2-peq$dmk~EOEGmSY`PUv#U?$X za8{5x!c-9pyCuP7FSO>BtkGkHT`wFV?C))A19{K&CTmmJ#E=Gd1={0cQi#-1YOSS8 z*8_1mQ(H+31+6-C!AK+k_I@WkWu`K2hn9FH0wa7lEav|);s4+- zD*I9Y@Y1Cnrw*VU^3DDIRen3=AF?W^_C?wJ%XM;uLk=X;UjP`eoX|g54`m#Ut)K7(R zPU#B2!VEt94Ok$szJ78pt~UR#Hk@%-4`156!wAp}gUUBoROw|ug`j;jQYi@$Tp8M! zjj-U~Q>_{8i>jD0t(+zb4qN}cs{X}^kccy&(tZ=s6hi*SOyPNf%Eb7tyn_+uS*T9tr59cCqP+c zx=}}4?@*9FtY+A@M<-m>tq7A^pVoGmpJ=at_ztR@`1LV#Lz!qX5=JoPE!d6vh0yvb zNtLtJZW9$nRR?G)o~k@mUb|^)oyqvKsrXICHYCqn83p^PTB>!1vM!mRDR-nw!uQwb zK)urF@DoWL?BwuIS;I3?E|Hb@$O#BvDtB2kKAct7(+K+xL;sS#o5|~br>X;@jw|mk zoj`C0{CZXBK?!0g1un3z6~9!iJ-XL=i6o^%J4v($)?Ytosb1h=(0`$ZfxwMO_Ilqw ztWln2K>1;MGcW?v{6-7v1b8uG=q!@N6vYIPF32g#hcFNNvbE!$}-$wCt*!anS)QrY276=}3aoOI4RC11S^ero_Uz z8#KbnQw~fF?2I^Q*Hnv&YTQh2Yh&uBY7;amq)-M;HCvUosKlsTW>eoFM!;0nqo9;1 zMTHJ`MJvE7Kr~k*bX?r++L!ih7R^ReG0{*v*TiB3m4A*AgbEmz87Ag&u`(Bo&R!vD zUX*dnb@vDvORJdF8zwial}qY7CBhGyP0F1nftEIy;8(_8a^ zleqFg8RL4JN~ah`%6UIx7+%a!&~-!nxEaK$Are43)j8tJa!wd&mGsU{Zzwt z=C1X89LtG>o6i_{{kB`TKxkTY*SLm;8C?DJG3ur(Y9|x4X}2cz(&Sxro}-Gp%HUju z59O}LmAMS5J3?YZv4O`C=@ht7BjMFj4S|FVzPy5`GPtT&m8hxY*>DcmTsBWwTnwhn zV6a^}si6@UsMLoP%5DWR$m1N+m_ZzN3GqKx<)w4|rmVC8j>Cp1DRiN@kc*e3T1$xh!O75s?lHmX?|UPsPN+lp;0)p1fx;C4=oIA5ZnJyMS5!h9@ofjmY{=A+;uB>tg#8m{!7Q0rE)Wn9q=G_ eggi13Z*)*fHjLgKLi1zKOE34lD*<2y)C&N5(t+au literal 0 HcmV?d00001 diff --git a/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2 b/dev/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2 new file mode 100644 index 0000000000000000000000000000000000000000..15e1583a0f7320719a1e47697fb1986aea0a829f GIT binary patch literal 19660 zcmV({K+?Z=Pew8T0RR9108GpP5&!@I0Fr0`08C*30RR9100000000000000000000 z0000Qfe;&|ZXAdP24Fu^R6$f;0D~R~fqn^}1`!MjfweG!pDYW65C8!-0we>790VW* zgm?!a424b`7la3xXK{wx0cg9wcHxnT+zw9ahJ10t9q)D^rG5Hx_WyrMaxz2#dlJ*C z*X}#4A`l{j0=@2zr(7v*k?CNQN9D8_Jyd1jHU(zn`o+fDye2Y4&kPP^j$?FK+7q7U zkcL|glRYisrI9*ai$>!lf5>bx5bB^%DW1mBcu>ke?e^2uO^?y7(&A+cldsvhvFQ$- zwqY_Eiz@YBZ+&%Ku;mA*It5vOFF0zgz)KJQH7Ps0q*pWGQ>Q2sMenM zPxtif2ACX>Vq`_=QcD?jX%s&Pv57P{fMQDELDeOi?Q$Ud()^oftEi zh~P4K#>5YG_TOkU8d+#tF@~HhP?kS1=Hp#Opo8{pQ(aSVdrfs!`zf-?=G!!FDiB8E zEDnK27_7snTVlqY2NUP87raw9-RZ$ z2~O8k(f47aKu@~oCRHv_lNM>{6BywBZ_WxACOG9OVK&|S>7S)pN{)>JQYWjIq%8~6 zSCv$_UIF~yoBK91sn}vxB>O^wh-F2kEn-r{f*!dX^AWpWdjGXqRp3?Nvm$mAwJ%6A zoeaUk%Q6$~-*tg&a$Qq7jl_{P@k?9zGbWsKv{f>+szdEMCY(jnLY-T425GSz6NK2# zk|*2$e_i;gKY%pU$46E@efj@yYTEw6EEW(~wh1YBOUF=jik)Lq*hM}6{x|dI|G^*( z$R!2S)v~-Ofqk> zyQQf4fI$>+GnHEc`TXx^Y2W=XuYH+PvOsFGn3TZJj;yNiRTZY^|DWtM_rGLLviv7Y z^cFMaWe}>Qdpy}>mM|sGPJvifqwtkI^&VKFs&Ed4VRhelmzSv*|3QirC#7^HlpVGc zRi6@XKez64zvc-cgb40=%b3=M5OD0Yr?y3wDZj@srsbm$liQ7-+l~pSpaf75Ie)fA z+*mMW!!gSEW&uW3KapF(7?c=+?Bxv-yJZk@E08qlcP3kQCRc7IUqPl=ai&~(rcza= zMos&5{a|mreZxWP$ZXh{{^9o((PI$ARbaW!gQ)&i5MUWjDxiDsYvlxt&T8jH0?qTB zK@mXtVr@b+kbnXgtnJIIB3FeOwBe$2c+o(8Ft?cU=Su(*0tyB&LL|sL_URX*Mwq`PhFZ*N6FH5W9y^}6E!%yX zFBGqAqt&%%mE5lk&*5R?qqRuxd4Vef+)B@N}bQF-n$c^{$)U|ifd>o zqXUS&lR`SMymRp8iQYEWiua}t3sE`r&Kc0#?)gg*&htUlj|z1B{?M7(mQd7+8(_CH z|GbNXPaic!A;`HbN*Q-vkxJgIQw#qEe)xxj!~4&k<~LpVs%h(~QVCg~A4+$3fim~d z!iqR-o#jaHrfQ}F+yj|lqhqMU^Pmz=R^t@i~A_YlQ((1XC;FsDBmH9BWe(07-R%$6y6w|2?8dIDKLqC0_+!(-#bF|J>kGz z5z0?BO)h@Ilu48dvds_FHmYh&0cs#ZeWcK!38KA;X>yDjW@v}vVN8Sx2r=F0qr1Sq zj;4Sa%xP(G#?Mp=96C~a3Sql2Br)#+=CFjb^&{l#iEsQFeFox_ zM@(!E;&BEZu}OpywdW}FTU^Bbfvfx3L>tmdk_#>+Nrf;3&E(+_fy!>E{Q{5oVf5nT zw8F3#e(_>qJ8=cx+Gz$YmlzQvUYrGSMde}+4D$~VLyw7JwJF8Lp6~PsGd{}n5;KE2 zEa3>}>fE#3E^tvLk^PP0!gcLo7C-SQLIh>Dq;uB|epewneNibh zAF~{<%wUM=7ZxSh6PB>1*9U)fYEPKjwl(}W*j7pZh5TgP2`{G4Q#`!VY)^6=kVYPH6wzw1t< z^e^u3IQzIZco%Sj;$TiV?((TTnX@;`j9w>@R$hA}-w4m>&n^JC|M%C7tA*d0Pa1*# z>@iUCK~OHXbMG^!(LFP(6QOyAoUvZf4|4OwkPze^r~Iw{^1*&7Hj-QlQ15(M z<0_g{*^H__Vc1pQPTG_&WB{|WiR|~}>^!dp`Mp!ryyE(lxgA&ZSY?B%x{qXAJ(MG! z8sH(bM1-IiLFhs_;zMtUV81A6vo@9nDZ=^1XmBz&NAPX*Cz$&idsI~ zvy}J0jf!78ej{n381xXPUz0J6WzfP!C7Gqm9pO%}s za6utiB%_3-ygg-2DQ`qY&s6qCRYTT!XM+hrr4^`#@ggL%D1RoT09B|?#29E9EWeTz-j=pFe`)d4R2?%kgq^W~6?pNqmq;;z^RP zDQMB@10;I%Q>gw(rOBUpMae3j8D*KMm=%@tN7Z};Sw$n5V0aKbm?9K#I!!Rl(;?M> z*(m2{I(rqcJ3eY7su13Ve$sX6iO@F7%(7(JSa$+@oM_Afd-rm1g6Vx7c3sIngm0BO zl*G*($+r%V7FlM_1Ll7U;OAcnK?CT3C$0WcGy04EUugkHPz zNJ)e2W&G5sd4DEFU4+KopnBq%CjNGki5DP1dgHi=9t#sJMDWv}dgi$oURD~~&*ZjS z2HbJiJ@-BE&?6Qzc!-kX1qL7`1+P_M(kz6qx;X^i7v~|07@?P)j0^R0E)^OPNrIM# zzI^m6uPb3|k=aj@2qsZt#2aL!347#^N$-5{$6x;-l)g4v6zunjstmk~fCWa0WkLTW z5gPbAF%=orjkRj0-^-5MRbN%gxPFnfn_OiekZklP)rW@fkPdZ9WJwUt7nhaY^sp&{ zpnikJ-oG%07nw|rrAAXfQzQ9b6jD7kks3}7rN&b~l7k*??>Bd@T}#aAof5+c*CsOKx_GU90v4fx)u-{ zMpN2Xg4Mm{>9n^49|9X40JzWgJIvM;>;yLdcmRKabH}y>EYOPpwOi){HiCdOxdg0s zxjx&0uRA*-6oP>3&I?U|0Eqt~Du9?uRmOyajD=$>8%N**iVg92G~bE`P})*pAo3i_ z26~C3@!)w6v=fF{`COsM(&I2gPdMYfZv{bmJKB{V_Of@cu(Vj)S+Qh%k~@)O%fs?4 zU&<$W33(a$t@389mKo&J|De+x>$tV;?@WDCbMWS-wbYCFIKkJZ>38kr=hvs9ge6e` zi;scDJBz;WI(BFL+A_CMU#p~fE->5ghy{Lo*}38VItZ}8r?c5kxPa4{^l^QkE92*y z_{bzgOteh0COKk?y*{bZ{I9@g8w#x}QtY{+Y*!V&s8lrouzKecj&*VTT~-U2IGsL! ziRDE0Q0d>*uyc<0X*MbeTjZMK-sal8c1~-IYXY?$4U#;k^r+D2ilao;$BvnqrI)w-O}uG zI_x&9#cXP7Y^XOH^tw82twyaXd?9;W34xAq2b6no)(u{}bbWCP2TM(+QZ2HMB|i`oM0} zj|ucS&&VBHmX)k61(4Lw!tM5GGOpx3P!r`vkn`!{5oZK#jeyUueP7rBk~nXgW;h_; zez+m^$ORER$@7Pz^%m#ZBr_A?LS`b?x}Lnx)j&!^y!%j>PCF4aCV}q;k}ls3HIf&B zqcF2c*=WQ z9OXqp5vNr*gcAuOrP_?ZS#+LVAOw5LJPl1Cm0jI9;_5^Cus%k0lqO8`r>^)P0YZcy z3D#jqlyWlRFP1ggFq5g|CwD0QtSr+H4Fn$Sb|UV?L|n&4m_K)IUdJkJaTz274C}!g{>+#nv{J!Tnk@xm{ZjCE%Ai?Kn}k<}eOk6muh-~voU#Kd zI8`t_l)1X3I>6*$!QD_9!jX#_9LtMs(rzx~w^gdT+NuLO1`({Nk^dYMIv ziH*eS7GiO$@RC!-sf5S;8gPY(|J^m$)OxN3&xxQP%EqjH1TUaD!V$Mja-h*#-zs;s zsZP-A?sVFtancXm!yO^smq|@Cd8_+WT*SjI?pVWC^FLcO-|>yz8VgoSRLG`lFGwj4 zEVpo^Wwd<^M-pI&Z$Z;EZ=N-x$!VUS!c>yJp&2crp@la(u@G-`r_(N5R>bz(A{%O2 z;GtZsFPk%mJn%e)rPwn&bQ7qxpeqP?*p+xOaYZ}1US<)yk+!g=iC9{C1qqz(5hvJ6T*bxa?i|q=+&n<%{?de-|x{ z9_uN0tCU4FMcUIlelUiIlFW_ua8x&_wpp6HvX_s+RYwj6bUhA>1xa3-Q1(;siwY4o zP_Sk-+zPFuV!_DjhhyQdnMNp#I#i}%zN{Gd!*Z&;V(TF5d67aY==OnzfFS{-#t36^ z!c*OoZ3I`rQ-fEWI<7m8EAaWgTn@nFXR<07P+B%MTOZ^GV#K7?GeQ3Si5Ds|!c1^* z<(4in{D_Y4!c0}1C@i)^8`)AtUAoSNXdFy{9)Ng9B$&PC zYEA{})&v+7^p|^nz+Cr+7t+cL32A+su|lIdfwSgSjd9HRR`8HcA55hap>U#%^WZ_XDoYT@Ceb3PlXBB51%TI zT;0>^hrvVY6&*QlGP&v(l=dJnun=AApc6DEvYsBmEpCSg)8G`!b0XG*;dkeGQQ-OP zqL}y@a3@^~u9~ZUq0xa(C|qFj>w>hG96Q6#XO|fM0qY$SEo$rHjeQGu=gf*_doT?c zv^f%noEGECeidkTXc?f9w=P?`XodUQ0V}|QXfMA<1-D2=(4&0o;GYB-hzmy+Mv2f5 z>lKEmsXCsRf|uE_T$fuP3gB>h1u+pi3?Wy2*DP%qmi_6z33ai&xqD87aY3ns`rdNP z`9jn|ab6K7QMB|t3b-J+`$HHX1`~9|0xv%65C}{3A*e%l*}Ye%I)w9_-9uFk83C4a zpvJ6K(#(m)8768g)_Mw&ya=Dcpb(4uI37TMw>rqsF_;M#etgY}@@P<1GVgD-=8uNY zJTGm4Q#DurSQZUw0ubO4XDV|rp_vGjC*6%z7|1R_Nhn7kxPS2fCa3wkv90$(LuMvH1<+Yh+53!sawcam7o4UX;%Q<CZ8ar@PC`Dft9Xotjw2U31%7{YkRw#hb$AjX6D! zaGFXH%!iMVXC&mcFmR!oETH2%eQ9x96pSXm@V!hM;fl)R#qqB`KJO};gy2XCbYAqp z`CKie*eZm9?8PlJ<-FPoTdTXoR5QGuTD#cetc45kR0F>AVb+)?V7%iPnXV}uwf}OD zkUB#0>(mGRZCjZp+)kj#aGu{zRQPC2ENz~)#MxF5R{j(wzoFGzUH6L<0= zdk^~eCRq?bUL?~Fwq)0YWHi_lM;Y#}fCMBdAhsEneM8I?4TFW+|B3qg{{(Pk8LH-) zUyDyB7)h^jGn7P*Ji#cvSxp69Jf-Uj#yz7Hky2a#>S=p=-k&W9=*uu@h{o--Qnu>` z;`UKJOVlaFy68>9EoNZ1EGN~qXB=H7YV11d$tRC@T=l)`c@*a;JxS@&Zd+^=os$}B zW}Dml?#iqAd<;ml9(XDV=1e#khRYw73L?`qG^cB#zH3)&QtGPPY|cpy^H?TzFr5*l z+v~BTL#Eq_rtLGd-EtFkooc6!gOq4(E;>ppq!bOXvYF3`0Qav{6gAN-OjKLEMJt_B z(vn68*Sea@@kV32W-1_q>`1b#+`TCNnhDrFt-$Z!ymmtGpw&yDL}5%HD#Cs^BZVkV z%m_?j_e#zFH!`CL`!IgWeWwtp|M*I@`V63_^~vqstq#?S(H-`dC?|DuP~uvoJBHMD zudcdHd?R8v!F783><1hzvjV*8-BW`*08WaJjr$*A_Yf4dz~!hadf2DGkF7ouT>b^% z0ZZ@i9yR)Y`)vh!=$C;qoA}529kEYFqkHY}{q-BNZz-4Nz5j<( z{nZ~-6z1J0Vw#XY7F+Ee^%e=JOvElQe22Y|Vvu$ZQKPrXkuo^fLlrPpot#J3pY~&sC*WqFZFg#Vnge)XEA!n(Q zC_1Qkb)czs+_H7jQ$hIF#y$n?B1A=s27(|Fd{t7Qhk8Fk3%@GpbDtisbWfg<1=ZoV zOX{l8p#h;29CG{hXvxpIv_T$V6{Y@(TNwcKnU9ilFAH)pk*N5M?n~I^zu+|27lcb8 zD>G-q$rWjLxYefF7IkK$H9tbpKyFsHj=~gn06B(~%-Q=9n06^-kqMH$>f~O-?Yyrk zQ$wPbL?GCtTV4e8)aU8>2FUd>-QmEm7Iun^+@irT+&+ybP6epD_;*!9wMaa-T*fH| z3r5Oh(c()OL*__*|3iR^EMCX5)jv43G$pM}<1BTkgIcSc)XQ08;in1X`#TrQW4j%^ zDMHbH{^ukpS+OKeFVWfdpsU#&4=Mza&Y2lwn{L*&6F&rrQIbn^KX6y&?YRC>&q{W4 zB(1Ex{m^*n+8z!4SUIum0)c_W8*1t`k4ESb3`P$-QwS+RX%&8kGSHT695}Mh1-#FSdx?FIsNfnl{$`QI+W;6BmF$*^b52KT-aM^>{RbWu&;P3Gr= zngx?&+CG%P9X5Y>nOTTY+(FDy^LzLh)rH+2Ncnyx<^#+>7s{aCt&T@i` zy+$WZg>_Lcd#?`?qo~4~HKP5%x?#kdck$S^3v&(eA^An3;ihZYrF+(;8(+51itfI! zaj2~wVAxaZ|Iwj9kPEqBW~&AYoaWtHVOa_7InZ@4k;HCi%tL@#2v*44&p21ahb+M& zVP_Uu{Fh_@GuQL~?2|*DWJoKcie%!X$!sW^>Di#C^D1dzx95WQ)I45kVHye?tCsbj zu|P*h%?ljsaqqqwI;|X|k2EagMXFMf5iWy|##h)81nDGTCab51EBwX2o0las3iQvwXQZU4Pu3 z)JC_?i?VIxiR|o)RDU`_$?OgS*Uqqk9Aw$7mQJ?R9p!)YK-rA?U^CFegh7|~(~Y%v z{l}ABr~0MXry86`H9_UM>?+j)qtY-Zk(VYT0X{ z&zy5#u4Wv)1MAze&1=y9iNW3I-Qik~ft;?>4Ft{ihqB?FPl8G-!l_geSo>=;rYW_*4{ka{2@(KF~8ylSdxNU7JM=Ea6zgrfVyPh9}9jMdK_ zH&^^{?6uE#Q@1Vl_uZmS3cEi`fw2gOAK=e8m>piNGPI=wda5qnR$ZKNTG}wb27ba~6pHQjp7p^nJTp@jsLX~RZVa7;+ zTeMqMMwFJ)5E;TEE^N1m4p|ht>PneMLp)KNtOzq8<`XjYL7pQ5UBh@n=%D8p?s&y5 zXm-|DzuvB zCE^h=z1Ui=v$NaJwgvP*;bAu;ZyLh&zqB2>kZq%9 zhc`dFMXTLXYP;=At#)=xqm$UqwjMJ429G%9E=0qx-G?f(?Jw4?+S)DMw;u}?))dVY zTDQpjTUB}1LO()&KhmRI0bfpxrBHUBpFMATGAo=FRr2MGhvKP-(!l&rzC6CR)W2ot z)s|oR@e_V991(-T5n)9aFqjM5ibX<@zZV|N-c(2+E_1$F-toS5<|MgEGL~mo@@Mis zojBHK=bu~mpR8zhdpBeyCPmCYj$^rnF&r;sf$yQ?=M9KqNX0GT|vYH;~Q<^ zG~b{{qKP^Zc(mK0nVrd7B(kYaX-JOK0Di49|p8a=|?bIEur|YiPa;nK|y?95}*>y){ zy|~iD!rLrF7Ry{-ZsS&#+bsBd7T>;fGvM>ULyu}qvpF{n-|7nHc=b9IhNwqS6`39u z3EWQ7)?p|FGh8A;m~ho%;vrYx0#9iUi1nlJvo#IaD~^$qTwB)#o%ICrg^l7!`IX?+ z+@ZhMUI8XQJa{(YJ~G4OLZ-jIDCynVjLhhW#~*!mc=zFwjDy#ob0bS8+aAW=LTNi% zP_>^wme?EHjM94I(&knHH@&0MKp=j@5y5JyG`LQUqT}lGDyjg+;Rw6=a9HZ{UQ(z| zx5$|X9DV<(gLv-@sCJ=By9)EWN>N?O=AM77SHM;@bAF|nW`q+Ji9MV7h`cF8-bQAO z!k&>>t|Abvnfup^H%)K)SM8mJ!nd^1J+C<@C)%D+|GRM#H>3J*YqV0TU0cMcZk~sU&6>r2hBo zOLWmR5+h#7^wfy;&=Qt~Kyf7<+ETZr0ew+4+MsPg5X>GzhotU96^w}1pgA_=QceL4 zmIi@6*nK7B1;vHZP_T8~*}FdtjV1*V!MqD69TD@kVh@_yz!H?}JBw;l02>(t0E|Ck zzfjPju9!5+75k1T%saSmFGnsil-(7SW`Pjf;;Esh3@B?nULV0bCYv|fBG-J)eIhc=h^c`yJT6?#oX_ zPPEj0!aVBxMtS5?HDG_-QO?@T@^j_biSL|yo!VjPdM-DVAoq=$^;52lv1- z;%BJpy}KE32wk|COkYpvj18nZXw!$$KTa~i*WHIkh7X()xV?E_;)73u2L_%gTCPpp zQBqpk&^%5Xk=6|y*j-dt9v9bwKVEBp1zz`4NaBIhpZiXeLb@I3{44+)xVj}Gk%rK< z)YnI)?;pJe*%+$Jy%IVWv7CarEud|F*OM^Gf|?46_KaZg3dgLlCRSmFssR!^%b z{a0V~c*eJyxn7erbxo6cSLJKKK>=->;s3BSsdL{Q4-_mNa5f}M9z-m18-|%QPo;#^ zwU=tk7{Yf(v3BY)Ab4m;ra`nFna1N(3}B6^Ch$3)$3W_nN@)|lO;^h7OFwqDK6c&~ z(e{inE%iP;v5{Jo%@$R3qiPa8yO*WSO_%{`4P(M*SS@uK?xKS>^^)awCALXV>rST| zM$ycAZ~-a=z`p^&uL~N2afD-`+n*n({rpenvFSgUM?PQrcKhkmN)jXH&1}#TSwlT_&NWKe@k=|;DsEFfDqyQ za3K+)HXtkM4KN(HFpMj6*p}dl;PhbY68M-e6SjEw8pNN#*!X^DY{*yF;j` zY$_+4z+)hMAK8Xts5zkx8u!vIy{qH0)IEc{Yk^vDcil6Wr5)ZIMssL`Ewq75G+Bvk zsgq2$rwlQmjO1am%}E9!?JofsyAKdJJr@<%S^m^MxyaKR{q&{*{Eh9c%584KjV9k5 zy{k4wuCV)5mBgQ+cJ*&1HCj>_1;EFwzA^7@cD#(9G%MATH2xmD4*)yXA!T zb3gG_pJFMRPx4LU$lFeF?yN0xJp(alk!dO#ODgO0X6m3^=zz%J#&YTg`3SPDI?JS4 zECU}7pKXyGIw-QH6F2{|^}t?AQkkSEzlQviW1Kx6SF(gVnK|Kl@=53*=D_ZKA~>zq zLJ>|^u&TWzdbgVJ78lovdup8w@N|3#Z9m%-?(vGGc4_6(o#V0|)W}suTSuG z>!&$A>orUNIhh(~Ed4}xhp?kgw~7lT|5dsUU`1cIj2`8fIbNtrft)bD2tSZw4E05H zkp)XKr1V}-@jw98n4@OzL3X`tpirrXO&K4pK2%`z##{zol~=(`S7pTN#NsgSLdIWt z+%ZTImC!F-|vI z2%O~gKx0NnD|>>OK)1y2C@+Zl1zwEn#6Go626;x~Jl#A{p#qH+H_X1p z-uj@>D#AX&(H1iS`gHJFy-7v&EKvjeJD;V3Zq1kg#p?F$3*#`fwSb101L zIyt^B`;4%E54$=R1A-TWb9YmlFio*FG5e5u7D`7UVjK;!sbWR%2MVoU6)r51=+P{$ zx(Le1P2*K*Gb*F{Q_qOS?J@?g#VYX^X(k>R42R{b>nr)yt}HCan1iAvK(cV-tnmk% z!aC>#AvhuTE})4^-+|ccK#}*Dfe84&iL1DapszU*=7Os_-(hw$zqe4OLCl#~!`E5q z>H&IOwtHA!J|Fk#aYoB472> zuXF*IaKv|Ak(rq*yDR;_kP=SxdQ;jb?il1~!uhPICEV|ZSBF1p?@4BT|BJe^QruL+j;CyY1!#=jy}80Ay_^$A-nwB?aEb}L+rKCAM?RNH8?~XlZzceHl z$J$pS_+{q03U^9b?EsptDTifH`IteJKGmFhj^3)N7*Mgx+%|EbFs!G&=rqW_itUuuLi_m*_b$5nIO*%C=IB`dwT zKBK3c#s?MEI7=&ZpuyFt6@bAN@wE4$xW$^cm>#Wb+p~|8I^fI6ZqH^)5_~zy?SU^R z?;yX5TKRdU2n#=m!CZhBoyTB;>tOnO{EiL+<0Lp-7`G#C@AEfAPrT`m$%n6wK8aZ3 zod31kmtg~MdyNZE**Oand;_@j$ZZv2XX!G0WP#GJI=8W~mfA8rl9W=i7Ydz# zb#7!~tXe{OJ~3tbt6V6Sm_ykZ>beQQ=m%hYDqJZy<3aAjY(uC$>3srWmAeFyO+w^P52-{-DBUHU~|bTgZ-;K$vD(Tq+7jgu%@s%J%GTCB(=`^1wHwJ!YLn(BrHe6BqjwwXm!0Fy4?ha&=lS!y zoG%ns!_0+UUt4+A#dP+IU)I<@o zT8LB!6M&t$0&pg#{pu5QnywELhE%y@)>qsB#o|1X{hXLSV(z~@pb{Kt=j-omAu$OT;)-q)F%4!$Ad5)*N;#9)#KvgR-124z z?_h3S%|d>gn9{;tfs;A*0=m>vRKkX4p6;kgsQ4I+-WYOfQ=j4}nhuwqFv6p0qB{$@ z5LRq+Hkl_v;hciHa;@ZtGofh-@5x|QO+r}^r|F(nfv|iVj$WTWkdS4#FCBy1^}PAqmxEUZ zb6;@-w)!!IR5FIJ*Yg8;uLiFS=Dp<2+w@~_@d2_CPi@US=RiZy^7yHI2boiqvz~gY zv?`Cp&u@;Kk>@~iRm+ zVzGB|w&sTUN(d4}ah8CK^`yzhnkQXhgs+CtN*7V~cx4w0Z7|hVN%V)G8)x&;xuD5|?|O{ydioBL70qWQ&GXn--6BrZ&BoFBN_|6sV(BJc+2)M8ybPGe zbpP$;V!}}M={|0pEOnmL(n#UZ>!^5JN-rJ&oJh$0k=K4hVLsm#qM*#?3L(c#rrOho z7*IKHJW$^P=EZgvFeRe(*f>FLfmZy(j7v`1dkV<3xclu;%(J~)EQGslGZ&jvDFeS%bbDUAir zXIt6qE{LBSF=)I2k#_HEtp)IPy9@KO<;X>Khhl$;(Oi0}1!(>nfa#bJ^mcTm?mXYO zukwDgjrP>v^*63WjbR~|v0e6dlUw~Y9xS%hTM`l&#Dj!kV1^b{iuQy+n-d!dT zWWmbC6r?+0zIxrD-3H>J&bwtE!G?8%CXrrn6GFhuhrReon&GWu=|tFC>@aN_yrInbL-~m(`Fzl96dbq`)RthYJNso%j<;8G=(EI!D-Wnw?lgk zOBL?ciW808l?cAN!q-9<@hla%eq#_5BhU|JL&;g$B3g{L_Skj(2-3JK)$cOSuL6J; zqkDw%;a5>6oY)=_l*SMPtS^RwW&*P#3)(+)3vJ@qPE>%8X(U2l=3CaB)NzDRrUPQ7-rzVL4E%tvY~y zyaV+5?U^=QT>NE$9jMjGX5i25V~hcbr_+0)o1aS{W6TC4 zmdI}=R1BK`d-^L@ri7SPfaejjEI@H;bWr`PzB)6)<={0V&vyd*k>_~U7KC-CR#i2I zzOiLdKl-rxcYO_Jgw@BjBQFjD+mWZaj&6i&x>iv&ieBB4F`YI_Be^=LGFg|9Iw<6d zDT7_YDw&5ycF{*s6cGdVLz)Q2EdmSw0%MS>cD?f%O8rZ(Q~?f34}xmUmxxsHJ7LLg~D;5*|n+ zVY#jUEXzB~wU;v0neEhg4uNs&I6OO@)s=ZdOJPFjG>W+p#505d74`wFJYlZhpQKdw zZTD>IEPhjV^Iv9R@2WrrNM7Bz<|EC^34btQInz(^Z`u7NxqtO$#!na1x9E1=Pssgy z2N1Zc%Rh&li?54Jj-uZ8&RvvQ%ts_{AAcI&{}B4Hoxq=I@f{|Zte0d7H`xg*#mU0# zagN1?XECeP}M-IGn5#UxXw;sFm1cmtYD}h<$DqV*yQ&vN3GE`feNNWS5@f=I?sgY`EvUB!N&<)_BCoz++5~GSK zkSrb^uu(iwcyLzOm_^@?VUBHhkXj~$=PJli#z%l_ll>eLKSB=u<2k1sHpxTz?Qz#0 zEQu}2KKDljlpjIrqrkqZbBKNU0|cD&Q~bM2ezl4)11y(iUE{r88R_n#^CR#!2Jn zaA92X&#G>9)uAPkyP!Y%Kr$mz>QhJ0#-K>mMFllv(1x?XhcI7N@g=x%_IUD7w!|M7 zl#JtEwETy+zkDYetkt!ys6qn9pM z4{_LgYtapuBX-BJG9XkJCs(Z=S4}Z`s(E>UX z{+m4L7g3qJqkjX<`%T7B4}q@qAcVqBg!dva=-PrnuzvMmXafT9M=S{XJv{B>8VLHA zgy*f1dJht7675H4F<#|DpQKasa{u_LY9T3uvh{bVWmN_=MdBjk+&nIQPcKKV>f_KR z49G_0A(Qne#<2@%hzd1iL73OFHYN`Fg-Fe~!ed`NVAHTlq9|Xn2{d(?lShdM zN8R}gEO?-5C(dbi1*KGYY-?_zQp$WByt^m4(qs zIP~Rql*KG)03;H(fqYioRrl0=^*}w8kJ35O>2clyo=^koj=HPvsr%}IdZ-?Ww&-FV z)h;_S+|*O*DfN_kNyOkLh*^rIPo#?5sV(_I;wXqt9 z?8e3Nc$~3gDv~`=H}YCVPw)uAD z7{@@k6!RX=FAek!Mg>QKrB9qZFL&a&xu_~_u`jCx+IODyjJkC6d@&_&9N8*(Ol7Hp zku*j_=Z~oSBld+$?#49Qml|*hi0gCRju?)#SUOETtbde?_o0a=Nn3ae9DI)UF}oLs zQ=x3od-83ctQ^qZ^t*iP%&-eiM+j#tBb@@^DTcGSCeTBSkT(XDK1lBcPc(iPqR0JYy0ey~pM5sFtNL1V zb9rgpge-8Hij1j^%CJj0c$^CHs_hD`h!cp8eCPf>_1x>{_Z54iB*A?E5$@4lT;7S` z2{ngQDh~wDZ^OXz?h11~mjV~50JxOBiWpiJQUM&+G|vn;HscAg4MGz|&tnSq*sOJ< zwUms~3U?16O`ubJhK$!&(m2vqA1%RxjA)D5@s#w;jDewb8>TG$XP!FltIBMbnGMN8m+blQnN`pfN$jxO!`Wo3`2+DG`)YQI7+PmK^pC@p9<(rYdOpk~QR#(3Xu*io0Xdi}b@*;e{85=cSVN#Fd^` z6bQN0__Uu<0dC6O?v1%q`O<^bLwX@KgI1^l4FUkulQyiA#0p;GQT3gjDhLcIGz7gv zg*ZAoBe|}vPLAAaAe<+dlCIwRw2*)P_b>VW`{wH252YLa&NzEqge3p_C#`J=48(gZ zBxZF5AjXP9)OM|rqd!tkPvw&n+n1)kT-0sA6Ljx!1%y_->DanzJ_2Qm312Ws7ioDF z%W_?$S4SXQ1NV>4S}vo;ERo5%sHON1)68g{lb8|5$-iNDai;epphE4_@OFj^iO9OZ zWE@Ge(%@v_8r|Zx$%qCrhXfC2?UXMVNn*CsKodR0k|W0V52&MZMfL<4gajb1C0QsF zIDv{pLNu9EUe>CP8NF#Z6hfflNJpqdWz(w3CDob?;(F2)EZAQTl@~U$ zHcK{{6Y-43%TbdR=t&~oqC3x%7LsKVIeASbd2fOVv=ptaPf|IztRir)B|wX5`G7^1N}gJ~o3_TS+gs=Kj^ts?XQN8Zx)>ss zB5_xa+b-6*b1sw30F0s(97LImGz3VwVq+~%e=a$r%Av=B$r?J>#E&ZX0lOP_P8^DAoX?2LptT3dZi?{tuy(Z@PP z6N*ahBFY{?uGZ@%!xG4}W|ZI1LanxQs$3uRDr7w2bRU)$ixueOhlC}9fz8XB6=(`fSL+~BTq7?d^;ICm!@RGG1Wmm@9 z<&qX;7+oaHS3_)D5zB7vvbUQixoso?8c;kUf075OY&8)yOaS(?mHUp4_O)r=8x08AZA;w<8Ijdd* z=B6Jg-}n=+hYB+l69c1`n1lBUr+`c=xoLf4=)WI(*s0kXP<0G#-j70S_+JyC6G7Hs zhGL`OqOsQu88k;`txE(Lyp+R*N*}B#m1OX=-s`>C*Wi}ZZyKCIl>ReEeqvLmqwq7u4~(eq{ZM3Bk8b4cpTR@36;rSD6q zrnGIT`oU=dY)iF<8z{W1=~DRtptD_CffaHC*ecAa7= zJM8S|rrIgDTdpr;u4LqZ5L=hoW}}UXH4&|4zdkqWFvR3XTL)d8Sr`QwFB$R`=7R6% zriMddhAPU|WOy0LU6|#t(qrX~S%OV|r_?w=@t`C)d1)w$TP>+=DrqQ|5u#}py|w30 zwtfFe{475`Vpy#!R~m)Gp5&_lur2f4c|5T?(dDwdd7k9wOLp8c2T1A$Cwm;_1M7gZ z)uVX@1qD1gK^2U;X2TI^ebUhMy`OJuu%SV!&ovuRa< zM7mPKTYbb=PjA1zC2p-esrb%2<><@T+ytM6Fee=J6>S~$f}B_EczgHhF97Ien`D!~ zOyCZSP9tMR@ZNE}V;1H?-fiP%LTrt5mWo1zUbJCG%lrQJ$tPO{l0W?TF<@;h$o0PJ zqLH(s(snhIdU~++%XjOyqn$XT6SDuyT#A11sTzL5EU>}};8QIX`|#)~7D zjf)IyJgv3IvqS!(`y%&icjW01$H6SKa4?;h4kifD^3Y$`*Ec@5{V%-aQUKtiUsp~5 z-+v3oEXtP5jZen3v^02Mr2xi@Co%v_?e?wbY=2|9`XVv5hXp3NMfZ^AN_w+KX{|`E zY|(vKSp5_n!9w%8qI^iD@kmt}o2Vz9x|CB&O|vGXG9EY%Z}>n5Z775d;_4k3YYO9x z%_YdJ0=1Ny;`V^$s3xlGk*?p4b{#2wr=wM2jEs%(()xuesp?XN)9F|xY&mGYJx|Y- z+{rN(U7ub7)z7}}(d_Cfx)|wEoMA_C>KR&n!X;(ZH*=d)7O@>~XX}9G4fM-hRAs3s zbzYUvr;K>z1BR8wuR>MEx~f>5ZxnTz+%clcD`Ilh@XWCleDY$X9Bb`Ds0);~adHD< zYx{0Xdx+^Lb;}EO#s+?E!aYuY&GV>e*=5QvSM4^tqe``7XX$0kt?HP@FCCSTZw)#- z?VfaC@nFR}+YexMo{+wSrZPIEUx3G3YtpZ>>80Ge16~ygtm}FUp;o2*%07llqTcIQ zSJl$9#qElr+?EB`U7L4V8$nf~)oUC3@>bLLbM0+>hh}NDPugI{vK>NcuiBog>*fl?C@YZyxYb>|Z`n>cmrlo3x_i9J$G?S`#r0&|W6h}Z( zX1($RmDUXtWLRnn3U6D*U{yK8;Y~M$7U|$!+tcq@TD`Jm9kgyFZg&2eB*&m)xwlj< zJ;B-WgqEXHPu2ONCOjN@sAC-S5704hNJALPP(TJI5W^)p75!FNdQ42(`q8<4-Om|R&WXes-*#MgxGQbgdEEe?$zG` z2u)80prr5zV3d^+SE=a!RJ!yo5WsS_xdDMlo(aXw4>Z2TmWs%&p6bAnVnp#1&F0JS z!mLQ<5~2+gz-4D(Waz`7gCPhKI&V*n6^}!WF|y7%jKRDRk%F{j ze6>DLL=eE(TP9xR$(teSGn>N&s`!I6Ywh}<9@jjN>5lJ7)cz3B_O7+Qc(8lhtmR&7 zzU$$-_;6lpj(yF3er!9}tcMzw<74x&W;zPNO-CZQab0Ve*Xn0#<5DnGXnnbbx^hNc zsfRYL)uwKmyr#}mRB=riOe=gr?sQ$_lB(TKGFzxJ*nw1MfhD>SES74BB$9;k41r4G zt8P3|#^w274$r!hTQ;u(D<(178iSP4i4!!s3RLQvf+X@Zg)}7*$F+)-mleKjs+X6Q zfN`iu*it7jrF@`EcY{k&Q;-NEis4ScirC195|IPiARCekh9HwcN|6);&fGYVl7ZGT z((&MQOk%teiG|>_gtgT8wUqeHl98YkMN<-=qUeHSj{b9}9j`t5wMyZxpzFJwPWx&f z9{1Ga#P4Z8(S(lnNcode{color:inherit}kbd{padding:.1875rem .375rem;font-size:.875em;color:var(--bs-body-bg);background-color:var(--bs-body-color);border-radius:.25rem}kbd kbd{padding:0;font-size:1em}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-secondary-color);text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role="button"]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]:not([type="date"]):not([type="datetime-local"]):not([type="month"]):not([type="week"]):not([type="time"])::-webkit-calendar-picker-indicator{display:none !important}button,[type="button"],[type="reset"],[type="submit"]{-webkit-appearance:button}button:not(:disabled),[type="button"]:not(:disabled),[type="reset"]:not(:disabled),[type="submit"]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + .3vw);line-height:inherit}@media (min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type="search"]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:.875em;color:#6c757d}.blockquote-footer::before{content:"\2014\00A0"}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:var(--bs-body-bg);border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius);max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:.875em;color:var(--bs-secondary-color)}.container,.container-fluid,.container-xxl,.container-xl,.container-lg,.container-md,.container-sm{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;width:100%;padding-right:calc(var(--bs-gutter-x) * .5);padding-left:calc(var(--bs-gutter-x) * .5);margin-right:auto;margin-left:auto}@media (min-width: 576px){.container-sm,.container{max-width:540px}}@media (min-width: 768px){.container-md,.container-sm,.container{max-width:720px}}@media (min-width: 992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media (min-width: 1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1140px}}@media (min-width: 1400px){.container-xxl,.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1320px}}:root{--bs-breakpoint-xs: 0;--bs-breakpoint-sm: 576px;--bs-breakpoint-md: 768px;--bs-breakpoint-lg: 992px;--bs-breakpoint-xl: 1200px;--bs-breakpoint-xxl: 1400px}.row{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;margin-top:calc(-1 * var(--bs-gutter-y));margin-right:calc(-.5 * var(--bs-gutter-x));margin-left:calc(-.5 * var(--bs-gutter-x))}.row>*{flex-shrink:0;-webkit-flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--bs-gutter-x) * .5);padding-left:calc(var(--bs-gutter-x) * .5);margin-top:var(--bs-gutter-y)}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media (min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media (min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media (min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media (min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media (min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.col{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-1{margin-left:8.33333%}.offset-2{margin-left:16.66667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333%}.offset-5{margin-left:41.66667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333%}.offset-8{margin-left:66.66667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333%}.offset-11{margin-left:91.66667%}.g-0,.gx-0{--bs-gutter-x: 0}.g-0,.gy-0{--bs-gutter-y: 0}.g-1,.gx-1{--bs-gutter-x: .25rem}.g-1,.gy-1{--bs-gutter-y: .25rem}.g-2,.gx-2{--bs-gutter-x: .5rem}.g-2,.gy-2{--bs-gutter-y: .5rem}.g-3,.gx-3{--bs-gutter-x: 1rem}.g-3,.gy-3{--bs-gutter-y: 1rem}.g-4,.gx-4{--bs-gutter-x: 1.5rem}.g-4,.gy-4{--bs-gutter-y: 1.5rem}.g-5,.gx-5{--bs-gutter-x: 3rem}.g-5,.gy-5{--bs-gutter-y: 3rem}@media (min-width: 576px){.col-sm{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-sm-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-sm-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-sm-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-sm-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-sm-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-sm-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-sm-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-sm-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-sm-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-sm-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-sm-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-sm-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-sm-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-sm-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-sm-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-sm-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-sm-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-sm-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-sm-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-sm-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333%}.offset-sm-2{margin-left:16.66667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333%}.offset-sm-5{margin-left:41.66667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333%}.offset-sm-8{margin-left:66.66667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333%}.offset-sm-11{margin-left:91.66667%}.g-sm-0,.gx-sm-0{--bs-gutter-x: 0}.g-sm-0,.gy-sm-0{--bs-gutter-y: 0}.g-sm-1,.gx-sm-1{--bs-gutter-x: .25rem}.g-sm-1,.gy-sm-1{--bs-gutter-y: .25rem}.g-sm-2,.gx-sm-2{--bs-gutter-x: .5rem}.g-sm-2,.gy-sm-2{--bs-gutter-y: .5rem}.g-sm-3,.gx-sm-3{--bs-gutter-x: 1rem}.g-sm-3,.gy-sm-3{--bs-gutter-y: 1rem}.g-sm-4,.gx-sm-4{--bs-gutter-x: 1.5rem}.g-sm-4,.gy-sm-4{--bs-gutter-y: 1.5rem}.g-sm-5,.gx-sm-5{--bs-gutter-x: 3rem}.g-sm-5,.gy-sm-5{--bs-gutter-y: 3rem}}@media (min-width: 768px){.col-md{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-md-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-md-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-md-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-md-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-md-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-md-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-md-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-md-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-md-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-md-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-md-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-md-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-md-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-md-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-md-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-md-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-md-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-md-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-md-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-md-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333%}.offset-md-2{margin-left:16.66667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333%}.offset-md-5{margin-left:41.66667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333%}.offset-md-8{margin-left:66.66667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333%}.offset-md-11{margin-left:91.66667%}.g-md-0,.gx-md-0{--bs-gutter-x: 0}.g-md-0,.gy-md-0{--bs-gutter-y: 0}.g-md-1,.gx-md-1{--bs-gutter-x: .25rem}.g-md-1,.gy-md-1{--bs-gutter-y: .25rem}.g-md-2,.gx-md-2{--bs-gutter-x: .5rem}.g-md-2,.gy-md-2{--bs-gutter-y: .5rem}.g-md-3,.gx-md-3{--bs-gutter-x: 1rem}.g-md-3,.gy-md-3{--bs-gutter-y: 1rem}.g-md-4,.gx-md-4{--bs-gutter-x: 1.5rem}.g-md-4,.gy-md-4{--bs-gutter-y: 1.5rem}.g-md-5,.gx-md-5{--bs-gutter-x: 3rem}.g-md-5,.gy-md-5{--bs-gutter-y: 3rem}}@media (min-width: 992px){.col-lg{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-lg-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-lg-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-lg-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-lg-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-lg-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-lg-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-lg-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-lg-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-lg-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-lg-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-lg-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-lg-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-lg-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-lg-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-lg-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-lg-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-lg-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-lg-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-lg-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-lg-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333%}.offset-lg-2{margin-left:16.66667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.33333%}.offset-lg-5{margin-left:41.66667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.33333%}.offset-lg-8{margin-left:66.66667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333%}.offset-lg-11{margin-left:91.66667%}.g-lg-0,.gx-lg-0{--bs-gutter-x: 0}.g-lg-0,.gy-lg-0{--bs-gutter-y: 0}.g-lg-1,.gx-lg-1{--bs-gutter-x: .25rem}.g-lg-1,.gy-lg-1{--bs-gutter-y: .25rem}.g-lg-2,.gx-lg-2{--bs-gutter-x: .5rem}.g-lg-2,.gy-lg-2{--bs-gutter-y: .5rem}.g-lg-3,.gx-lg-3{--bs-gutter-x: 1rem}.g-lg-3,.gy-lg-3{--bs-gutter-y: 1rem}.g-lg-4,.gx-lg-4{--bs-gutter-x: 1.5rem}.g-lg-4,.gy-lg-4{--bs-gutter-y: 1.5rem}.g-lg-5,.gx-lg-5{--bs-gutter-x: 3rem}.g-lg-5,.gy-lg-5{--bs-gutter-y: 3rem}}@media (min-width: 1200px){.col-xl{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-xl-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-xl-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-xl-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-xl-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-xl-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-xl-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-xl-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xl-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-xl-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-xl-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xl-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-xl-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-xl-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-xl-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-xl-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-xl-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-xl-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-xl-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-xl-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-xl-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333%}.offset-xl-2{margin-left:16.66667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333%}.offset-xl-5{margin-left:41.66667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333%}.offset-xl-8{margin-left:66.66667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333%}.offset-xl-11{margin-left:91.66667%}.g-xl-0,.gx-xl-0{--bs-gutter-x: 0}.g-xl-0,.gy-xl-0{--bs-gutter-y: 0}.g-xl-1,.gx-xl-1{--bs-gutter-x: .25rem}.g-xl-1,.gy-xl-1{--bs-gutter-y: .25rem}.g-xl-2,.gx-xl-2{--bs-gutter-x: .5rem}.g-xl-2,.gy-xl-2{--bs-gutter-y: .5rem}.g-xl-3,.gx-xl-3{--bs-gutter-x: 1rem}.g-xl-3,.gy-xl-3{--bs-gutter-y: 1rem}.g-xl-4,.gx-xl-4{--bs-gutter-x: 1.5rem}.g-xl-4,.gy-xl-4{--bs-gutter-y: 1.5rem}.g-xl-5,.gx-xl-5{--bs-gutter-x: 3rem}.g-xl-5,.gy-xl-5{--bs-gutter-y: 3rem}}@media (min-width: 1400px){.col-xxl{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-xxl-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-xxl-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-xxl-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-xxl-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-xxl-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-xxl-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-xxl-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xxl-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-xxl-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-xxl-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xxl-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-xxl-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-xxl-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-xxl-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-xxl-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-xxl-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-xxl-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-xxl-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-xxl-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-xxl-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-xxl-0{margin-left:0}.offset-xxl-1{margin-left:8.33333%}.offset-xxl-2{margin-left:16.66667%}.offset-xxl-3{margin-left:25%}.offset-xxl-4{margin-left:33.33333%}.offset-xxl-5{margin-left:41.66667%}.offset-xxl-6{margin-left:50%}.offset-xxl-7{margin-left:58.33333%}.offset-xxl-8{margin-left:66.66667%}.offset-xxl-9{margin-left:75%}.offset-xxl-10{margin-left:83.33333%}.offset-xxl-11{margin-left:91.66667%}.g-xxl-0,.gx-xxl-0{--bs-gutter-x: 0}.g-xxl-0,.gy-xxl-0{--bs-gutter-y: 0}.g-xxl-1,.gx-xxl-1{--bs-gutter-x: .25rem}.g-xxl-1,.gy-xxl-1{--bs-gutter-y: .25rem}.g-xxl-2,.gx-xxl-2{--bs-gutter-x: .5rem}.g-xxl-2,.gy-xxl-2{--bs-gutter-y: .5rem}.g-xxl-3,.gx-xxl-3{--bs-gutter-x: 1rem}.g-xxl-3,.gy-xxl-3{--bs-gutter-y: 1rem}.g-xxl-4,.gx-xxl-4{--bs-gutter-x: 1.5rem}.g-xxl-4,.gy-xxl-4{--bs-gutter-y: 1.5rem}.g-xxl-5,.gx-xxl-5{--bs-gutter-x: 3rem}.g-xxl-5,.gy-xxl-5{--bs-gutter-y: 3rem}}.table{--bs-table-color-type: initial;--bs-table-bg-type: initial;--bs-table-color-state: initial;--bs-table-bg-state: initial;--bs-table-color: var(--bs-body-color);--bs-table-bg: var(--bs-body-bg);--bs-table-border-color: var(--bs-border-color);--bs-table-accent-bg: rgba(0,0,0,0);--bs-table-striped-color: var(--bs-body-color);--bs-table-striped-bg: rgba(0,0,0,0.05);--bs-table-active-color: var(--bs-body-color);--bs-table-active-bg: rgba(0,0,0,0.1);--bs-table-hover-color: var(--bs-body-color);--bs-table-hover-bg: rgba(0,0,0,0.075);width:100%;margin-bottom:1rem;vertical-align:top;border-color:var(--bs-table-border-color)}.table>:not(caption)>*>*{padding:.5rem .5rem;color:var(--bs-table-color-state, var(--bs-table-color-type, var(--bs-table-color)));background-color:var(--bs-table-bg);border-bottom-width:var(--bs-border-width);box-shadow:inset 0 0 0 9999px var(--bs-table-bg-state, var(--bs-table-bg-type, var(--bs-table-accent-bg)))}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table-group-divider{border-top:calc(var(--bs-border-width) * 2) solid currentcolor}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:var(--bs-border-width) 0}.table-bordered>:not(caption)>*>*{border-width:0 var(--bs-border-width)}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-striped-columns>:not(caption)>tr>:nth-child(even){--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-active{--bs-table-color-state: var(--bs-table-active-color);--bs-table-bg-state: var(--bs-table-active-bg)}.table-hover>tbody>tr:hover>*{--bs-table-color-state: var(--bs-table-hover-color);--bs-table-bg-state: var(--bs-table-hover-bg)}.table-primary{--bs-table-color: #000;--bs-table-bg: #cfe2ff;--bs-table-border-color: #bacbe6;--bs-table-striped-bg: #c5d7f2;--bs-table-striped-color: #000;--bs-table-active-bg: #bacbe6;--bs-table-active-color: #000;--bs-table-hover-bg: #bfd1ec;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-secondary{--bs-table-color: #000;--bs-table-bg: #e2e3e5;--bs-table-border-color: #cbccce;--bs-table-striped-bg: #d7d8da;--bs-table-striped-color: #000;--bs-table-active-bg: #cbccce;--bs-table-active-color: #000;--bs-table-hover-bg: #d1d2d4;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-success{--bs-table-color: #000;--bs-table-bg: #d1e7dd;--bs-table-border-color: #bcd0c7;--bs-table-striped-bg: #c7dbd2;--bs-table-striped-color: #000;--bs-table-active-bg: #bcd0c7;--bs-table-active-color: #000;--bs-table-hover-bg: #c1d6cc;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-info{--bs-table-color: #000;--bs-table-bg: #cff4fc;--bs-table-border-color: #badce3;--bs-table-striped-bg: #c5e8ef;--bs-table-striped-color: #000;--bs-table-active-bg: #badce3;--bs-table-active-color: #000;--bs-table-hover-bg: #bfe2e9;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-warning{--bs-table-color: #000;--bs-table-bg: #fff3cd;--bs-table-border-color: #e6dbb9;--bs-table-striped-bg: #f2e7c3;--bs-table-striped-color: #000;--bs-table-active-bg: #e6dbb9;--bs-table-active-color: #000;--bs-table-hover-bg: #ece1be;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-danger{--bs-table-color: #000;--bs-table-bg: #f8d7da;--bs-table-border-color: #dfc2c4;--bs-table-striped-bg: #eccccf;--bs-table-striped-color: #000;--bs-table-active-bg: #dfc2c4;--bs-table-active-color: #000;--bs-table-hover-bg: #e5c7ca;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-light{--bs-table-color: #000;--bs-table-bg: #f8f9fa;--bs-table-border-color: #dfe0e1;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-dark{--bs-table-color: #fff;--bs-table-bg: #212529;--bs-table-border-color: #373b3e;--bs-table-striped-bg: #2c3034;--bs-table-striped-color: #fff;--bs-table-active-bg: #373b3e;--bs-table-active-color: #fff;--bs-table-hover-bg: #323539;--bs-table-hover-color: #fff;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media (max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(.375rem + var(--bs-border-width));padding-bottom:calc(.375rem + var(--bs-border-width));margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + var(--bs-border-width));padding-bottom:calc(.5rem + var(--bs-border-width));font-size:1.25rem}.col-form-label-sm{padding-top:calc(.25rem + var(--bs-border-width));padding-bottom:calc(.25rem + var(--bs-border-width));font-size:.875rem}.form-text{margin-top:.25rem;font-size:.875em;color:var(--bs-secondary-color)}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:var(--bs-body-color);appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-body-bg);background-clip:padding-box;border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius);transition:border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type="file"]{overflow:hidden}.form-control[type="file"]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:var(--bs-body-color);background-color:var(--bs-body-bg);border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.form-control::-webkit-date-and-time-value{min-width:85px;height:1.5em;margin:0}.form-control::-webkit-datetime-edit{display:block;padding:0}.form-control::placeholder{color:var(--bs-secondary-color);opacity:1}.form-control:disabled{background-color:var(--bs-secondary-bg);opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-.375rem -.75rem;margin-inline-end:.75rem;color:var(--bs-body-color);background-color:var(--bs-tertiary-bg);pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:var(--bs-border-width);border-radius:0;transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:var(--bs-secondary-bg)}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:var(--bs-body-color);background-color:transparent;border:solid transparent;border-width:var(--bs-border-width) 0}.form-control-plaintext:focus{outline:0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + .5rem + calc(var(--bs-border-width) * 2));padding:.25rem .5rem;font-size:.875rem;border-radius:var(--bs-border-radius-sm)}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-.25rem -.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + calc(var(--bs-border-width) * 2));padding:.5rem 1rem;font-size:1.25rem;border-radius:var(--bs-border-radius-lg)}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + .75rem + calc(var(--bs-border-width) * 2))}textarea.form-control-sm{min-height:calc(1.5em + .5rem + calc(var(--bs-border-width) * 2))}textarea.form-control-lg{min-height:calc(1.5em + 1rem + calc(var(--bs-border-width) * 2))}.form-control-color{width:3rem;height:calc(1.5em + .75rem + calc(var(--bs-border-width) * 2));padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{border:0 !important;border-radius:var(--bs-border-radius)}.form-control-color::-webkit-color-swatch{border:0 !important;border-radius:var(--bs-border-radius)}.form-control-color.form-control-sm{height:calc(1.5em + .5rem + calc(var(--bs-border-width) * 2))}.form-control-color.form-control-lg{height:calc(1.5em + 1rem + calc(var(--bs-border-width) * 2))}.form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e");display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:var(--bs-body-color);appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-body-bg);background-image:var(--bs-form-select-bg-img),var(--bs-form-select-bg-icon, none);background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius);transition:border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:var(--bs-secondary-bg)}.form-select:-moz-focusring{color:transparent;text-shadow:0 0 0 var(--bs-body-color)}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem;border-radius:var(--bs-border-radius-sm)}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem;border-radius:var(--bs-border-radius-lg)}[data-bs-theme="dark"] .form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23dee2e6' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e")}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-reverse{padding-right:0;padding-left:0;text-align:right}.form-check-reverse .form-check-input{float:right;margin-right:0;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{--bs-form-check-bg: var(--bs-body-bg);width:1em;height:1em;margin-top:.25em;vertical-align:top;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-form-check-bg);background-image:var(--bs-form-check-bg-image);background-repeat:no-repeat;background-position:center;background-size:contain;border:var(--bs-border-width) solid var(--bs-border-color);print-color-adjust:exact}.form-check-input[type="checkbox"],.shiny-input-container .checkbox input[type="checkbox"],.shiny-input-container .checkbox-inline input[type="checkbox"],.shiny-input-container .radio input[type="checkbox"],.shiny-input-container .radio-inline input[type="checkbox"]{border-radius:.25em}.form-check-input[type="radio"],.shiny-input-container .checkbox input[type="radio"],.shiny-input-container .checkbox-inline input[type="radio"],.shiny-input-container .radio input[type="radio"],.shiny-input-container .radio-inline input[type="radio"]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#0d6efd;border-color:#0d6efd}.form-check-input:checked[type="checkbox"],.shiny-input-container .checkbox input:checked[type="checkbox"],.shiny-input-container .checkbox-inline input:checked[type="checkbox"],.shiny-input-container .radio input:checked[type="checkbox"],.shiny-input-container .radio-inline input:checked[type="checkbox"]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='m6 10 3 3 6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type="radio"],.shiny-input-container .checkbox input:checked[type="radio"],.shiny-input-container .checkbox-inline input:checked[type="radio"],.shiny-input-container .radio input:checked[type="radio"],.shiny-input-container .radio-inline input:checked[type="radio"]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23fff'/%3e%3c/svg%3e")}.form-check-input[type="checkbox"]:indeterminate,.shiny-input-container .checkbox input[type="checkbox"]:indeterminate,.shiny-input-container .checkbox-inline input[type="checkbox"]:indeterminate,.shiny-input-container .radio input[type="checkbox"]:indeterminate,.shiny-input-container .radio-inline input[type="checkbox"]:indeterminate{background-color:#0d6efd;border-color:#0d6efd;--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{cursor:default;opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280,0,0,0.25%29'/%3e%3c/svg%3e");width:2em;margin-left:-2.5em;background-image:var(--bs-form-switch-bg);background-position:left center;border-radius:2em;transition:background-position 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2386b7fe'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.form-switch.form-check-reverse{padding-right:2.5em;padding-left:0}.form-switch.form-check-reverse .form-check-input{margin-right:-2.5em;margin-left:0}.form-check-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}[data-bs-theme="dark"] .form-switch .form-check-input:not(:checked):not(:focus){--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%28255,255,255,0.25%29'/%3e%3c/svg%3e")}.form-range{width:100%;height:1.5rem;padding:0;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:transparent}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,0.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,0.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#b6d4fe}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:var(--bs-tertiary-bg);border-color:transparent;border-radius:1rem}.form-range::-moz-range-thumb{width:1rem;height:1rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#b6d4fe}.form-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:var(--bs-tertiary-bg);border-color:transparent;border-radius:1rem}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:var(--bs-secondary-color)}.form-range:disabled::-moz-range-thumb{background-color:var(--bs-secondary-color)}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-control-plaintext,.form-floating>.form-select{height:calc(3.5rem + calc(var(--bs-border-width) * 2));min-height:calc(3.5rem + calc(var(--bs-border-width) * 2));line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;z-index:2;height:100%;padding:1rem .75rem;overflow:hidden;text-align:start;text-overflow:ellipsis;white-space:nowrap;pointer-events:none;border:var(--bs-border-width) solid transparent;transform-origin:0 0;transition:opacity 0.1s ease-in-out,transform 0.1s ease-in-out}@media (prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control,.form-floating>.form-control-plaintext{padding:1rem .75rem}.form-floating>.form-control::placeholder,.form-floating>.form-control-plaintext::placeholder{color:transparent}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown),.form-floating>.form-control-plaintext:focus,.form-floating>.form-control-plaintext:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill,.form-floating>.form-control-plaintext:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-control-plaintext~label,.form-floating>.form-select~label{color:rgba(var(--bs-body-color-rgb), .65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:focus~label::after,.form-floating>.form-control:not(:placeholder-shown)~label::after,.form-floating>.form-control-plaintext~label::after,.form-floating>.form-select~label::after{position:absolute;inset:1rem .375rem;z-index:-1;height:1.5em;content:"";background-color:var(--bs-body-bg);border-radius:var(--bs-border-radius)}.form-floating>.form-control:-webkit-autofill~label{color:rgba(var(--bs-body-color-rgb), .65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control-plaintext~label{border-width:var(--bs-border-width) 0}.form-floating>:disabled~label,.form-floating>.form-control:disabled~label{color:#6c757d}.form-floating>:disabled~label::after,.form-floating>.form-control:disabled~label::after{background-color:var(--bs-secondary-bg)}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select,.input-group>.form-floating{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus,.input-group>.form-floating:focus-within{z-index:5}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:5}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:var(--bs-body-color);text-align:center;white-space:nowrap;background-color:var(--bs-tertiary-bg);border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius)}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem;border-radius:var(--bs-border-radius-lg)}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:.875rem;border-radius:var(--bs-border-radius-sm)}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group:not(.has-validation)>:not(:last-child):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group:not(.has-validation)>.dropdown-toggle:nth-last-child(n + 3),.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-control,.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>:nth-last-child(n + 3):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group.has-validation>.dropdown-toggle:nth-last-child(n + 4),.input-group.has-validation>.form-floating:nth-last-child(n + 3)>.form-control,.input-group.has-validation>.form-floating:nth-last-child(n + 3)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:calc(var(--bs-border-width) * -1);border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.form-floating:not(:first-child)>.form-control,.input-group>.form-floating:not(:first-child)>.form-select{border-top-left-radius:0;border-bottom-left-radius:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:.875em;color:var(--bs-form-valid-color)}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;color:#fff;background-color:var(--bs-success);border-radius:var(--bs-border-radius)}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:var(--bs-form-valid-border-color);padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:var(--bs-form-valid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-success-rgb), 0.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:var(--bs-form-valid-border-color)}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:var(--bs-form-valid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-success-rgb), 0.25)}.was-validated .form-control-color:valid,.form-control-color.is-valid{width:calc(3rem + calc(1.5em + .75rem))}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:var(--bs-form-valid-border-color)}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:var(--bs-form-valid-color)}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(var(--bs-success-rgb), 0.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:var(--bs-form-valid-color)}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):valid,.input-group>.form-control:not(:focus).is-valid,.was-validated .input-group>.form-select:not(:focus):valid,.input-group>.form-select:not(:focus).is-valid,.was-validated .input-group>.form-floating:not(:focus-within):valid,.input-group>.form-floating:not(:focus-within).is-valid{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:.875em;color:var(--bs-form-invalid-color)}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;color:#fff;background-color:var(--bs-danger);border-radius:var(--bs-border-radius)}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:var(--bs-form-invalid-border-color);padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:var(--bs-form-invalid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-danger-rgb), 0.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:var(--bs-form-invalid-border-color)}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:var(--bs-form-invalid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-danger-rgb), 0.25)}.was-validated .form-control-color:invalid,.form-control-color.is-invalid{width:calc(3rem + calc(1.5em + .75rem))}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:var(--bs-form-invalid-border-color)}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:var(--bs-form-invalid-color)}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(var(--bs-danger-rgb), 0.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:var(--bs-form-invalid-color)}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):invalid,.input-group>.form-control:not(:focus).is-invalid,.was-validated .input-group>.form-select:not(:focus):invalid,.input-group>.form-select:not(:focus).is-invalid,.was-validated .input-group>.form-floating:not(:focus-within):invalid,.input-group>.form-floating:not(:focus-within).is-invalid{z-index:4}.btn{--bs-btn-padding-x: .75rem;--bs-btn-padding-y: .375rem;--bs-btn-font-family: ;--bs-btn-font-size:1rem;--bs-btn-font-weight: 400;--bs-btn-line-height: 1.5;--bs-btn-color: var(--bs-body-color);--bs-btn-bg: transparent;--bs-btn-border-width: var(--bs-border-width);--bs-btn-border-color: transparent;--bs-btn-border-radius: var(--bs-border-radius);--bs-btn-hover-border-color: transparent;--bs-btn-box-shadow: inset 0 1px 0 rgba(255,255,255,0.15),0 1px 1px rgba(0,0,0,0.075);--bs-btn-disabled-opacity: .65;--bs-btn-focus-box-shadow: 0 0 0 .25rem rgba(var(--bs-btn-focus-shadow-rgb), .5);display:inline-block;padding:var(--bs-btn-padding-y) var(--bs-btn-padding-x);font-family:var(--bs-btn-font-family);font-size:var(--bs-btn-font-size);font-weight:var(--bs-btn-font-weight);line-height:var(--bs-btn-line-height);color:var(--bs-btn-color);text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;border:var(--bs-btn-border-width) solid var(--bs-btn-border-color);border-radius:var(--bs-btn-border-radius);background-color:var(--bs-btn-bg);transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color)}.btn-check+.btn:hover{color:var(--bs-btn-color);background-color:var(--bs-btn-bg);border-color:var(--bs-btn-border-color)}.btn:focus-visible{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:focus-visible+.btn{border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:checked+.btn,:not(.btn-check)+.btn:active,.btn:first-child:active,.btn.active,.btn.show{color:var(--bs-btn-active-color);background-color:var(--bs-btn-active-bg);border-color:var(--bs-btn-active-border-color)}.btn-check:checked+.btn:focus-visible,:not(.btn-check)+.btn:active:focus-visible,.btn:first-child:active:focus-visible,.btn.active:focus-visible,.btn.show:focus-visible{box-shadow:var(--bs-btn-focus-box-shadow)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{color:var(--bs-btn-disabled-color);pointer-events:none;background-color:var(--bs-btn-disabled-bg);border-color:var(--bs-btn-disabled-border-color);opacity:var(--bs-btn-disabled-opacity)}.btn-default{--bs-btn-color: #000;--bs-btn-bg: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #e3e6ea;--bs-btn-hover-border-color: #e1e5e9;--bs-btn-focus-shadow-rgb: 189,192,196;--bs-btn-active-color: #000;--bs-btn-active-bg: #e5e8eb;--bs-btn-active-border-color: #e1e5e9;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #dee2e6;--bs-btn-disabled-border-color: #dee2e6}.btn-primary{--bs-btn-color: #fff;--bs-btn-bg: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #0b5ed7;--bs-btn-hover-border-color: #0a58ca;--bs-btn-focus-shadow-rgb: 49,132,253;--bs-btn-active-color: #fff;--bs-btn-active-bg: #0a58ca;--bs-btn-active-border-color: #0a53be;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #0d6efd;--bs-btn-disabled-border-color: #0d6efd}.btn-secondary{--bs-btn-color: #fff;--bs-btn-bg: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #5c636a;--bs-btn-hover-border-color: #565e64;--bs-btn-focus-shadow-rgb: 130,138,145;--bs-btn-active-color: #fff;--bs-btn-active-bg: #565e64;--bs-btn-active-border-color: #51585e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #6c757d;--bs-btn-disabled-border-color: #6c757d}.btn-success{--bs-btn-color: #fff;--bs-btn-bg: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #157347;--bs-btn-hover-border-color: #146c43;--bs-btn-focus-shadow-rgb: 60,153,110;--bs-btn-active-color: #fff;--bs-btn-active-bg: #146c43;--bs-btn-active-border-color: #13653f;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #198754;--bs-btn-disabled-border-color: #198754}.btn-info{--bs-btn-color: #000;--bs-btn-bg: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #31d2f2;--bs-btn-hover-border-color: #25cff2;--bs-btn-focus-shadow-rgb: 11,172,204;--bs-btn-active-color: #000;--bs-btn-active-bg: #3dd5f3;--bs-btn-active-border-color: #25cff2;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #0dcaf0;--bs-btn-disabled-border-color: #0dcaf0}.btn-warning{--bs-btn-color: #000;--bs-btn-bg: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffca2c;--bs-btn-hover-border-color: #ffc720;--bs-btn-focus-shadow-rgb: 217,164,6;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffcd39;--bs-btn-active-border-color: #ffc720;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #ffc107;--bs-btn-disabled-border-color: #ffc107}.btn-danger{--bs-btn-color: #fff;--bs-btn-bg: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #bb2d3b;--bs-btn-hover-border-color: #b02a37;--bs-btn-focus-shadow-rgb: 225,83,97;--bs-btn-active-color: #fff;--bs-btn-active-bg: #b02a37;--bs-btn-active-border-color: #a52834;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #dc3545;--bs-btn-disabled-border-color: #dc3545}.btn-light{--bs-btn-color: #000;--bs-btn-bg: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #d3d4d5;--bs-btn-hover-border-color: #c6c7c8;--bs-btn-focus-shadow-rgb: 211,212,213;--bs-btn-active-color: #000;--bs-btn-active-bg: #c6c7c8;--bs-btn-active-border-color: #babbbc;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #f8f9fa;--bs-btn-disabled-border-color: #f8f9fa}.btn-dark{--bs-btn-color: #fff;--bs-btn-bg: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #424649;--bs-btn-hover-border-color: #373b3e;--bs-btn-focus-shadow-rgb: 66,70,73;--bs-btn-active-color: #fff;--bs-btn-active-bg: #4d5154;--bs-btn-active-border-color: #373b3e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #212529;--bs-btn-disabled-border-color: #212529}.btn-outline-default{--bs-btn-color: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #dee2e6;--bs-btn-hover-border-color: #dee2e6;--bs-btn-focus-shadow-rgb: 222,226,230;--bs-btn-active-color: #000;--bs-btn-active-bg: #dee2e6;--bs-btn-active-border-color: #dee2e6;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #dee2e6;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dee2e6;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-primary{--bs-btn-color: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #0d6efd;--bs-btn-hover-border-color: #0d6efd;--bs-btn-focus-shadow-rgb: 13,110,253;--bs-btn-active-color: #fff;--bs-btn-active-bg: #0d6efd;--bs-btn-active-border-color: #0d6efd;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #0d6efd;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0d6efd;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-secondary{--bs-btn-color: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #6c757d;--bs-btn-hover-border-color: #6c757d;--bs-btn-focus-shadow-rgb: 108,117,125;--bs-btn-active-color: #fff;--bs-btn-active-bg: #6c757d;--bs-btn-active-border-color: #6c757d;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #6c757d;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-success{--bs-btn-color: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #198754;--bs-btn-hover-border-color: #198754;--bs-btn-focus-shadow-rgb: 25,135,84;--bs-btn-active-color: #fff;--bs-btn-active-bg: #198754;--bs-btn-active-border-color: #198754;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #198754;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #198754;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-info{--bs-btn-color: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #0dcaf0;--bs-btn-hover-border-color: #0dcaf0;--bs-btn-focus-shadow-rgb: 13,202,240;--bs-btn-active-color: #000;--bs-btn-active-bg: #0dcaf0;--bs-btn-active-border-color: #0dcaf0;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #0dcaf0;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0dcaf0;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-warning{--bs-btn-color: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffc107;--bs-btn-hover-border-color: #ffc107;--bs-btn-focus-shadow-rgb: 255,193,7;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffc107;--bs-btn-active-border-color: #ffc107;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #ffc107;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ffc107;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-danger{--bs-btn-color: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #dc3545;--bs-btn-hover-border-color: #dc3545;--bs-btn-focus-shadow-rgb: 220,53,69;--bs-btn-active-color: #fff;--bs-btn-active-bg: #dc3545;--bs-btn-active-border-color: #dc3545;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #dc3545;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dc3545;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-light{--bs-btn-color: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #f8f9fa;--bs-btn-hover-border-color: #f8f9fa;--bs-btn-focus-shadow-rgb: 248,249,250;--bs-btn-active-color: #000;--bs-btn-active-bg: #f8f9fa;--bs-btn-active-border-color: #f8f9fa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #f8f9fa;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #f8f9fa;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-dark{--bs-btn-color: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #212529;--bs-btn-hover-border-color: #212529;--bs-btn-focus-shadow-rgb: 33,37,41;--bs-btn-active-color: #fff;--bs-btn-active-bg: #212529;--bs-btn-active-border-color: #212529;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #212529;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #212529;--bs-btn-bg: transparent;--bs-gradient: none}.btn-link{--bs-btn-font-weight: 400;--bs-btn-color: var(--bs-link-color);--bs-btn-bg: transparent;--bs-btn-border-color: transparent;--bs-btn-hover-color: var(--bs-link-hover-color);--bs-btn-hover-border-color: transparent;--bs-btn-active-color: var(--bs-link-hover-color);--bs-btn-active-border-color: transparent;--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-border-color: transparent;--bs-btn-box-shadow: 0 0 0 #000;--bs-btn-focus-shadow-rgb: 49,132,253;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:focus-visible{color:var(--bs-btn-color)}.btn-link:hover{color:var(--bs-btn-hover-color)}.btn-lg,.btn-group-lg>.btn{--bs-btn-padding-y: .5rem;--bs-btn-padding-x: 1rem;--bs-btn-font-size:1.25rem;--bs-btn-border-radius: var(--bs-border-radius-lg)}.btn-sm,.btn-group-sm>.btn{--bs-btn-padding-y: .25rem;--bs-btn-padding-x: .5rem;--bs-btn-font-size:.875rem;--bs-btn-border-radius: var(--bs-border-radius-sm)}.fade{transition:opacity 0.15s linear}@media (prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height 0.35s ease}@media (prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width 0.35s ease}@media (prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart,.dropup-center,.dropdown-center{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{--bs-dropdown-zindex: 1000;--bs-dropdown-min-width: 10rem;--bs-dropdown-padding-x: 0;--bs-dropdown-padding-y: .5rem;--bs-dropdown-spacer: .125rem;--bs-dropdown-font-size:1rem;--bs-dropdown-color: var(--bs-body-color);--bs-dropdown-bg: var(--bs-body-bg);--bs-dropdown-border-color: var(--bs-border-color-translucent);--bs-dropdown-border-radius: var(--bs-border-radius);--bs-dropdown-border-width: var(--bs-border-width);--bs-dropdown-inner-border-radius: calc(var(--bs-border-radius) - var(--bs-border-width));--bs-dropdown-divider-bg: var(--bs-border-color-translucent);--bs-dropdown-divider-margin-y: .5rem;--bs-dropdown-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15);--bs-dropdown-link-color: var(--bs-body-color);--bs-dropdown-link-hover-color: var(--bs-body-color);--bs-dropdown-link-hover-bg: var(--bs-tertiary-bg);--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: var(--bs-tertiary-color);--bs-dropdown-item-padding-x: 1rem;--bs-dropdown-item-padding-y: .25rem;--bs-dropdown-header-color: #6c757d;--bs-dropdown-header-padding-x: 1rem;--bs-dropdown-header-padding-y: .5rem;position:absolute;z-index:var(--bs-dropdown-zindex);display:none;min-width:var(--bs-dropdown-min-width);padding:var(--bs-dropdown-padding-y) var(--bs-dropdown-padding-x);margin:0;font-size:var(--bs-dropdown-font-size);color:var(--bs-dropdown-color);text-align:left;list-style:none;background-color:var(--bs-dropdown-bg);background-clip:padding-box;border:var(--bs-dropdown-border-width) solid var(--bs-dropdown-border-color);border-radius:var(--bs-dropdown-border-radius)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:var(--bs-dropdown-spacer)}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media (min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:var(--bs-dropdown-spacer)}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:var(--bs-dropdown-spacer)}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:var(--bs-dropdown-spacer)}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:var(--bs-dropdown-divider-margin-y) 0;overflow:hidden;border-top:1px solid var(--bs-dropdown-divider-bg);opacity:1}.dropdown-item{display:block;width:100%;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);clear:both;font-weight:400;color:var(--bs-dropdown-link-color);text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:transparent;border:0;border-radius:var(--bs-dropdown-item-border-radius, 0)}.dropdown-item:hover,.dropdown-item:focus{color:var(--bs-dropdown-link-hover-color);background-color:var(--bs-dropdown-link-hover-bg)}.dropdown-item.active,.dropdown-item:active{color:var(--bs-dropdown-link-active-color);text-decoration:none;background-color:var(--bs-dropdown-link-active-bg)}.dropdown-item.disabled,.dropdown-item:disabled{color:var(--bs-dropdown-link-disabled-color);pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:var(--bs-dropdown-header-padding-y) var(--bs-dropdown-header-padding-x);margin-bottom:0;font-size:.875rem;color:var(--bs-dropdown-header-color);white-space:nowrap}.dropdown-item-text{display:block;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);color:var(--bs-dropdown-link-color)}.dropdown-menu-dark{--bs-dropdown-color: #dee2e6;--bs-dropdown-bg: #343a40;--bs-dropdown-border-color: var(--bs-border-color-translucent);--bs-dropdown-box-shadow: ;--bs-dropdown-link-color: #dee2e6;--bs-dropdown-link-hover-color: #fff;--bs-dropdown-divider-bg: var(--bs-border-color-translucent);--bs-dropdown-link-hover-bg: rgba(255,255,255,0.15);--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: #adb5bd;--bs-dropdown-header-color: #adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group{border-radius:var(--bs-border-radius)}.btn-group>:not(.btn-check:first-child)+.btn,.btn-group>.btn-group:not(:first-child){margin-left:calc(var(--bs-border-width) * -1)}.btn-group>.btn:not(:last-child):not(.dropdown-toggle),.btn-group>.btn.dropdown-toggle-split:first-child,.btn-group>.btn-group:not(:last-child)>.btn{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:nth-child(n + 3),.btn-group>:not(.btn-check)+.btn,.btn-group>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:calc(var(--bs-border-width) * -1)}.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle),.btn-group-vertical>.btn-group:not(:last-child)>.btn{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn~.btn,.btn-group-vertical>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-top-right-radius:0}.nav{--bs-nav-link-padding-x: 1rem;--bs-nav-link-padding-y: .5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-link-color);--bs-nav-link-hover-color: var(--bs-link-hover-color);--bs-nav-link-disabled-color: var(--bs-secondary-color);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:var(--bs-nav-link-padding-y) var(--bs-nav-link-padding-x);font-size:var(--bs-nav-link-font-size);font-weight:var(--bs-nav-link-font-weight);color:var(--bs-nav-link-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background:none;border:0;transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:var(--bs-nav-link-hover-color)}.nav-link:focus-visible{outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.nav-link.disabled,.nav-link:disabled{color:var(--bs-nav-link-disabled-color);pointer-events:none;cursor:default}.nav-tabs{--bs-nav-tabs-border-width: var(--bs-border-width);--bs-nav-tabs-border-color: var(--bs-border-color);--bs-nav-tabs-border-radius: var(--bs-border-radius);--bs-nav-tabs-link-hover-border-color: var(--bs-secondary-bg) var(--bs-secondary-bg) var(--bs-border-color);--bs-nav-tabs-link-active-color: var(--bs-emphasis-color);--bs-nav-tabs-link-active-bg: var(--bs-body-bg);--bs-nav-tabs-link-active-border-color: var(--bs-border-color) var(--bs-border-color) var(--bs-body-bg);border-bottom:var(--bs-nav-tabs-border-width) solid var(--bs-nav-tabs-border-color)}.nav-tabs .nav-link{margin-bottom:calc(-1 * var(--bs-nav-tabs-border-width));border:var(--bs-nav-tabs-border-width) solid transparent;border-top-left-radius:var(--bs-nav-tabs-border-radius);border-top-right-radius:var(--bs-nav-tabs-border-radius)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{isolation:isolate;border-color:var(--bs-nav-tabs-link-hover-border-color)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:var(--bs-nav-tabs-link-active-color);background-color:var(--bs-nav-tabs-link-active-bg);border-color:var(--bs-nav-tabs-link-active-border-color)}.nav-tabs .dropdown-menu{margin-top:calc(-1 * var(--bs-nav-tabs-border-width));border-top-left-radius:0;border-top-right-radius:0}.nav-pills{--bs-nav-pills-border-radius: var(--bs-border-radius);--bs-nav-pills-link-active-color: #fff;--bs-nav-pills-link-active-bg: #0d6efd}.nav-pills .nav-link{border-radius:var(--bs-nav-pills-border-radius)}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:var(--bs-nav-pills-link-active-color);background-color:var(--bs-nav-pills-link-active-bg)}.nav-underline{--bs-nav-underline-gap: 1rem;--bs-nav-underline-border-width: .125rem;--bs-nav-underline-link-active-color: var(--bs-emphasis-color);gap:var(--bs-nav-underline-gap)}.nav-underline .nav-link{padding-right:0;padding-left:0;border-bottom:var(--bs-nav-underline-border-width) solid transparent}.nav-underline .nav-link:hover,.nav-underline .nav-link:focus{border-bottom-color:currentcolor}.nav-underline .nav-link.active,.nav-underline .show>.nav-link{font-weight:700;color:var(--bs-nav-underline-link-active-color);border-bottom-color:currentcolor}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{--bs-navbar-padding-x: 0;--bs-navbar-padding-y: .5rem;--bs-navbar-color: rgba(var(--bs-emphasis-color-rgb), 0.65);--bs-navbar-hover-color: rgba(var(--bs-emphasis-color-rgb), 0.8);--bs-navbar-disabled-color: rgba(var(--bs-emphasis-color-rgb), 0.3);--bs-navbar-active-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-padding-y: .3125rem;--bs-navbar-brand-margin-end: 1rem;--bs-navbar-brand-font-size: 1.25rem;--bs-navbar-brand-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-hover-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-nav-link-padding-x: .5rem;--bs-navbar-toggler-padding-y: .25rem;--bs-navbar-toggler-padding-x: .75rem;--bs-navbar-toggler-font-size: 1.25rem;--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%2833,37,41,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e");--bs-navbar-toggler-border-color: rgba(var(--bs-emphasis-color-rgb), 0.15);--bs-navbar-toggler-border-radius: var(--bs-border-radius);--bs-navbar-toggler-focus-width: .25rem;--bs-navbar-toggler-transition: box-shadow 0.15s ease-in-out;position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-navbar-padding-y) var(--bs-navbar-padding-x)}.navbar>.container,.navbar>.container-fluid,.navbar>.container-sm,.navbar>.container-md,.navbar>.container-lg,.navbar>.container-xl,.navbar>.container-xxl{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:var(--bs-navbar-brand-padding-y);padding-bottom:var(--bs-navbar-brand-padding-y);margin-right:var(--bs-navbar-brand-margin-end);font-size:var(--bs-navbar-brand-font-size);color:var(--bs-navbar-brand-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{color:var(--bs-navbar-brand-hover-color)}.navbar-nav{--bs-nav-link-padding-x: 0;--bs-nav-link-padding-y: .5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-navbar-color);--bs-nav-link-hover-color: var(--bs-navbar-hover-color);--bs-nav-link-disabled-color: var(--bs-navbar-disabled-color);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link.active,.navbar-nav .nav-link.show{color:var(--bs-navbar-active-color)}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-navbar-color)}.navbar-text a,.navbar-text a:hover,.navbar-text a:focus{color:var(--bs-navbar-active-color)}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:var(--bs-navbar-toggler-padding-y) var(--bs-navbar-toggler-padding-x);font-size:var(--bs-navbar-toggler-font-size);line-height:1;color:var(--bs-navbar-color);background-color:transparent;border:var(--bs-border-width) solid var(--bs-navbar-toggler-border-color);border-radius:var(--bs-navbar-toggler-border-radius);transition:var(--bs-navbar-toggler-transition)}@media (prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 var(--bs-navbar-toggler-focus-width)}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-image:var(--bs-navbar-toggler-icon-bg);background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media (min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-sm .offcanvas .offcanvas-header{display:none}.navbar-expand-sm .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-md .offcanvas .offcanvas-header{display:none}.navbar-expand-md .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-lg .offcanvas .offcanvas-header{display:none}.navbar-expand-lg .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xl .offcanvas .offcanvas-header{display:none}.navbar-expand-xl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xxl .offcanvas .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand .offcanvas .offcanvas-header{display:none}.navbar-expand .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-dark,.navbar[data-bs-theme="dark"]{--bs-navbar-color: rgba(var(--bs-emphasis-color-rgb), 0.55);--bs-navbar-hover-color: rgba(var(--bs-emphasis-color-rgb), 0.75);--bs-navbar-disabled-color: rgba(var(--bs-emphasis-color-rgb), 0.25);--bs-navbar-active-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-hover-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-toggler-border-color: rgba(var(--bs-emphasis-color-rgb), 0.1);--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255,255,255,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}[data-bs-theme="dark"] .navbar-toggler-icon{--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255,255,255,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.card{--bs-card-spacer-y: 1rem;--bs-card-spacer-x: 1rem;--bs-card-title-spacer-y: .5rem;--bs-card-title-color: ;--bs-card-subtitle-color: ;--bs-card-border-width: var(--bs-border-width);--bs-card-border-color: var(--bs-border-color-translucent);--bs-card-border-radius: var(--bs-border-radius);--bs-card-box-shadow: ;--bs-card-inner-border-radius: calc(var(--bs-border-radius) - (var(--bs-border-width)));--bs-card-cap-padding-y: .5rem;--bs-card-cap-padding-x: 1rem;--bs-card-cap-bg: rgba(var(--bs-body-color-rgb), 0.03);--bs-card-cap-color: ;--bs-card-height: ;--bs-card-color: ;--bs-card-bg: var(--bs-body-bg);--bs-card-img-overlay-padding: 1rem;--bs-card-group-margin: .75rem;position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;height:var(--bs-card-height);color:var(--bs-body-color);word-wrap:break-word;background-color:var(--bs-card-bg);background-clip:border-box;border:var(--bs-card-border-width) solid var(--bs-card-border-color);border-radius:var(--bs-card-border-radius)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-card-spacer-y) var(--bs-card-spacer-x);color:var(--bs-card-color)}.card-title{margin-bottom:var(--bs-card-title-spacer-y);color:var(--bs-card-title-color)}.card-subtitle{margin-top:calc(-.5 * var(--bs-card-title-spacer-y));margin-bottom:0;color:var(--bs-card-subtitle-color)}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:var(--bs-card-spacer-x)}.card-header{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);margin-bottom:0;color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-bottom:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-header:first-child{border-radius:var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius) 0 0}.card-footer{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-top:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-footer:last-child{border-radius:0 0 var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius)}.card-header-tabs{margin-right:calc(-.5 * var(--bs-card-cap-padding-x));margin-bottom:calc(-1 * var(--bs-card-cap-padding-y));margin-left:calc(-.5 * var(--bs-card-cap-padding-x));border-bottom:0}.card-header-tabs .nav-link.active{background-color:var(--bs-card-bg);border-bottom-color:var(--bs-card-bg)}.card-header-pills{margin-right:calc(-.5 * var(--bs-card-cap-padding-x));margin-left:calc(-.5 * var(--bs-card-cap-padding-x))}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:var(--bs-card-img-overlay-padding);border-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-img,.card-img-top{border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-bottom{border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card-group>.card{margin-bottom:var(--bs-card-group-margin)}@media (min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-img-top,.card-group>.card:not(:last-child) .card-header{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-img-bottom,.card-group>.card:not(:last-child) .card-footer{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-img-top,.card-group>.card:not(:first-child) .card-header{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-img-bottom,.card-group>.card:not(:first-child) .card-footer{border-bottom-left-radius:0}}.accordion{--bs-accordion-color: var(--bs-body-color);--bs-accordion-bg: var(--bs-body-bg);--bs-accordion-transition: color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out,border-radius 0.15s ease;--bs-accordion-border-color: var(--bs-border-color);--bs-accordion-border-width: var(--bs-border-width);--bs-accordion-border-radius: var(--bs-border-radius);--bs-accordion-inner-border-radius: calc(var(--bs-border-radius) - (var(--bs-border-width)));--bs-accordion-btn-padding-x: 1.25rem;--bs-accordion-btn-padding-y: 1rem;--bs-accordion-btn-color: var(--bs-body-color);--bs-accordion-btn-bg: var(--bs-accordion-bg);--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23212529'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-icon-width: 1.25rem;--bs-accordion-btn-icon-transform: rotate(-180deg);--bs-accordion-btn-icon-transition: transform 0.2s ease-in-out;--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23052c65'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-focus-border-color: #86b7fe;--bs-accordion-btn-focus-box-shadow: 0 0 0 .25rem rgba(13,110,253,0.25);--bs-accordion-body-padding-x: 1.25rem;--bs-accordion-body-padding-y: 1rem;--bs-accordion-active-color: var(--bs-primary-text-emphasis);--bs-accordion-active-bg: var(--bs-primary-bg-subtle)}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:var(--bs-accordion-btn-padding-y) var(--bs-accordion-btn-padding-x);font-size:1rem;color:var(--bs-accordion-btn-color);text-align:left;background-color:var(--bs-accordion-btn-bg);border:0;border-radius:0;overflow-anchor:none;transition:var(--bs-accordion-transition)}@media (prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:var(--bs-accordion-active-color);background-color:var(--bs-accordion-active-bg);box-shadow:inset 0 calc(-1 * var(--bs-accordion-border-width)) 0 var(--bs-accordion-border-color)}.accordion-button:not(.collapsed)::after{background-image:var(--bs-accordion-btn-active-icon);transform:var(--bs-accordion-btn-icon-transform)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:var(--bs-accordion-btn-icon-width);height:var(--bs-accordion-btn-icon-width);margin-left:auto;content:"";background-image:var(--bs-accordion-btn-icon);background-repeat:no-repeat;background-size:var(--bs-accordion-btn-icon-width);transition:var(--bs-accordion-btn-icon-transition)}@media (prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:var(--bs-accordion-btn-focus-border-color);outline:0;box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.accordion-header{margin-bottom:0}.accordion-item{color:var(--bs-accordion-color);background-color:var(--bs-accordion-bg);border:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.accordion-item:first-of-type{border-top-left-radius:var(--bs-accordion-border-radius);border-top-right-radius:var(--bs-accordion-border-radius)}.accordion-item:first-of-type .accordion-button{border-top-left-radius:var(--bs-accordion-inner-border-radius);border-top-right-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:not(:first-of-type){border-top:0}.accordion-item:last-of-type{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-item:last-of-type .accordion-button.collapsed{border-bottom-right-radius:var(--bs-accordion-inner-border-radius);border-bottom-left-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:last-of-type .accordion-collapse{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-body{padding:var(--bs-accordion-body-padding-y) var(--bs-accordion-body-padding-x)}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0;border-radius:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}.accordion-flush .accordion-item .accordion-button,.accordion-flush .accordion-item .accordion-button.collapsed{border-radius:0}[data-bs-theme="dark"] .accordion-button::after{--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.breadcrumb{--bs-breadcrumb-padding-x: 0;--bs-breadcrumb-padding-y: 0;--bs-breadcrumb-margin-bottom: 1rem;--bs-breadcrumb-bg: ;--bs-breadcrumb-border-radius: ;--bs-breadcrumb-divider-color: var(--bs-secondary-color);--bs-breadcrumb-item-padding-x: .5rem;--bs-breadcrumb-item-active-color: var(--bs-secondary-color);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:var(--bs-breadcrumb-padding-y) var(--bs-breadcrumb-padding-x);margin-bottom:var(--bs-breadcrumb-margin-bottom);font-size:var(--bs-breadcrumb-font-size);list-style:none;background-color:var(--bs-breadcrumb-bg);border-radius:var(--bs-breadcrumb-border-radius)}.breadcrumb-item+.breadcrumb-item{padding-left:var(--bs-breadcrumb-item-padding-x)}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:var(--bs-breadcrumb-item-padding-x);color:var(--bs-breadcrumb-divider-color);content:var(--bs-breadcrumb-divider, "/") /* rtl: var(--bs-breadcrumb-divider, "/") */}.breadcrumb-item.active{color:var(--bs-breadcrumb-item-active-color)}.pagination{--bs-pagination-padding-x: .75rem;--bs-pagination-padding-y: .375rem;--bs-pagination-font-size:1rem;--bs-pagination-color: var(--bs-link-color);--bs-pagination-bg: var(--bs-body-bg);--bs-pagination-border-width: var(--bs-border-width);--bs-pagination-border-color: var(--bs-border-color);--bs-pagination-border-radius: var(--bs-border-radius);--bs-pagination-hover-color: var(--bs-link-hover-color);--bs-pagination-hover-bg: var(--bs-tertiary-bg);--bs-pagination-hover-border-color: var(--bs-border-color);--bs-pagination-focus-color: var(--bs-link-hover-color);--bs-pagination-focus-bg: var(--bs-secondary-bg);--bs-pagination-focus-box-shadow: 0 0 0 .25rem rgba(13,110,253,0.25);--bs-pagination-active-color: #fff;--bs-pagination-active-bg: #0d6efd;--bs-pagination-active-border-color: #0d6efd;--bs-pagination-disabled-color: var(--bs-secondary-color);--bs-pagination-disabled-bg: var(--bs-secondary-bg);--bs-pagination-disabled-border-color: var(--bs-border-color);display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;padding:var(--bs-pagination-padding-y) var(--bs-pagination-padding-x);font-size:var(--bs-pagination-font-size);color:var(--bs-pagination-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-pagination-bg);border:var(--bs-pagination-border-width) solid var(--bs-pagination-border-color);transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:var(--bs-pagination-hover-color);background-color:var(--bs-pagination-hover-bg);border-color:var(--bs-pagination-hover-border-color)}.page-link:focus{z-index:3;color:var(--bs-pagination-focus-color);background-color:var(--bs-pagination-focus-bg);outline:0;box-shadow:var(--bs-pagination-focus-box-shadow)}.page-link.active,.active>.page-link{z-index:3;color:var(--bs-pagination-active-color);background-color:var(--bs-pagination-active-bg);border-color:var(--bs-pagination-active-border-color)}.page-link.disabled,.disabled>.page-link{color:var(--bs-pagination-disabled-color);pointer-events:none;background-color:var(--bs-pagination-disabled-bg);border-color:var(--bs-pagination-disabled-border-color)}.page-item:not(:first-child) .page-link{margin-left:calc(var(--bs-border-width) * -1)}.page-item:first-child .page-link{border-top-left-radius:var(--bs-pagination-border-radius);border-bottom-left-radius:var(--bs-pagination-border-radius)}.page-item:last-child .page-link{border-top-right-radius:var(--bs-pagination-border-radius);border-bottom-right-radius:var(--bs-pagination-border-radius)}.pagination-lg{--bs-pagination-padding-x: 1.5rem;--bs-pagination-padding-y: .75rem;--bs-pagination-font-size:1.25rem;--bs-pagination-border-radius: var(--bs-border-radius-lg)}.pagination-sm{--bs-pagination-padding-x: .5rem;--bs-pagination-padding-y: .25rem;--bs-pagination-font-size:.875rem;--bs-pagination-border-radius: var(--bs-border-radius-sm)}.badge{--bs-badge-padding-x: .65em;--bs-badge-padding-y: .35em;--bs-badge-font-size:.75em;--bs-badge-font-weight: 700;--bs-badge-color: #fff;--bs-badge-border-radius: var(--bs-border-radius);display:inline-block;padding:var(--bs-badge-padding-y) var(--bs-badge-padding-x);font-size:var(--bs-badge-font-size);font-weight:var(--bs-badge-font-weight);line-height:1;color:var(--bs-badge-color);text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:var(--bs-badge-border-radius)}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{--bs-alert-bg: transparent;--bs-alert-padding-x: 1rem;--bs-alert-padding-y: 1rem;--bs-alert-margin-bottom: 1rem;--bs-alert-color: inherit;--bs-alert-border-color: transparent;--bs-alert-border: var(--bs-border-width) solid var(--bs-alert-border-color);--bs-alert-border-radius: var(--bs-border-radius);--bs-alert-link-color: inherit;position:relative;padding:var(--bs-alert-padding-y) var(--bs-alert-padding-x);margin-bottom:var(--bs-alert-margin-bottom);color:var(--bs-alert-color);background-color:var(--bs-alert-bg);border:var(--bs-alert-border);border-radius:var(--bs-alert-border-radius)}.alert-heading{color:inherit}.alert-link{font-weight:700;color:var(--bs-alert-link-color)}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{--bs-alert-color: var(--bs-default-text-emphasis);--bs-alert-bg: var(--bs-default-bg-subtle);--bs-alert-border-color: var(--bs-default-border-subtle);--bs-alert-link-color: var(--bs-default-text-emphasis)}.alert-primary{--bs-alert-color: var(--bs-primary-text-emphasis);--bs-alert-bg: var(--bs-primary-bg-subtle);--bs-alert-border-color: var(--bs-primary-border-subtle);--bs-alert-link-color: var(--bs-primary-text-emphasis)}.alert-secondary{--bs-alert-color: var(--bs-secondary-text-emphasis);--bs-alert-bg: var(--bs-secondary-bg-subtle);--bs-alert-border-color: var(--bs-secondary-border-subtle);--bs-alert-link-color: var(--bs-secondary-text-emphasis)}.alert-success{--bs-alert-color: var(--bs-success-text-emphasis);--bs-alert-bg: var(--bs-success-bg-subtle);--bs-alert-border-color: var(--bs-success-border-subtle);--bs-alert-link-color: var(--bs-success-text-emphasis)}.alert-info{--bs-alert-color: var(--bs-info-text-emphasis);--bs-alert-bg: var(--bs-info-bg-subtle);--bs-alert-border-color: var(--bs-info-border-subtle);--bs-alert-link-color: var(--bs-info-text-emphasis)}.alert-warning{--bs-alert-color: var(--bs-warning-text-emphasis);--bs-alert-bg: var(--bs-warning-bg-subtle);--bs-alert-border-color: var(--bs-warning-border-subtle);--bs-alert-link-color: var(--bs-warning-text-emphasis)}.alert-danger{--bs-alert-color: var(--bs-danger-text-emphasis);--bs-alert-bg: var(--bs-danger-bg-subtle);--bs-alert-border-color: var(--bs-danger-border-subtle);--bs-alert-link-color: var(--bs-danger-text-emphasis)}.alert-light{--bs-alert-color: var(--bs-light-text-emphasis);--bs-alert-bg: var(--bs-light-bg-subtle);--bs-alert-border-color: var(--bs-light-border-subtle);--bs-alert-link-color: var(--bs-light-text-emphasis)}.alert-dark{--bs-alert-color: var(--bs-dark-text-emphasis);--bs-alert-bg: var(--bs-dark-bg-subtle);--bs-alert-border-color: var(--bs-dark-border-subtle);--bs-alert-link-color: var(--bs-dark-text-emphasis)}@keyframes progress-bar-stripes{0%{background-position-x:1rem}}.progress,.progress-stacked{--bs-progress-height: 1rem;--bs-progress-font-size:.75rem;--bs-progress-bg: var(--bs-secondary-bg);--bs-progress-border-radius: var(--bs-border-radius);--bs-progress-box-shadow: var(--bs-box-shadow-inset);--bs-progress-bar-color: #fff;--bs-progress-bar-bg: #0d6efd;--bs-progress-bar-transition: width 0.6s ease;display:flex;display:-webkit-flex;height:var(--bs-progress-height);overflow:hidden;font-size:var(--bs-progress-font-size);background-color:var(--bs-progress-bg);border-radius:var(--bs-progress-border-radius)}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:var(--bs-progress-bar-color);text-align:center;white-space:nowrap;background-color:var(--bs-progress-bar-bg);transition:var(--bs-progress-bar-transition)}@media (prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-size:var(--bs-progress-height) var(--bs-progress-height)}.progress-stacked>.progress{overflow:visible}.progress-stacked>.progress>.progress-bar{width:100%}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media (prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{--bs-list-group-color: var(--bs-body-color);--bs-list-group-bg: var(--bs-body-bg);--bs-list-group-border-color: var(--bs-border-color);--bs-list-group-border-width: var(--bs-border-width);--bs-list-group-border-radius: var(--bs-border-radius);--bs-list-group-item-padding-x: 1rem;--bs-list-group-item-padding-y: .5rem;--bs-list-group-action-color: var(--bs-secondary-color);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-tertiary-bg);--bs-list-group-action-active-color: var(--bs-body-color);--bs-list-group-action-active-bg: var(--bs-secondary-bg);--bs-list-group-disabled-color: var(--bs-secondary-color);--bs-list-group-disabled-bg: var(--bs-body-bg);--bs-list-group-active-color: #fff;--bs-list-group-active-bg: #0d6efd;--bs-list-group-active-border-color: #0d6efd;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;border-radius:var(--bs-list-group-border-radius)}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>.list-group-item::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:var(--bs-list-group-action-color);text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:var(--bs-list-group-action-hover-color);text-decoration:none;background-color:var(--bs-list-group-action-hover-bg)}.list-group-item-action:active{color:var(--bs-list-group-action-active-color);background-color:var(--bs-list-group-action-active-bg)}.list-group-item{position:relative;display:block;padding:var(--bs-list-group-item-padding-y) var(--bs-list-group-item-padding-x);color:var(--bs-list-group-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-list-group-bg);border:var(--bs-list-group-border-width) solid var(--bs-list-group-border-color)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:var(--bs-list-group-disabled-color);pointer-events:none;background-color:var(--bs-list-group-disabled-bg)}.list-group-item.active{z-index:2;color:var(--bs-list-group-active-color);background-color:var(--bs-list-group-active-bg);border-color:var(--bs-list-group-active-border-color)}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:calc(-1 * var(--bs-list-group-border-width));border-top-width:var(--bs-list-group-border-width)}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}@media (min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xxl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 var(--bs-list-group-border-width)}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{--bs-list-group-color: var(--bs-default-text-emphasis);--bs-list-group-bg: var(--bs-default-bg-subtle);--bs-list-group-border-color: var(--bs-default-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-default-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-default-border-subtle);--bs-list-group-active-color: var(--bs-default-bg-subtle);--bs-list-group-active-bg: var(--bs-default-text-emphasis);--bs-list-group-active-border-color: var(--bs-default-text-emphasis)}.list-group-item-primary{--bs-list-group-color: var(--bs-primary-text-emphasis);--bs-list-group-bg: var(--bs-primary-bg-subtle);--bs-list-group-border-color: var(--bs-primary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-primary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-primary-border-subtle);--bs-list-group-active-color: var(--bs-primary-bg-subtle);--bs-list-group-active-bg: var(--bs-primary-text-emphasis);--bs-list-group-active-border-color: var(--bs-primary-text-emphasis)}.list-group-item-secondary{--bs-list-group-color: var(--bs-secondary-text-emphasis);--bs-list-group-bg: var(--bs-secondary-bg-subtle);--bs-list-group-border-color: var(--bs-secondary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-secondary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-secondary-border-subtle);--bs-list-group-active-color: var(--bs-secondary-bg-subtle);--bs-list-group-active-bg: var(--bs-secondary-text-emphasis);--bs-list-group-active-border-color: var(--bs-secondary-text-emphasis)}.list-group-item-success{--bs-list-group-color: var(--bs-success-text-emphasis);--bs-list-group-bg: var(--bs-success-bg-subtle);--bs-list-group-border-color: var(--bs-success-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-success-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-success-border-subtle);--bs-list-group-active-color: var(--bs-success-bg-subtle);--bs-list-group-active-bg: var(--bs-success-text-emphasis);--bs-list-group-active-border-color: var(--bs-success-text-emphasis)}.list-group-item-info{--bs-list-group-color: var(--bs-info-text-emphasis);--bs-list-group-bg: var(--bs-info-bg-subtle);--bs-list-group-border-color: var(--bs-info-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-info-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-info-border-subtle);--bs-list-group-active-color: var(--bs-info-bg-subtle);--bs-list-group-active-bg: var(--bs-info-text-emphasis);--bs-list-group-active-border-color: var(--bs-info-text-emphasis)}.list-group-item-warning{--bs-list-group-color: var(--bs-warning-text-emphasis);--bs-list-group-bg: var(--bs-warning-bg-subtle);--bs-list-group-border-color: var(--bs-warning-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-warning-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-warning-border-subtle);--bs-list-group-active-color: var(--bs-warning-bg-subtle);--bs-list-group-active-bg: var(--bs-warning-text-emphasis);--bs-list-group-active-border-color: var(--bs-warning-text-emphasis)}.list-group-item-danger{--bs-list-group-color: var(--bs-danger-text-emphasis);--bs-list-group-bg: var(--bs-danger-bg-subtle);--bs-list-group-border-color: var(--bs-danger-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-danger-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-danger-border-subtle);--bs-list-group-active-color: var(--bs-danger-bg-subtle);--bs-list-group-active-bg: var(--bs-danger-text-emphasis);--bs-list-group-active-border-color: var(--bs-danger-text-emphasis)}.list-group-item-light{--bs-list-group-color: var(--bs-light-text-emphasis);--bs-list-group-bg: var(--bs-light-bg-subtle);--bs-list-group-border-color: var(--bs-light-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-light-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-light-border-subtle);--bs-list-group-active-color: var(--bs-light-bg-subtle);--bs-list-group-active-bg: var(--bs-light-text-emphasis);--bs-list-group-active-border-color: var(--bs-light-text-emphasis)}.list-group-item-dark{--bs-list-group-color: var(--bs-dark-text-emphasis);--bs-list-group-bg: var(--bs-dark-bg-subtle);--bs-list-group-border-color: var(--bs-dark-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-dark-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-dark-border-subtle);--bs-list-group-active-color: var(--bs-dark-bg-subtle);--bs-list-group-active-bg: var(--bs-dark-text-emphasis);--bs-list-group-active-border-color: var(--bs-dark-text-emphasis)}.btn-close{--bs-btn-close-color: #000;--bs-btn-close-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 0 1 1.414 0L8 6.586 14.293.293a1 1 0 1 1 1.414 1.414L9.414 8l6.293 6.293a1 1 0 0 1-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 0 1-1.414-1.414L6.586 8 .293 1.707a1 1 0 0 1 0-1.414z'/%3e%3c/svg%3e");--bs-btn-close-opacity: .5;--bs-btn-close-hover-opacity: .75;--bs-btn-close-focus-shadow: 0 0 0 .25rem rgba(13,110,253,0.25);--bs-btn-close-focus-opacity: 1;--bs-btn-close-disabled-opacity: .25;--bs-btn-close-white-filter: invert(1) grayscale(100%) brightness(200%);box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:var(--bs-btn-close-color);background:transparent var(--bs-btn-close-bg) center/1em auto no-repeat;border:0;border-radius:.375rem;opacity:var(--bs-btn-close-opacity)}.btn-close:hover{color:var(--bs-btn-close-color);text-decoration:none;opacity:var(--bs-btn-close-hover-opacity)}.btn-close:focus{outline:0;box-shadow:var(--bs-btn-close-focus-shadow);opacity:var(--bs-btn-close-focus-opacity)}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:var(--bs-btn-close-disabled-opacity)}.btn-close-white{filter:var(--bs-btn-close-white-filter)}[data-bs-theme="dark"] .btn-close{filter:var(--bs-btn-close-white-filter)}.toast{--bs-toast-zindex: 1090;--bs-toast-padding-x: .75rem;--bs-toast-padding-y: .5rem;--bs-toast-spacing: 1.5rem;--bs-toast-max-width: 350px;--bs-toast-font-size:.875rem;--bs-toast-color: ;--bs-toast-bg: rgba(var(--bs-body-bg-rgb), 0.85);--bs-toast-border-width: var(--bs-border-width);--bs-toast-border-color: var(--bs-border-color-translucent);--bs-toast-border-radius: var(--bs-border-radius);--bs-toast-box-shadow: var(--bs-box-shadow);--bs-toast-header-color: var(--bs-secondary-color);--bs-toast-header-bg: rgba(var(--bs-body-bg-rgb), 0.85);--bs-toast-header-border-color: var(--bs-border-color-translucent);width:var(--bs-toast-max-width);max-width:100%;font-size:var(--bs-toast-font-size);color:var(--bs-toast-color);pointer-events:auto;background-color:var(--bs-toast-bg);background-clip:padding-box;border:var(--bs-toast-border-width) solid var(--bs-toast-border-color);box-shadow:var(--bs-toast-box-shadow);border-radius:var(--bs-toast-border-radius)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{--bs-toast-zindex: 1090;position:absolute;z-index:var(--bs-toast-zindex);width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:var(--bs-toast-spacing)}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:var(--bs-toast-padding-y) var(--bs-toast-padding-x);color:var(--bs-toast-header-color);background-color:var(--bs-toast-header-bg);background-clip:padding-box;border-bottom:var(--bs-toast-border-width) solid var(--bs-toast-header-border-color);border-top-left-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width));border-top-right-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width))}.toast-header .btn-close{margin-right:calc(-.5 * var(--bs-toast-padding-x));margin-left:var(--bs-toast-padding-x)}.toast-body{padding:var(--bs-toast-padding-x);word-wrap:break-word}.modal{--bs-modal-zindex: 1055;--bs-modal-width: 500px;--bs-modal-padding: 1rem;--bs-modal-margin: .5rem;--bs-modal-color: ;--bs-modal-bg: var(--bs-body-bg);--bs-modal-border-color: var(--bs-border-color-translucent);--bs-modal-border-width: var(--bs-border-width);--bs-modal-border-radius: var(--bs-border-radius-lg);--bs-modal-box-shadow: 0 0.125rem 0.25rem rgba(0,0,0,0.075);--bs-modal-inner-border-radius: calc(var(--bs-border-radius-lg) - (var(--bs-border-width)));--bs-modal-header-padding-x: 1rem;--bs-modal-header-padding-y: 1rem;--bs-modal-header-padding: 1rem 1rem;--bs-modal-header-border-color: var(--bs-border-color);--bs-modal-header-border-width: var(--bs-border-width);--bs-modal-title-line-height: 1.5;--bs-modal-footer-gap: .5rem;--bs-modal-footer-bg: ;--bs-modal-footer-border-color: var(--bs-border-color);--bs-modal-footer-border-width: var(--bs-border-width);position:fixed;top:0;left:0;z-index:var(--bs-modal-zindex);display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:var(--bs-modal-margin);pointer-events:none}.modal.fade .modal-dialog{transition:transform 0.3s ease-out;transform:translate(0, -50px)}@media (prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - var(--bs-modal-margin) * 2)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - var(--bs-modal-margin) * 2)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;color:var(--bs-modal-color);pointer-events:auto;background-color:var(--bs-modal-bg);background-clip:padding-box;border:var(--bs-modal-border-width) solid var(--bs-modal-border-color);border-radius:var(--bs-modal-border-radius);outline:0}.modal-backdrop{--bs-backdrop-zindex: 1050;--bs-backdrop-bg: #000;--bs-backdrop-opacity: .5;position:fixed;top:0;left:0;z-index:var(--bs-backdrop-zindex);width:100vw;height:100vh;background-color:var(--bs-backdrop-bg)}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:var(--bs-backdrop-opacity)}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-modal-header-padding);border-bottom:var(--bs-modal-header-border-width) solid var(--bs-modal-header-border-color);border-top-left-radius:var(--bs-modal-inner-border-radius);border-top-right-radius:var(--bs-modal-inner-border-radius)}.modal-header .btn-close{padding:calc(var(--bs-modal-header-padding-y) * .5) calc(var(--bs-modal-header-padding-x) * .5);margin:calc(-.5 * var(--bs-modal-header-padding-y)) calc(-.5 * var(--bs-modal-header-padding-x)) calc(-.5 * var(--bs-modal-header-padding-y)) auto}.modal-title{margin-bottom:0;line-height:var(--bs-modal-title-line-height)}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-modal-padding)}.modal-footer{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:calc(var(--bs-modal-padding) - var(--bs-modal-footer-gap) * .5);background-color:var(--bs-modal-footer-bg);border-top:var(--bs-modal-footer-border-width) solid var(--bs-modal-footer-border-color);border-bottom-right-radius:var(--bs-modal-inner-border-radius);border-bottom-left-radius:var(--bs-modal-inner-border-radius)}.modal-footer>*{margin:calc(var(--bs-modal-footer-gap) * .5)}@media (min-width: 576px){.modal{--bs-modal-margin: 1.75rem;--bs-modal-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15)}.modal-dialog{max-width:var(--bs-modal-width);margin-right:auto;margin-left:auto}.modal-sm{--bs-modal-width: 300px}}@media (min-width: 992px){.modal-lg,.modal-xl{--bs-modal-width: 800px}}@media (min-width: 1200px){.modal-xl{--bs-modal-width: 1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen .modal-header,.modal-fullscreen .modal-footer{border-radius:0}.modal-fullscreen .modal-body{overflow-y:auto}@media (max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-sm-down .modal-header,.modal-fullscreen-sm-down .modal-footer{border-radius:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media (max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-md-down .modal-header,.modal-fullscreen-md-down .modal-footer{border-radius:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media (max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-lg-down .modal-header,.modal-fullscreen-lg-down .modal-footer{border-radius:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media (max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xl-down .modal-header,.modal-fullscreen-xl-down .modal-footer{border-radius:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media (max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xxl-down .modal-header,.modal-fullscreen-xxl-down .modal-footer{border-radius:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{--bs-tooltip-zindex: 1080;--bs-tooltip-max-width: 200px;--bs-tooltip-padding-x: .5rem;--bs-tooltip-padding-y: .25rem;--bs-tooltip-margin: ;--bs-tooltip-font-size:.875rem;--bs-tooltip-color: var(--bs-body-bg);--bs-tooltip-bg: var(--bs-emphasis-color);--bs-tooltip-border-radius: var(--bs-border-radius);--bs-tooltip-opacity: .9;--bs-tooltip-arrow-width: .8rem;--bs-tooltip-arrow-height: .4rem;z-index:var(--bs-tooltip-zindex);display:block;margin:var(--bs-tooltip-margin);font-family:Roboto;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-tooltip-font-size);word-wrap:break-word;opacity:0}.tooltip.show{opacity:var(--bs-tooltip-opacity)}.tooltip .tooltip-arrow{display:block;width:var(--bs-tooltip-arrow-width);height:var(--bs-tooltip-arrow-height)}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="top"] .tooltip-arrow{bottom:calc(-1 * var(--bs-tooltip-arrow-height))}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="top"] .tooltip-arrow::before{top:-1px;border-width:var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width) * .5) 0;border-top-color:var(--bs-tooltip-bg)}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="right"] .tooltip-arrow{left:calc(-1 * var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="right"] .tooltip-arrow::before{right:-1px;border-width:calc(var(--bs-tooltip-arrow-width) * .5) var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width) * .5) 0;border-right-color:var(--bs-tooltip-bg)}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="bottom"] .tooltip-arrow{top:calc(-1 * var(--bs-tooltip-arrow-height))}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="bottom"] .tooltip-arrow::before{bottom:-1px;border-width:0 calc(var(--bs-tooltip-arrow-width) * .5) var(--bs-tooltip-arrow-height);border-bottom-color:var(--bs-tooltip-bg)}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="left"] .tooltip-arrow{right:calc(-1 * var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="left"] .tooltip-arrow::before{left:-1px;border-width:calc(var(--bs-tooltip-arrow-width) * .5) 0 calc(var(--bs-tooltip-arrow-width) * .5) var(--bs-tooltip-arrow-height);border-left-color:var(--bs-tooltip-bg)}.tooltip-inner{max-width:var(--bs-tooltip-max-width);padding:var(--bs-tooltip-padding-y) var(--bs-tooltip-padding-x);color:var(--bs-tooltip-color);text-align:center;background-color:var(--bs-tooltip-bg);border-radius:var(--bs-tooltip-border-radius)}.popover{--bs-popover-zindex: 1070;--bs-popover-max-width: 276px;--bs-popover-font-size:.875rem;--bs-popover-bg: var(--bs-body-bg);--bs-popover-border-width: var(--bs-border-width);--bs-popover-border-color: var(--bs-border-color-translucent);--bs-popover-border-radius: var(--bs-border-radius-lg);--bs-popover-inner-border-radius: calc(var(--bs-border-radius-lg) - var(--bs-border-width));--bs-popover-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15);--bs-popover-header-padding-x: 1rem;--bs-popover-header-padding-y: .5rem;--bs-popover-header-font-size:1rem;--bs-popover-header-color: inherit;--bs-popover-header-bg: var(--bs-secondary-bg);--bs-popover-body-padding-x: 1rem;--bs-popover-body-padding-y: 1rem;--bs-popover-body-color: var(--bs-body-color);--bs-popover-arrow-width: 1rem;--bs-popover-arrow-height: .5rem;--bs-popover-arrow-border: var(--bs-popover-border-color);z-index:var(--bs-popover-zindex);display:block;max-width:var(--bs-popover-max-width);font-family:Roboto;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-popover-font-size);word-wrap:break-word;background-color:var(--bs-popover-bg);background-clip:padding-box;border:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-radius:var(--bs-popover-border-radius)}.popover .popover-arrow{display:block;width:var(--bs-popover-arrow-width);height:var(--bs-popover-arrow-height)}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:transparent;border-style:solid;border-width:0}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow{bottom:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::before,.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::after{border-width:var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width) * .5) 0}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::before{bottom:0;border-top-color:var(--bs-popover-arrow-border)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::after{bottom:var(--bs-popover-border-width);border-top-color:var(--bs-popover-bg)}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow{left:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::before,.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width) * .5) var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width) * .5) 0}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::before{left:0;border-right-color:var(--bs-popover-arrow-border)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::after{left:var(--bs-popover-border-width);border-right-color:var(--bs-popover-bg)}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow{top:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::before,.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::after{border-width:0 calc(var(--bs-popover-arrow-width) * .5) var(--bs-popover-arrow-height)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::before{top:0;border-bottom-color:var(--bs-popover-arrow-border)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::after{top:var(--bs-popover-border-width);border-bottom-color:var(--bs-popover-bg)}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^="bottom"] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:var(--bs-popover-arrow-width);margin-left:calc(-.5 * var(--bs-popover-arrow-width));content:"";border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-header-bg)}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow{right:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::before,.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width) * .5) 0 calc(var(--bs-popover-arrow-width) * .5) var(--bs-popover-arrow-height)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::before{right:0;border-left-color:var(--bs-popover-arrow-border)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::after{right:var(--bs-popover-border-width);border-left-color:var(--bs-popover-bg)}.popover-header{padding:var(--bs-popover-header-padding-y) var(--bs-popover-header-padding-x);margin-bottom:0;font-size:var(--bs-popover-header-font-size);color:var(--bs-popover-header-color);background-color:var(--bs-popover-header-bg);border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-top-left-radius:var(--bs-popover-inner-border-radius);border-top-right-radius:var(--bs-popover-inner-border-radius)}.popover-header:empty{display:none}.popover-body{padding:var(--bs-popover-body-padding-y) var(--bs-popover-body-padding-x);color:var(--bs-popover-body-color)}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media (prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity 0.15s ease}@media (prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity 0.6s ease}@media (prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}[data-bs-theme="dark"] .carousel .carousel-control-prev-icon,[data-bs-theme="dark"] .carousel .carousel-control-next-icon,[data-bs-theme="dark"].carousel .carousel-control-prev-icon,[data-bs-theme="dark"].carousel .carousel-control-next-icon{filter:invert(1) grayscale(100)}[data-bs-theme="dark"] .carousel .carousel-indicators [data-bs-target],[data-bs-theme="dark"].carousel .carousel-indicators [data-bs-target]{background-color:#000}[data-bs-theme="dark"] .carousel .carousel-caption,[data-bs-theme="dark"].carousel .carousel-caption{color:#000}.spinner-grow,.spinner-border{display:inline-block;width:var(--bs-spinner-width);height:var(--bs-spinner-height);vertical-align:var(--bs-spinner-vertical-align);border-radius:50%;animation:var(--bs-spinner-animation-speed) linear infinite var(--bs-spinner-animation-name)}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -.125em;--bs-spinner-border-width: .25em;--bs-spinner-animation-speed: .75s;--bs-spinner-animation-name: spinner-border;border:var(--bs-spinner-border-width) solid currentcolor;border-right-color:transparent}.spinner-border-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem;--bs-spinner-border-width: .2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -.125em;--bs-spinner-animation-speed: .75s;--bs-spinner-animation-name: spinner-grow;background-color:currentcolor;opacity:0}.spinner-grow-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem}@media (prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{--bs-spinner-animation-speed: 1.5s}}.offcanvas,.offcanvas-xxl,.offcanvas-xl,.offcanvas-lg,.offcanvas-md,.offcanvas-sm{--bs-offcanvas-zindex: 1045;--bs-offcanvas-width: 400px;--bs-offcanvas-height: 30vh;--bs-offcanvas-padding-x: 1rem;--bs-offcanvas-padding-y: 1rem;--bs-offcanvas-color: var(--bs-body-color);--bs-offcanvas-bg: var(--bs-body-bg);--bs-offcanvas-border-width: var(--bs-border-width);--bs-offcanvas-border-color: var(--bs-border-color-translucent);--bs-offcanvas-box-shadow: 0 0.125rem 0.25rem rgba(0,0,0,0.075);--bs-offcanvas-transition: transform .3s ease-in-out;--bs-offcanvas-title-line-height: 1.5}@media (max-width: 575.98px){.offcanvas-sm{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 575.98px) and (prefers-reduced-motion: reduce){.offcanvas-sm{transition:none}}@media (max-width: 575.98px){.offcanvas-sm.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-sm.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-sm.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-sm.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-sm.showing,.offcanvas-sm.show:not(.hiding){transform:none}.offcanvas-sm.showing,.offcanvas-sm.hiding,.offcanvas-sm.show{visibility:visible}}@media (min-width: 576px){.offcanvas-sm{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-sm .offcanvas-header{display:none}.offcanvas-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 767.98px){.offcanvas-md{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 767.98px) and (prefers-reduced-motion: reduce){.offcanvas-md{transition:none}}@media (max-width: 767.98px){.offcanvas-md.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-md.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-md.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-md.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-md.showing,.offcanvas-md.show:not(.hiding){transform:none}.offcanvas-md.showing,.offcanvas-md.hiding,.offcanvas-md.show{visibility:visible}}@media (min-width: 768px){.offcanvas-md{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-md .offcanvas-header{display:none}.offcanvas-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 991.98px){.offcanvas-lg{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 991.98px) and (prefers-reduced-motion: reduce){.offcanvas-lg{transition:none}}@media (max-width: 991.98px){.offcanvas-lg.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-lg.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-lg.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-lg.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-lg.showing,.offcanvas-lg.show:not(.hiding){transform:none}.offcanvas-lg.showing,.offcanvas-lg.hiding,.offcanvas-lg.show{visibility:visible}}@media (min-width: 992px){.offcanvas-lg{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-lg .offcanvas-header{display:none}.offcanvas-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 1199.98px){.offcanvas-xl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 1199.98px) and (prefers-reduced-motion: reduce){.offcanvas-xl{transition:none}}@media (max-width: 1199.98px){.offcanvas-xl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xl.showing,.offcanvas-xl.show:not(.hiding){transform:none}.offcanvas-xl.showing,.offcanvas-xl.hiding,.offcanvas-xl.show{visibility:visible}}@media (min-width: 1200px){.offcanvas-xl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-xl .offcanvas-header{display:none}.offcanvas-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 1399.98px){.offcanvas-xxl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 1399.98px) and (prefers-reduced-motion: reduce){.offcanvas-xxl{transition:none}}@media (max-width: 1399.98px){.offcanvas-xxl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xxl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xxl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xxl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xxl.showing,.offcanvas-xxl.show:not(.hiding){transform:none}.offcanvas-xxl.showing,.offcanvas-xxl.hiding,.offcanvas-xxl.show{visibility:visible}}@media (min-width: 1400px){.offcanvas-xxl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-xxl .offcanvas-header{display:none}.offcanvas-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}.offcanvas{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}@media (prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas.showing,.offcanvas.show:not(.hiding){transform:none}.offcanvas.showing,.offcanvas.hiding,.offcanvas.show{visibility:visible}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x)}.offcanvas-header .btn-close{padding:calc(var(--bs-offcanvas-padding-y) * .5) calc(var(--bs-offcanvas-padding-x) * .5);margin-top:calc(-.5 * var(--bs-offcanvas-padding-y));margin-right:calc(-.5 * var(--bs-offcanvas-padding-x));margin-bottom:calc(-.5 * var(--bs-offcanvas-padding-y))}.offcanvas-title{margin-bottom:0;line-height:var(--bs-offcanvas-title-line-height)}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x);overflow-y:auto}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentcolor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0,0,0,0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0,0,0,0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.text-bg-default{color:#000 !important;background-color:RGBA(var(--bs-default-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-primary{color:#fff !important;background-color:RGBA(var(--bs-primary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-secondary{color:#fff !important;background-color:RGBA(var(--bs-secondary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-success{color:#fff !important;background-color:RGBA(var(--bs-success-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-info{color:#000 !important;background-color:RGBA(var(--bs-info-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-warning{color:#000 !important;background-color:RGBA(var(--bs-warning-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-danger{color:#fff !important;background-color:RGBA(var(--bs-danger-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-light{color:#000 !important;background-color:RGBA(var(--bs-light-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-dark{color:#fff !important;background-color:RGBA(var(--bs-dark-rgb), var(--bs-bg-opacity, 1)) !important}.link-default{color:RGBA(var(--bs-default-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-default-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-default:hover,.link-default:focus{color:RGBA(229,232,235, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(229,232,235, var(--bs-link-underline-opacity, 1)) !important}.link-primary{color:RGBA(var(--bs-primary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-primary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-primary:hover,.link-primary:focus{color:RGBA(10,88,202, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(10,88,202, var(--bs-link-underline-opacity, 1)) !important}.link-secondary{color:RGBA(var(--bs-secondary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-secondary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-secondary:hover,.link-secondary:focus{color:RGBA(86,94,100, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(86,94,100, var(--bs-link-underline-opacity, 1)) !important}.link-success{color:RGBA(var(--bs-success-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-success-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-success:hover,.link-success:focus{color:RGBA(20,108,67, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(20,108,67, var(--bs-link-underline-opacity, 1)) !important}.link-info{color:RGBA(var(--bs-info-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-info-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-info:hover,.link-info:focus{color:RGBA(61,213,243, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(61,213,243, var(--bs-link-underline-opacity, 1)) !important}.link-warning{color:RGBA(var(--bs-warning-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-warning-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-warning:hover,.link-warning:focus{color:RGBA(255,205,57, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(255,205,57, var(--bs-link-underline-opacity, 1)) !important}.link-danger{color:RGBA(var(--bs-danger-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-danger-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-danger:hover,.link-danger:focus{color:RGBA(176,42,55, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(176,42,55, var(--bs-link-underline-opacity, 1)) !important}.link-light{color:RGBA(var(--bs-light-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-light-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-light:hover,.link-light:focus{color:RGBA(249,250,251, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(249,250,251, var(--bs-link-underline-opacity, 1)) !important}.link-dark{color:RGBA(var(--bs-dark-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-dark-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-dark:hover,.link-dark:focus{color:RGBA(26,30,33, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(26,30,33, var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis:hover,.link-body-emphasis:focus{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 0.75)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 0.75)) !important}.focus-ring:focus{outline:0;box-shadow:var(--bs-focus-ring-x, 0) var(--bs-focus-ring-y, 0) var(--bs-focus-ring-blur, 0) var(--bs-focus-ring-width) var(--bs-focus-ring-color)}.icon-link{display:inline-flex;gap:.375rem;align-items:center;-webkit-align-items:center;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 0.5));text-underline-offset:.25em;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden}.icon-link>.bi{flex-shrink:0;-webkit-flex-shrink:0;width:1em;height:1em;fill:currentcolor;transition:0.2s ease-in-out transform}@media (prefers-reduced-motion: reduce){.icon-link>.bi{transition:none}}.icon-link-hover:hover>.bi,.icon-link-hover:focus-visible>.bi{transform:var(--bs-icon-link-transform, translate3d(0.25em, 0, 0))}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: calc(3 / 4 * 100%)}.ratio-16x9{--bs-aspect-ratio: calc(9 / 16 * 100%)}.ratio-21x9{--bs-aspect-ratio: calc(9 / 21 * 100%)}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}.sticky-bottom{position:sticky;bottom:0;z-index:1020}@media (min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}.sticky-sm-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}.sticky-md-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}.sticky-lg-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}.sticky-xl-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}.sticky-xxl-bottom{position:sticky;bottom:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.visually-hidden:not(caption),.visually-hidden-focusable:not(:focus):not(:focus-within):not(caption){position:absolute !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:var(--bs-border-width);min-height:1em;background-color:currentcolor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.object-fit-contain{object-fit:contain !important}.object-fit-cover{object-fit:cover !important}.object-fit-fill{object-fit:fill !important}.object-fit-scale{object-fit:scale-down !important}.object-fit-none{object-fit:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.overflow-x-auto{overflow-x:auto !important}.overflow-x-hidden{overflow-x:hidden !important}.overflow-x-visible{overflow-x:visible !important}.overflow-x-scroll{overflow-x:scroll !important}.overflow-y-auto{overflow-y:auto !important}.overflow-y-hidden{overflow-y:hidden !important}.overflow-y-visible{overflow-y:visible !important}.overflow-y-scroll{overflow-y:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-inline-grid{display:inline-grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 0.5rem 1rem rgba(0,0,0,0.15) !important}.shadow-sm{box-shadow:0 0.125rem 0.25rem rgba(0,0,0,0.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,0.175) !important}.shadow-none{box-shadow:none !important}.focus-ring-default{--bs-focus-ring-color: rgba(var(--bs-default-rgb), var(--bs-focus-ring-opacity))}.focus-ring-primary{--bs-focus-ring-color: rgba(var(--bs-primary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-secondary{--bs-focus-ring-color: rgba(var(--bs-secondary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-success{--bs-focus-ring-color: rgba(var(--bs-success-rgb), var(--bs-focus-ring-opacity))}.focus-ring-info{--bs-focus-ring-color: rgba(var(--bs-info-rgb), var(--bs-focus-ring-opacity))}.focus-ring-warning{--bs-focus-ring-color: rgba(var(--bs-warning-rgb), var(--bs-focus-ring-opacity))}.focus-ring-danger{--bs-focus-ring-color: rgba(var(--bs-danger-rgb), var(--bs-focus-ring-opacity))}.focus-ring-light{--bs-focus-ring-color: rgba(var(--bs-light-rgb), var(--bs-focus-ring-opacity))}.focus-ring-dark{--bs-focus-ring-color: rgba(var(--bs-dark-rgb), var(--bs-focus-ring-opacity))}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-0{border:0 !important}.border-top{border-top:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-top-0{border-top:0 !important}.border-end{border-right:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-start-0{border-left:0 !important}.border-default{--bs-border-opacity: 1;border-color:rgba(var(--bs-default-rgb), var(--bs-border-opacity)) !important}.border-primary{--bs-border-opacity: 1;border-color:rgba(var(--bs-primary-rgb), var(--bs-border-opacity)) !important}.border-secondary{--bs-border-opacity: 1;border-color:rgba(var(--bs-secondary-rgb), var(--bs-border-opacity)) !important}.border-success{--bs-border-opacity: 1;border-color:rgba(var(--bs-success-rgb), var(--bs-border-opacity)) !important}.border-info{--bs-border-opacity: 1;border-color:rgba(var(--bs-info-rgb), var(--bs-border-opacity)) !important}.border-warning{--bs-border-opacity: 1;border-color:rgba(var(--bs-warning-rgb), var(--bs-border-opacity)) !important}.border-danger{--bs-border-opacity: 1;border-color:rgba(var(--bs-danger-rgb), var(--bs-border-opacity)) !important}.border-light{--bs-border-opacity: 1;border-color:rgba(var(--bs-light-rgb), var(--bs-border-opacity)) !important}.border-dark{--bs-border-opacity: 1;border-color:rgba(var(--bs-dark-rgb), var(--bs-border-opacity)) !important}.border-black{--bs-border-opacity: 1;border-color:rgba(var(--bs-black-rgb), var(--bs-border-opacity)) !important}.border-white{--bs-border-opacity: 1;border-color:rgba(var(--bs-white-rgb), var(--bs-border-opacity)) !important}.border-primary-subtle{border-color:var(--bs-primary-border-subtle) !important}.border-secondary-subtle{border-color:var(--bs-secondary-border-subtle) !important}.border-success-subtle{border-color:var(--bs-success-border-subtle) !important}.border-info-subtle{border-color:var(--bs-info-border-subtle) !important}.border-warning-subtle{border-color:var(--bs-warning-border-subtle) !important}.border-danger-subtle{border-color:var(--bs-danger-border-subtle) !important}.border-light-subtle{border-color:var(--bs-light-border-subtle) !important}.border-dark-subtle{border-color:var(--bs-dark-border-subtle) !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.border-opacity-10{--bs-border-opacity: .1}.border-opacity-25{--bs-border-opacity: .25}.border-opacity-50{--bs-border-opacity: .5}.border-opacity-75{--bs-border-opacity: .75}.border-opacity-100{--bs-border-opacity: 1}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.row-gap-0{row-gap:0 !important}.row-gap-1{row-gap:.25rem !important}.row-gap-2{row-gap:.5rem !important}.row-gap-3{row-gap:1rem !important}.row-gap-4{row-gap:1.5rem !important}.row-gap-5{row-gap:3rem !important}.column-gap-0{column-gap:0 !important}.column-gap-1{column-gap:.25rem !important}.column-gap-2{column-gap:.5rem !important}.column-gap-3{column-gap:1rem !important}.column-gap-4{column-gap:1.5rem !important}.column-gap-5{column-gap:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.375rem + 1.5vw) !important}.fs-2{font-size:calc(1.325rem + .9vw) !important}.fs-3{font-size:calc(1.3rem + .6vw) !important}.fs-4{font-size:calc(1.275rem + .3vw) !important}.fs-5{font-size:1.25rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-lighter{font-weight:lighter !important}.fw-light{font-weight:300 !important}.fw-normal{font-weight:400 !important}.fw-medium{font-weight:500 !important}.fw-semibold{font-weight:600 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,0.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,0.5) !important}.text-body-secondary{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-body-tertiary{--bs-text-opacity: 1;color:var(--bs-tertiary-color) !important}.text-body-emphasis{--bs-text-opacity: 1;color:var(--bs-emphasis-color) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: .25}.text-opacity-50{--bs-text-opacity: .5}.text-opacity-75{--bs-text-opacity: .75}.text-opacity-100{--bs-text-opacity: 1}.text-primary-emphasis{color:var(--bs-primary-text-emphasis) !important}.text-secondary-emphasis{color:var(--bs-secondary-text-emphasis) !important}.text-success-emphasis{color:var(--bs-success-text-emphasis) !important}.text-info-emphasis{color:var(--bs-info-text-emphasis) !important}.text-warning-emphasis{color:var(--bs-warning-text-emphasis) !important}.text-danger-emphasis{color:var(--bs-danger-text-emphasis) !important}.text-light-emphasis{color:var(--bs-light-text-emphasis) !important}.text-dark-emphasis{color:var(--bs-dark-text-emphasis) !important}.link-opacity-10{--bs-link-opacity: .1}.link-opacity-10-hover:hover{--bs-link-opacity: .1}.link-opacity-25{--bs-link-opacity: .25}.link-opacity-25-hover:hover{--bs-link-opacity: .25}.link-opacity-50{--bs-link-opacity: .5}.link-opacity-50-hover:hover{--bs-link-opacity: .5}.link-opacity-75{--bs-link-opacity: .75}.link-opacity-75-hover:hover{--bs-link-opacity: .75}.link-opacity-100{--bs-link-opacity: 1}.link-opacity-100-hover:hover{--bs-link-opacity: 1}.link-offset-1{text-underline-offset:.125em !important}.link-offset-1-hover:hover{text-underline-offset:.125em !important}.link-offset-2{text-underline-offset:.25em !important}.link-offset-2-hover:hover{text-underline-offset:.25em !important}.link-offset-3{text-underline-offset:.375em !important}.link-offset-3-hover:hover{text-underline-offset:.375em !important}.link-underline-default{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-default-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-primary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-primary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-secondary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-secondary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-success{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-success-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-info{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-info-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-warning{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-warning-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-danger{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-danger-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-light{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-light-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-dark{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-dark-rgb), var(--bs-link-underline-opacity)) !important}.link-underline{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-underline-opacity-0{--bs-link-underline-opacity: 0}.link-underline-opacity-0-hover:hover{--bs-link-underline-opacity: 0}.link-underline-opacity-10{--bs-link-underline-opacity: .1}.link-underline-opacity-10-hover:hover{--bs-link-underline-opacity: .1}.link-underline-opacity-25{--bs-link-underline-opacity: .25}.link-underline-opacity-25-hover:hover{--bs-link-underline-opacity: .25}.link-underline-opacity-50{--bs-link-underline-opacity: .5}.link-underline-opacity-50-hover:hover{--bs-link-underline-opacity: .5}.link-underline-opacity-75{--bs-link-underline-opacity: .75}.link-underline-opacity-75-hover:hover{--bs-link-underline-opacity: .75}.link-underline-opacity-100{--bs-link-underline-opacity: 1}.link-underline-opacity-100-hover:hover{--bs-link-underline-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-body-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-body-tertiary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-tertiary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-opacity-10{--bs-bg-opacity: .1}.bg-opacity-25{--bs-bg-opacity: .25}.bg-opacity-50{--bs-bg-opacity: .5}.bg-opacity-75{--bs-bg-opacity: .75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-primary-subtle{background-color:var(--bs-primary-bg-subtle) !important}.bg-secondary-subtle{background-color:var(--bs-secondary-bg-subtle) !important}.bg-success-subtle{background-color:var(--bs-success-bg-subtle) !important}.bg-info-subtle{background-color:var(--bs-info-bg-subtle) !important}.bg-warning-subtle{background-color:var(--bs-warning-bg-subtle) !important}.bg-danger-subtle{background-color:var(--bs-danger-bg-subtle) !important}.bg-light-subtle{background-color:var(--bs-light-bg-subtle) !important}.bg-dark-subtle{background-color:var(--bs-dark-bg-subtle) !important}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:var(--bs-border-radius) !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:var(--bs-border-radius-sm) !important}.rounded-2{border-radius:var(--bs-border-radius) !important}.rounded-3{border-radius:var(--bs-border-radius-lg) !important}.rounded-4{border-radius:var(--bs-border-radius-xl) !important}.rounded-5{border-radius:var(--bs-border-radius-xxl) !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:var(--bs-border-radius-pill) !important}.rounded-top{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-0{border-top-left-radius:0 !important;border-top-right-radius:0 !important}.rounded-top-1{border-top-left-radius:var(--bs-border-radius-sm) !important;border-top-right-radius:var(--bs-border-radius-sm) !important}.rounded-top-2{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-3{border-top-left-radius:var(--bs-border-radius-lg) !important;border-top-right-radius:var(--bs-border-radius-lg) !important}.rounded-top-4{border-top-left-radius:var(--bs-border-radius-xl) !important;border-top-right-radius:var(--bs-border-radius-xl) !important}.rounded-top-5{border-top-left-radius:var(--bs-border-radius-xxl) !important;border-top-right-radius:var(--bs-border-radius-xxl) !important}.rounded-top-circle{border-top-left-radius:50% !important;border-top-right-radius:50% !important}.rounded-top-pill{border-top-left-radius:var(--bs-border-radius-pill) !important;border-top-right-radius:var(--bs-border-radius-pill) !important}.rounded-end{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-0{border-top-right-radius:0 !important;border-bottom-right-radius:0 !important}.rounded-end-1{border-top-right-radius:var(--bs-border-radius-sm) !important;border-bottom-right-radius:var(--bs-border-radius-sm) !important}.rounded-end-2{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-3{border-top-right-radius:var(--bs-border-radius-lg) !important;border-bottom-right-radius:var(--bs-border-radius-lg) !important}.rounded-end-4{border-top-right-radius:var(--bs-border-radius-xl) !important;border-bottom-right-radius:var(--bs-border-radius-xl) !important}.rounded-end-5{border-top-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-right-radius:var(--bs-border-radius-xxl) !important}.rounded-end-circle{border-top-right-radius:50% !important;border-bottom-right-radius:50% !important}.rounded-end-pill{border-top-right-radius:var(--bs-border-radius-pill) !important;border-bottom-right-radius:var(--bs-border-radius-pill) !important}.rounded-bottom{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-0{border-bottom-right-radius:0 !important;border-bottom-left-radius:0 !important}.rounded-bottom-1{border-bottom-right-radius:var(--bs-border-radius-sm) !important;border-bottom-left-radius:var(--bs-border-radius-sm) !important}.rounded-bottom-2{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-3{border-bottom-right-radius:var(--bs-border-radius-lg) !important;border-bottom-left-radius:var(--bs-border-radius-lg) !important}.rounded-bottom-4{border-bottom-right-radius:var(--bs-border-radius-xl) !important;border-bottom-left-radius:var(--bs-border-radius-xl) !important}.rounded-bottom-5{border-bottom-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-left-radius:var(--bs-border-radius-xxl) !important}.rounded-bottom-circle{border-bottom-right-radius:50% !important;border-bottom-left-radius:50% !important}.rounded-bottom-pill{border-bottom-right-radius:var(--bs-border-radius-pill) !important;border-bottom-left-radius:var(--bs-border-radius-pill) !important}.rounded-start{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-0{border-bottom-left-radius:0 !important;border-top-left-radius:0 !important}.rounded-start-1{border-bottom-left-radius:var(--bs-border-radius-sm) !important;border-top-left-radius:var(--bs-border-radius-sm) !important}.rounded-start-2{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-3{border-bottom-left-radius:var(--bs-border-radius-lg) !important;border-top-left-radius:var(--bs-border-radius-lg) !important}.rounded-start-4{border-bottom-left-radius:var(--bs-border-radius-xl) !important;border-top-left-radius:var(--bs-border-radius-xl) !important}.rounded-start-5{border-bottom-left-radius:var(--bs-border-radius-xxl) !important;border-top-left-radius:var(--bs-border-radius-xxl) !important}.rounded-start-circle{border-bottom-left-radius:50% !important;border-top-left-radius:50% !important}.rounded-start-pill{border-bottom-left-radius:var(--bs-border-radius-pill) !important;border-top-left-radius:var(--bs-border-radius-pill) !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}.z-n1{z-index:-1 !important}.z-0{z-index:0 !important}.z-1{z-index:1 !important}.z-2{z-index:2 !important}.z-3{z-index:3 !important}@media (min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.object-fit-sm-contain{object-fit:contain !important}.object-fit-sm-cover{object-fit:cover !important}.object-fit-sm-fill{object-fit:fill !important}.object-fit-sm-scale{object-fit:scale-down !important}.object-fit-sm-none{object-fit:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-inline-grid{display:inline-grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.row-gap-sm-0{row-gap:0 !important}.row-gap-sm-1{row-gap:.25rem !important}.row-gap-sm-2{row-gap:.5rem !important}.row-gap-sm-3{row-gap:1rem !important}.row-gap-sm-4{row-gap:1.5rem !important}.row-gap-sm-5{row-gap:3rem !important}.column-gap-sm-0{column-gap:0 !important}.column-gap-sm-1{column-gap:.25rem !important}.column-gap-sm-2{column-gap:.5rem !important}.column-gap-sm-3{column-gap:1rem !important}.column-gap-sm-4{column-gap:1.5rem !important}.column-gap-sm-5{column-gap:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media (min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.object-fit-md-contain{object-fit:contain !important}.object-fit-md-cover{object-fit:cover !important}.object-fit-md-fill{object-fit:fill !important}.object-fit-md-scale{object-fit:scale-down !important}.object-fit-md-none{object-fit:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-inline-grid{display:inline-grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.row-gap-md-0{row-gap:0 !important}.row-gap-md-1{row-gap:.25rem !important}.row-gap-md-2{row-gap:.5rem !important}.row-gap-md-3{row-gap:1rem !important}.row-gap-md-4{row-gap:1.5rem !important}.row-gap-md-5{row-gap:3rem !important}.column-gap-md-0{column-gap:0 !important}.column-gap-md-1{column-gap:.25rem !important}.column-gap-md-2{column-gap:.5rem !important}.column-gap-md-3{column-gap:1rem !important}.column-gap-md-4{column-gap:1.5rem !important}.column-gap-md-5{column-gap:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media (min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.object-fit-lg-contain{object-fit:contain !important}.object-fit-lg-cover{object-fit:cover !important}.object-fit-lg-fill{object-fit:fill !important}.object-fit-lg-scale{object-fit:scale-down !important}.object-fit-lg-none{object-fit:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-inline-grid{display:inline-grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.row-gap-lg-0{row-gap:0 !important}.row-gap-lg-1{row-gap:.25rem !important}.row-gap-lg-2{row-gap:.5rem !important}.row-gap-lg-3{row-gap:1rem !important}.row-gap-lg-4{row-gap:1.5rem !important}.row-gap-lg-5{row-gap:3rem !important}.column-gap-lg-0{column-gap:0 !important}.column-gap-lg-1{column-gap:.25rem !important}.column-gap-lg-2{column-gap:.5rem !important}.column-gap-lg-3{column-gap:1rem !important}.column-gap-lg-4{column-gap:1.5rem !important}.column-gap-lg-5{column-gap:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media (min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.object-fit-xl-contain{object-fit:contain !important}.object-fit-xl-cover{object-fit:cover !important}.object-fit-xl-fill{object-fit:fill !important}.object-fit-xl-scale{object-fit:scale-down !important}.object-fit-xl-none{object-fit:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-inline-grid{display:inline-grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.row-gap-xl-0{row-gap:0 !important}.row-gap-xl-1{row-gap:.25rem !important}.row-gap-xl-2{row-gap:.5rem !important}.row-gap-xl-3{row-gap:1rem !important}.row-gap-xl-4{row-gap:1.5rem !important}.row-gap-xl-5{row-gap:3rem !important}.column-gap-xl-0{column-gap:0 !important}.column-gap-xl-1{column-gap:.25rem !important}.column-gap-xl-2{column-gap:.5rem !important}.column-gap-xl-3{column-gap:1rem !important}.column-gap-xl-4{column-gap:1.5rem !important}.column-gap-xl-5{column-gap:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media (min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.object-fit-xxl-contain{object-fit:contain !important}.object-fit-xxl-cover{object-fit:cover !important}.object-fit-xxl-fill{object-fit:fill !important}.object-fit-xxl-scale{object-fit:scale-down !important}.object-fit-xxl-none{object-fit:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-inline-grid{display:inline-grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.row-gap-xxl-0{row-gap:0 !important}.row-gap-xxl-1{row-gap:.25rem !important}.row-gap-xxl-2{row-gap:.5rem !important}.row-gap-xxl-3{row-gap:1rem !important}.row-gap-xxl-4{row-gap:1.5rem !important}.row-gap-xxl-5{row-gap:3rem !important}.column-gap-xxl-0{column-gap:0 !important}.column-gap-xxl-1{column-gap:.25rem !important}.column-gap-xxl-2{column-gap:.5rem !important}.column-gap-xxl-3{column-gap:1rem !important}.column-gap-xxl-4{column-gap:1.5rem !important}.column-gap-xxl-5{column-gap:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#000}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#000}.bg-warning{color:#000}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media (min-width: 1200px){.fs-1{font-size:2.5rem !important}.fs-2{font-size:2rem !important}.fs-3{font-size:1.75rem !important}.fs-4{font-size:1.5rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-inline-grid{display:inline-grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}.table th[align=left]{text-align:left}.table th[align=right]{text-align:right}.table th[align=center]{text-align:center}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre,.bslib-gap-spacing>.shiny-html-output>.bslib-mb-spacing,.bslib-gap-spacing>.shiny-html-output>.form-group,.bslib-gap-spacing>.shiny-html-output>p,.bslib-gap-spacing>.shiny-html-output>pre,.bslib-gap-spacing>.shiny-panel-conditional>.bslib-mb-spacing,.bslib-gap-spacing>.shiny-panel-conditional>.form-group,.bslib-gap-spacing>.shiny-panel-conditional>p,.bslib-gap-spacing>.shiny-panel-conditional>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.bg-blue{--bslib-color-bg: #0d6efd;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #0d6efd;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #6f42c1;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #6f42c1;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #d63384;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #d63384;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #dc3545;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #dc3545;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #fd7e14;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #fd7e14;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ffc107;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ffc107;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #198754;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #198754;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #0dcaf0;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #dee2e6}.bg-default{--bslib-color-bg: #dee2e6;--bslib-color-fg: #000}.text-primary{--bslib-color-fg: #0d6efd}.bg-primary{--bslib-color-bg: #0d6efd;--bslib-color-fg: #fff}.text-secondary{--bslib-color-fg: #6c757d}.bg-secondary{--bslib-color-bg: #6c757d;--bslib-color-fg: #fff}.text-success{--bslib-color-fg: #198754}.bg-success{--bslib-color-bg: #198754;--bslib-color-fg: #fff}.text-info{--bslib-color-fg: #0dcaf0}.bg-info{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000}.text-warning{--bslib-color-fg: #ffc107}.bg-warning{--bslib-color-bg: #ffc107;--bslib-color-fg: #000}.text-danger{--bslib-color-fg: #dc3545}.bg-danger{--bslib-color-bg: #dc3545;--bslib-color-fg: #fff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #212529}.bg-dark{--bslib-color-bg: #212529;--bslib-color-fg: #fff}.bg-gradient-blue-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #3148f9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3148f9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #fff;--bslib-color-bg: #345ce5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #345ce5;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #fff;--bslib-color-bg: #5d56cd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d56cd;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #fff;--bslib-color-bg: #6057b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6057b3;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #fff;--bslib-color-bg: #6d74a0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6d74a0;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6e8f9b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6e8f9b;color:#000}.bg-gradient-blue-green{--bslib-color-fg: #fff;--bslib-color-bg: #1278b9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1278b9;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #000;--bslib-color-bg: #1592d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1592d4;color:#000}.bg-gradient-blue-cyan{--bslib-color-fg: #000;--bslib-color-bg: #0d93f8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #0d93f8;color:#000}.bg-gradient-indigo-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4236f6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4236f6;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #fff;--bslib-color-bg: #6a24de;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #6a24de;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #fff;--bslib-color-bg: #931ec6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #931ec6;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #fff;--bslib-color-bg: #951fad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #951fad;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #fff;--bslib-color-bg: #a23c99;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a23c99;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a35794;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a35794;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #fff;--bslib-color-bg: #4740b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4740b3;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #425af1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #425af1;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4854d9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4854d9;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #6b2ed5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #6b2ed5;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #fff;--bslib-color-bg: #983ca9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #983ca9;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #fff;--bslib-color-bg: #9b3d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #9b3d8f;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #fff;--bslib-color-bg: #a85a7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a85a7c;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #000;--bslib-color-bg: #a97577;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a97577;color:#000}.bg-gradient-purple-green{--bslib-color-fg: #fff;--bslib-color-bg: #4d5e95;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4d5e95;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4f78b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4f78b0;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #000;--bslib-color-bg: #4878d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #4878d4;color:#000}.bg-gradient-pink-blue{--bslib-color-fg: #fff;--bslib-color-bg: #864bb4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #864bb4;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #a925b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #a925b0;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #fff;--bslib-color-bg: #ad399c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #ad399c;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #fff;--bslib-color-bg: #d8346b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #d8346b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #000;--bslib-color-bg: #e65157;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e65157;color:#000}.bg-gradient-pink-yellow{--bslib-color-fg: #000;--bslib-color-bg: #e66c52;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #e66c52;color:#000}.bg-gradient-pink-green{--bslib-color-fg: #fff;--bslib-color-bg: #8a5571;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8a5571;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #000;--bslib-color-bg: #8d6f8c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #8d6f8c;color:#000}.bg-gradient-pink-cyan{--bslib-color-fg: #000;--bslib-color-bg: #866faf;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #866faf;color:#000}.bg-gradient-red-blue{--bslib-color-fg: #fff;--bslib-color-bg: #894c8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #894c8f;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #ad268a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #ad268a;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b03a77;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #b03a77;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #fff;--bslib-color-bg: #da345e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #da345e;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #000;--bslib-color-bg: #e95231;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e95231;color:#000}.bg-gradient-red-yellow{--bslib-color-fg: #000;--bslib-color-bg: #ea6d2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #ea6d2c;color:#000}.bg-gradient-red-green{--bslib-color-fg: #fff;--bslib-color-bg: #8e564b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8e564b;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #000;--bslib-color-bg: #917066;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #917066;color:#000}.bg-gradient-red-cyan{--bslib-color-fg: #000;--bslib-color-bg: #897189;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #897189;color:#000}.bg-gradient-orange-blue{--bslib-color-fg: #000;--bslib-color-bg: #9d7871;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9d7871;color:#000}.bg-gradient-orange-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c1526d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c1526d;color:#000}.bg-gradient-orange-purple{--bslib-color-fg: #000;--bslib-color-bg: #c46659;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c46659;color:#000}.bg-gradient-orange-pink{--bslib-color-fg: #000;--bslib-color-bg: #ed6041;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ed6041;color:#000}.bg-gradient-orange-red{--bslib-color-fg: #000;--bslib-color-bg: #f06128;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f06128;color:#000}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #fe990f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #fe990f;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a2822e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a2822e;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #a59c48;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a59c48;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9d9c6c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9d9c6c;color:#000}.bg-gradient-yellow-blue{--bslib-color-fg: #000;--bslib-color-bg: #9ea069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9ea069;color:#000}.bg-gradient-yellow-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c27a65;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c27a65;color:#000}.bg-gradient-yellow-purple{--bslib-color-fg: #000;--bslib-color-bg: #c58e51;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c58e51;color:#000}.bg-gradient-yellow-pink{--bslib-color-fg: #000;--bslib-color-bg: #ef8839;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ef8839;color:#000}.bg-gradient-yellow-red{--bslib-color-fg: #000;--bslib-color-bg: #f18920;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f18920;color:#000}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #fea60c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #fea60c;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #000;--bslib-color-bg: #a3aa26;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a3aa26;color:#000}.bg-gradient-yellow-teal{--bslib-color-fg: #000;--bslib-color-bg: #a6c441;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6c441;color:#000}.bg-gradient-yellow-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9ec564;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9ec564;color:#000}.bg-gradient-green-blue{--bslib-color-fg: #fff;--bslib-color-bg: #147d98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #147d98;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #385793;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #385793;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3b6b80;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3b6b80;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #fff;--bslib-color-bg: #656567;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #656567;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #fff;--bslib-color-bg: #67664e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #67664e;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #74833a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #74833a;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #000;--bslib-color-bg: #759e35;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #759e35;color:#000}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #1ca16f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1ca16f;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #000;--bslib-color-bg: #14a292;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #14a292;color:#000}.bg-gradient-teal-blue{--bslib-color-fg: #000;--bslib-color-bg: #18a5c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #18a5c0;color:#000}.bg-gradient-teal-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#000}.bg-gradient-teal-purple{--bslib-color-fg: #000;--bslib-color-bg: #4093a8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #4093a8;color:#000}.bg-gradient-teal-pink{--bslib-color-fg: #000;--bslib-color-bg: #698d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #698d8f;color:#000}.bg-gradient-teal-red{--bslib-color-fg: #000;--bslib-color-bg: #6b8e76;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6b8e76;color:#000}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #78ab63;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #78ab63;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #000;--bslib-color-bg: #79c65d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #79c65d;color:#000}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #1daf7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1daf7c;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #000;--bslib-color-bg: #18c9bb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #18c9bb;color:#000}.bg-gradient-cyan-blue{--bslib-color-fg: #000;--bslib-color-bg: #0da5f5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #0da5f5;color:#000}.bg-gradient-cyan-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3180f1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3180f1;color:#000}.bg-gradient-cyan-purple{--bslib-color-fg: #000;--bslib-color-bg: #3494dd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3494dd;color:#000}.bg-gradient-cyan-pink{--bslib-color-fg: #000;--bslib-color-bg: #5d8ec5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d8ec5;color:#000}.bg-gradient-cyan-red{--bslib-color-fg: #000;--bslib-color-bg: #608eac;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #608eac;color:#000}.bg-gradient-cyan-orange{--bslib-color-fg: #000;--bslib-color-bg: #6dac98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6dac98;color:#000}.bg-gradient-cyan-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6ec693;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6ec693;color:#000}.bg-gradient-cyan-green{--bslib-color-fg: #000;--bslib-color-bg: #12afb2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #12afb2;color:#000}.bg-gradient-cyan-teal{--bslib-color-fg: #000;--bslib-color-bg: #15cacc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #15cacc;color:#000}.row>main{max-width:50rem;overflow-wrap:break-word;hyphens:auto}@media (min-width: 1200px) and (max-width: 1399.98px){.container .row{justify-content:space-evenly}}@media (min-width: 1400px){body{font-size:18px}.col-md-3{margin-left:5rem}}.navbar{background:RGBA(var(--bs-body-color-rgb), 0.1);background:color-mix(in oklab, color-mix(in oklab, var(--bs-body-bg) 95%, var(--bs-primary)) 95%, var(--bs-body-color));line-height:initial}.nav-item .nav-link{border-radius:.375rem}.nav-item.active .nav-link{background:RGBA(var(--bs-body-color-rgb), 0.1)}.nav-item .nav-link:hover{background:RGBA(var(--bs-primary-rgb), 0.1)}.navbar>.container{align-items:baseline;-webkit-align-items:baseline}input[type="search"]{width:12rem}[aria-labelledby=dropdown-lightswitch] span.fa{opacity:0.5}@media (max-width: 991.98px){.algolia-autocomplete,input[type="search"],#navbar .dropdown-menu{width:100%}#navbar .dropdown-item{white-space:normal}input[type="search"]{margin:0.25rem 0}}.headroom{will-change:transform;transition:transform 400ms ease}.headroom--pinned{transform:translateY(0%)}.headroom--unpinned{transform:translateY(-100%)}.row>main,.row>aside{margin-top:56px}html,body{scroll-padding:56px}@media (min-width: 576px){#toc{position:sticky;top:56px;max-height:calc(100vh - 56px - 1rem);overflow-y:auto}}aside h2,aside .h2{margin-top:1.5rem;font-size:1.25rem}aside .roles{color:RGBA(var(--bs-body-color-rgb), 0.8)}aside .list-unstyled li{margin-bottom:0.5rem}aside .dev-status .list-unstyled li{margin-bottom:0.1rem}@media (max-width: 767.98px){.row>aside{margin:0.5rem;width:calc(100vw - 1rem);background-color:RGBA(var(--bs-body-color-rgb), 0.1);border-color:var(--bs-border-color);border-radius:.375rem}.row>aside h2:first-child,.row>aside .h2:first-child{margin-top:1rem}}body{position:relative}#toc>.nav{margin-bottom:1rem}#toc>.nav a.nav-link{color:inherit;padding:0.25rem 0.5rem;margin-bottom:2px;border-radius:.375rem}#toc>.nav a.nav-link:hover,#toc>.nav a.nav-link:focus{background-color:RGBA(var(--bs-primary-rgb), 0.1)}#toc>.nav a.nav-link.active{background-color:RGBA(var(--bs-body-color-rgb), 0.1)}#toc>.nav .nav a.nav-link{margin-left:0.5rem}#toc>.nav .nav{display:none !important}#toc>.nav a.active+.nav{display:flex !important}footer{margin:1rem 0 1rem 0;padding-top:1rem;font-size:.875em;border-top:1px solid #dee2e6;background:rgba(0,0,0,0);color:RGBA(var(--bs-body-color-rgb), 0.8);display:flex;column-gap:1rem}@media (max-width: 575.98px){footer{flex-direction:column}}@media (min-width: 576px){footer .pkgdown-footer-right{text-align:right}}footer div{flex:1 1 auto}html,body{height:100%}body>.container{min-height:100%;display:flex;flex-direction:column}body>.container .row{flex:1 0 auto}main img{max-width:100%;height:auto}main table{display:block;overflow:auto}body{font-display:fallback}.page-header{border-bottom:1px solid var(--bs-border-color);padding-bottom:0.5rem;margin-bottom:0.5rem;margin-top:1.5rem}dl{margin-bottom:0}dd{padding-left:1.5rem;margin-bottom:0.25rem}h2,.h2{font-size:1.75rem;margin-top:1.5rem}h3,.h3{font-size:1.25rem;margin-top:1rem;font-weight:bold}h4,.h4{font-size:1.1rem;font-weight:bold}h5,.h5{font-size:1rem;font-weight:bold}summary{margin-bottom:0.5rem}details{margin-bottom:1rem}.html-widget{margin-bottom:1rem}a.anchor{display:none;margin-left:2px;vertical-align:top;width:Min(0.9em, 20px);height:Min(0.9em, 20px);background-image:url(../../link.svg);background-repeat:no-repeat;background-size:Min(0.9em, 20px) Min(0.9em, 20px);background-position:center center}h2:hover .anchor,.h2:hover .anchor,h2:target .anchor,.h2:target .anchor,h3:hover .anchor,.h3:hover .anchor,h3:target .anchor,.h3:target .anchor,h4:hover .anchor,.h4:hover .anchor,h4:target .anchor,.h4:target .anchor,h5:hover .anchor,.h5:hover .anchor,h5:target .anchor,.h5:target .anchor,h6:hover .anchor,.h6:hover .anchor,h6:target .anchor,.h6:target .anchor,dt:hover .anchor,dt:target .anchor{display:inline-block}dt:target,dt:target+dd{border-left:0.25rem solid var(--bs-primary);margin-left:-0.75rem}dt:target{padding-left:0.5rem}dt:target+dd{padding-left:2rem}.orcid{color:#A6CE39;margin-right:4px}.fab{font-family:"Font Awesome 5 Brands" !important}img.logo{float:right;width:100px;margin-left:30px}.template-home img.logo{width:120px}@media (max-width: 575.98px){img.logo{width:80px}}@media (min-width: 576px){.page-header{min-height:88px}.template-home .page-header{min-height:104px}}.line-block{margin-bottom:1rem}.template-reference-index dt{font-weight:normal}.template-reference-index code{word-wrap:normal}.icon{float:right}.icon img{width:40px}a[href='#main']{position:absolute;margin:4px;padding:0.75rem;background-color:var(--bs-body-bg);text-decoration:none;z-index:2000}.lifecycle{color:var(--bs-secondary-color);background-color:var(--bs-secondary-bg);border-radius:5px}.lifecycle-stable{background-color:#108001;color:var(--bs-white)}.lifecycle-superseded{background-color:#074080;color:var(--bs-white)}.lifecycle-experimental,.lifecycle-deprecated{background-color:#fd8008;color:var(--bs-black)}a.footnote-ref{cursor:pointer}.popover{width:Min(100vw, 32rem);font-size:0.9rem;box-shadow:4px 4px 8px RGBA(var(--bs-body-color-rgb), 0.3)}.popover-body{padding:0.75rem}.popover-body p:last-child{margin-bottom:0}.tab-content{padding:1rem}.tabset-pills .tab-content{border:solid 1px #e5e5e5}.tab-content{display:flex}.tab-content>.tab-pane{display:block;visibility:hidden;margin-right:-100%;width:100%}.tab-content>.active{visibility:visible}div.csl-entry{clear:both}.hanging-indent div.csl-entry{margin-left:2em;text-indent:-2em}div.csl-left-margin{min-width:2em;float:left}div.csl-right-inline{margin-left:2em;padding-left:1em}div.csl-indent{margin-left:2em}pre,pre code{word-wrap:normal}[data-bs-theme="dark"] pre,[data-bs-theme="dark"] code{background-color:RGBA(var(--bs-body-color-rgb), 0.1)}[data-bs-theme="dark"] pre code{background:transparent}code{overflow-wrap:break-word}.hasCopyButton{position:relative}.btn-copy-ex{position:absolute;right:5px;top:5px;visibility:hidden}.hasCopyButton:hover button.btn-copy-ex{visibility:visible}pre{padding:0.75rem}pre div.gt-table{white-space:normal;margin-top:1rem}@media (max-width: 575.98px){div>div>pre{margin-left:calc(var(--bs-gutter-x) * -.5);margin-right:calc(var(--bs-gutter-x) * -.5);border-radius:0;padding-left:1rem;padding-right:1rem}.btn-copy-ex{right:calc(var(--bs-gutter-x) * -.5 + 5px)}}code a:any-link{color:inherit;text-decoration-color:RGBA(var(--bs-body-color-rgb), 0.6)}pre code{padding:0;background:transparent}pre code .error,pre code .warning{font-weight:bolder}pre .img img,pre .r-plt img{margin:5px 0;background-color:#fff}[data-bs-theme="dark"] pre img{opacity:0.66;transition:opacity 250ms ease-in-out}[data-bs-theme="dark"] pre img:hover,[data-bs-theme="dark"] pre img:focus,[data-bs-theme="dark"] pre img:active{opacity:1}@media print{code a:link:after,code a:visited:after{content:""}}a.sourceLine:hover{text-decoration:none}mark,.mark{background:linear-gradient(-100deg, RGBA(var(--bs-info-rgb), 0.2), RGBA(var(--bs-info-rgb), 0.7) 95%, RGBA(var(--bs-info-rgb), 0.1))}.algolia-autocomplete .aa-dropdown-menu{margin-top:0.5rem;padding:0.5rem 0.25rem;width:MAX(100%, 20rem);max-height:50vh;overflow-y:auto;background-color:var(--bs-body-bg);border:var(--bs-border-width) solid var(--bs-border-color);border-radius:.375rem}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion{cursor:pointer;font-size:1rem;padding:0.5rem 0.25rem;line-height:1.3}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion:hover{background-color:var(--bs-tertiary-bg);color:var(--bs-body-color)}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion .search-details{text-decoration:underline;display:inline}span.smallcaps{font-variant:small-caps}ul.task-list{list-style:none}ul.task-list li input[type="checkbox"]{width:0.8em;margin:0 0.8em 0.2em -1em;vertical-align:middle}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:0.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:0.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption.quarto-float-caption-bottom{margin-bottom:0.5em}figure>figcaption.quarto-float-caption-top{margin-top:0.5em}:root{--mermaid-bg-color: transparent;--mermaid-edge-color: var(--bs-secondary);--mermaid-fg-color: var(--bs-body-color);--mermaid-fg-color--lighter: RGBA(var(--bs-body-color-rgb), 0.9);--mermaid-fg-color--lightest: RGBA(var(--bs-body-color-rgb), 0.8);--mermaid-font-family: var(--bs-body-font-family);--mermaid-label-bg-color: var(--bs-primary);--mermaid-label-fg-color: var(--bs-body-color);--mermaid-node-bg-color: RGBA(var(--bs-primary-rgb), 0.1);--mermaid-node-fg-color: var(--bs-primary)}pre{background-color:#f1f3f5}pre code{color:#003B4F}pre code span.al{color:#AD0000}pre code span.an{color:#5E5E5E}pre code span.at{color:#657422}pre code span.bn{color:#AD0000}pre code span.cf{color:#003B4F}pre code span.ch{color:#20794D}pre code span.cn{color:#8f5902}pre code span.co{color:#5E5E5E}pre code span.cv{color:#5E5E5E;font-style:italic}pre code span.do{color:#5E5E5E;font-style:italic}pre code span.dt{color:#AD0000}pre code span.dv{color:#AD0000}pre code span.er{color:#AD0000}pre code span.fl{color:#AD0000}pre code span.fu{color:#4758AB}pre code span.im{color:#00769E}pre code span.in{color:#5E5E5E}pre code span.kw{color:#003B4F}pre code span.op{color:#5E5E5E}pre code span.ot{color:#003B4F}pre code span.pp{color:#AD0000}pre code span.sc{color:#5E5E5E}pre code span.ss{color:#20794D}pre code span.st{color:#20794D}pre code span.va{color:#111111}pre code span.vs{color:#20794D}pre code span.wa{color:#5E5E5E;font-style:italic}a{text-decoration:none !important;color:#03638e}.text-default{--bs-text-opacity: 1;color:#03638e !important}.navbar-dark{background-color:#fff !important;border-bottom:1px solid #dee2e6 !important}.bg-light{background-color:#fff !important;border-bottom:1px solid #dee2e6 !important}body{font-size:0.85rem !important}.navbar-light .navbar-nav .nav-link{color:black !important}.template-home img.logo{width:90px !important}.template-home .page-header{min-height:75px !important}.row>main{max-width:50rem}@media (min-width: 1200px) and (max-width: 1399.98px){.container .row{justify-content:space-evenly}}@media (min-width: 1400px){body{font-size:18px}.col-md-3{margin-left:5rem}}.navbar-nav .nav-item>.nav-link{border-radius:.375rem;padding:0.5rem}.navbar-light .navbar-nav .active>.nav-link{background:#e9ecef;color:#212529}.navbar-dark .navbar-nav .active>.nav-link{background:#343a40;color:#fff}.navbar-dark .navbar-nav .nav-item>.nav-link:hover,.navbar-light .navbar-nav .nav-item>.nav-link:hover{background:rgba(13,110,253,0.1)}.navbar-dark input[type="search"]{border-color:#6c757d;background-color:#212529;color:#e9ecef}input[type="search"]{border-color:#dee2e6;width:12rem}.headroom{will-change:transform;transition:transform 400ms ease}.headroom--pinned{transform:translateY(0%)}.headroom--unpinned{transform:translateY(-100%)}.row>main,.row>aside{margin-top:56px}html,body{scroll-padding:56px}@media (min-width: 576px){#toc{position:sticky;top:56px;max-height:calc(100vh - 56px - 1rem);overflow-y:auto}}aside h2,aside .h2{margin-top:1.5rem;font-size:1.25rem}aside .roles{color:#4d5154}aside .list-unstyled li{margin-bottom:0.5rem}aside .dev-status .list-unstyled li{margin-bottom:0.1rem}@media (max-width: 575.98px){aside{margin:0.5rem;width:calc(100vw - 1rem);background-color:#f8f9fa;border-color:#dee2e6;border-radius:.375rem}aside h2:first-child,aside .h2:first-child{margin-top:1rem}}body{position:relative}#toc>.nav{margin-bottom:1rem}#toc>.nav a.nav-link{color:inherit;padding:0.25rem 0.5rem;margin-bottom:2px;border-radius:.375rem;border:0 solid #dee2e6}#toc>.nav a.nav-link:hover,#toc>.nav a.nav-link:focus{background-color:rgba(13,110,253,0.1);color:#000}#toc>.nav a.nav-link.active{background-color:#e9e9ea;color:#000}#toc>.nav .nav a.nav-link{margin-left:0.5rem}#toc>.nav .nav{display:none !important}#toc>.nav a.active+.nav{display:flex !important}footer{margin:1rem 0 1rem 0;font-size:.875em;border-top:1px solid #dee2e6;background:rgba(0,0,0,0);color:RGBA(var(--bs-body-color-rgb), 0.8);display:flex;column-gap:1rem}@media (max-width: 575.98px){footer{flex-direction:column}}@media (min-width: 576px){footer .pkgdown-footer-right{text-align:right}}footer div{flex:1 1 auto}html,body{height:100%}body>.container{min-height:100%;display:flex;flex-direction:column}body>.container .row{flex:1 0 auto}::selection{background-color:#cfe2ff}main img{max-width:100%;height:auto}main table{display:block;overflow:auto}body{font-display:fallback}.page-header{border-bottom:1px solid #dee2e6;padding-bottom:0.5rem;margin-bottom:0.5rem;margin-top:1.5rem}dd{margin-left:1.5rem}summary{margin-bottom:0.5rem}details{margin-bottom:1rem}.html-widget{margin-bottom:1rem}a.anchor{display:none;margin-left:5px;width:Min(0.9em, 20px);height:Min(0.9em, 20px);background-image:url(../../link.svg);background-repeat:no-repeat;background-size:Min(0.9em, 20px) Min(0.9em, 20px);background-position:center center}h2:hover .anchor,.h2:hover .anchor,h3:hover .anchor,.h3:hover .anchor,h4:hover .anchor,.h4:hover .anchor,h5:hover .anchor,.h5:hover .anchor,h6:hover .anchor,.h6:hover .anchor{display:inline-block}.orcid{color:#A6CE39;margin-right:4px}.fab{font-family:"Font Awesome 5 Brands" !important}img.logo{float:right;width:100px;margin-left:30px}.template-home img.logo{width:120px}@media (max-width: 575.98px){img.logo{width:80px}}@media (min-width: 576px){.page-header{min-height:88px}.template-home .page-header{min-height:104px}}.line-block{margin-bottom:1rem}.template-reference-index dt{font-weight:normal}.template-reference-index code{word-wrap:normal}.icon{float:right}.icon img{width:40px}a.footnote-ref{cursor:pointer}.popover{width:Min(100vw, 32rem);font-size:0.9rem;box-shadow:4px 4px 8px rgba(0,0,0,0.3)}.popover-body{padding:0.75rem}.popover-body p:last-child{margin-bottom:0}.tab-content{padding:1rem}.tabset-pills .tab-content{border:solid 1px #e5e5e5}.tab-content{display:flex}.tab-content>.tab-pane{display:block;visibility:hidden;margin-right:-100%;width:100%}.tab-content>.active{visibility:visible}div.csl-entry{clear:both}.hanging-indent div.csl-entry{margin-left:2em;text-indent:-2em}div.csl-left-margin{min-width:2em;float:left}div.csl-right-inline{margin-left:2em;padding-left:1em}div.csl-indent{margin-left:2em}pre,pre code{white-space:pre-wrap;word-break:break-all;overflow-wrap:break-word}.hasCopyButton{position:relative}.btn-copy-ex{position:absolute;right:5px;top:5px;visibility:hidden}.hasCopyButton:hover button.btn-copy-ex{visibility:visible}pre{padding:1rem 0.5rem}@media (max-width: 575.98px){div>div>pre{margin-left:calc(var(--bs-gutter-x) * -.5);margin-right:calc(var(--bs-gutter-x) * -.5);border-radius:0;padding-left:1rem;padding-right:1rem}.btn-copy-ex{right:calc(var(--bs-gutter-x) * -.5 + 5px)}}pre code{padding:0;background:transparent}pre code a:any-link{color:inherit;text-decoration-color:#6c757d}pre code .error,pre code .warning{font-weight:bolder}pre .img img,pre .r-plt img{margin:5px 0;background-color:#fff}@media print{code a:link:after,code a:visited:after{content:""}}a.sourceLine:hover{text-decoration:none}mark,.mark{background:linear-gradient(-100deg, rgba(13,202,240,0.2), rgba(13,202,240,0.7) 95%, rgba(13,202,240,0.1))}.algolia-autocomplete .aa-hint{color:#212529}.algolia-autocomplete .aa-dropdown-menu{width:Max(100%, 20rem);background-color:#fff;border:1px solid var(--bs-border-color);margin-top:2px;max-height:50vh;overflow-y:auto}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion{cursor:pointer;padding:5px 4px;border-bottom:1px #e9ecef solid;font-size:0.9rem;color:#212529}.search-details{font-size:0.9rem;color:#0d6efd;display:inline;font-weight:bolder}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion.aa-cursor{background-color:#e7f1ff}[data-bs-theme="dark"] pre code{color:#f8f8f2}[data-bs-theme="dark"] pre code span.al{color:#f07178;background-color:#2a0f15;font-weight:bold}[data-bs-theme="dark"] pre code span.an{color:#d4d0ab}[data-bs-theme="dark"] pre code span.at{color:#00e0e0}[data-bs-theme="dark"] pre code span.bn{color:#d4d0ab}[data-bs-theme="dark"] pre code span.bu{color:#abe338}[data-bs-theme="dark"] pre code span.cf{color:#ffa07a;font-weight:bold}[data-bs-theme="dark"] pre code span.ch{color:#abe338}[data-bs-theme="dark"] pre code span.cn{color:#ffd700}[data-bs-theme="dark"] pre code span.co{color:#f8f8f2;font-style:italic}[data-bs-theme="dark"] pre code span.cv{color:#ffd700}[data-bs-theme="dark"] pre code span.do{color:#f8f8f2}[data-bs-theme="dark"] pre code span.dt{color:#ffa07a}[data-bs-theme="dark"] pre code span.dv{color:#d4d0ab}[data-bs-theme="dark"] pre code span.er{color:#f07178;text-decoration:underline}[data-bs-theme="dark"] pre code span.ex{color:#00e0e0;font-weight:bold}[data-bs-theme="dark"] pre code span.fl{color:#d4d0ab}[data-bs-theme="dark"] pre code span.fu{color:#ffa07a}[data-bs-theme="dark"] pre code span.im{color:#abe338}[data-bs-theme="dark"] pre code span.in{color:#d4d0ab}[data-bs-theme="dark"] pre code span.kw{color:#ffa07a;font-weight:bold}[data-bs-theme="dark"] pre code span.op{color:#ffa07a}[data-bs-theme="dark"] pre code span.ot{color:#00e0e0}[data-bs-theme="dark"] pre code span.pp{color:#dcc6e0}[data-bs-theme="dark"] pre code span.re{color:#00e0e0;background-color:#f8f8f2}[data-bs-theme="dark"] pre code span.sc{color:#abe338}[data-bs-theme="dark"] pre code span.ss{color:#abe338}[data-bs-theme="dark"] pre code span.st{color:#abe338}[data-bs-theme="dark"] pre code span.va{color:#00e0e0}[data-bs-theme="dark"] pre code span.vs{color:#abe338}[data-bs-theme="dark"] pre code span.wa{color:#dcc6e0} + */:root,[data-bs-theme="light"]{--bs-blue: #0d6efd;--bs-indigo: #6610f2;--bs-purple: #6f42c1;--bs-pink: #d63384;--bs-red: #dc3545;--bs-orange: #fd7e14;--bs-yellow: #ffc107;--bs-green: #198754;--bs-teal: #20c997;--bs-cyan: #0dcaf0;--bs-black: #000;--bs-white: #fff;--bs-gray: #6c757d;--bs-gray-dark: #343a40;--bs-gray-100: #f8f9fa;--bs-gray-200: #e9ecef;--bs-gray-300: #dee2e6;--bs-gray-400: #ced4da;--bs-gray-500: #adb5bd;--bs-gray-600: #6c757d;--bs-gray-700: #495057;--bs-gray-800: #343a40;--bs-gray-900: #212529;--bs-default: #dee2e6;--bs-primary: #0d6efd;--bs-secondary: #6c757d;--bs-success: #198754;--bs-info: #0dcaf0;--bs-warning: #ffc107;--bs-danger: #dc3545;--bs-light: #f8f9fa;--bs-dark: #212529;--bs-default-rgb: 222,226,230;--bs-primary-rgb: 13,110,253;--bs-secondary-rgb: 108,117,125;--bs-success-rgb: 25,135,84;--bs-info-rgb: 13,202,240;--bs-warning-rgb: 255,193,7;--bs-danger-rgb: 220,53,69;--bs-light-rgb: 248,249,250;--bs-dark-rgb: 33,37,41;--bs-primary-text-emphasis: #052c65;--bs-secondary-text-emphasis: #2b2f32;--bs-success-text-emphasis: #0a3622;--bs-info-text-emphasis: #055160;--bs-warning-text-emphasis: #664d03;--bs-danger-text-emphasis: #58151c;--bs-light-text-emphasis: #495057;--bs-dark-text-emphasis: #495057;--bs-primary-bg-subtle: #cfe2ff;--bs-secondary-bg-subtle: #e2e3e5;--bs-success-bg-subtle: #d1e7dd;--bs-info-bg-subtle: #cff4fc;--bs-warning-bg-subtle: #fff3cd;--bs-danger-bg-subtle: #f8d7da;--bs-light-bg-subtle: #fcfcfd;--bs-dark-bg-subtle: #ced4da;--bs-primary-border-subtle: #9ec5fe;--bs-secondary-border-subtle: #c4c8cb;--bs-success-border-subtle: #a3cfbb;--bs-info-border-subtle: #9eeaf9;--bs-warning-border-subtle: #ffe69c;--bs-danger-border-subtle: #f1aeb5;--bs-light-border-subtle: #e9ecef;--bs-dark-border-subtle: #adb5bd;--bs-white-rgb: 255,255,255;--bs-black-rgb: 0,0,0;--bs-font-sans-serif: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", "Noto Sans", "Liberation Sans", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";--bs-font-monospace: "JetBrains Mono";--bs-gradient: linear-gradient(180deg, rgba(255,255,255,0.15), rgba(255,255,255,0));--bs-body-font-family: Roboto;--bs-body-font-size:1rem;--bs-body-font-weight: 400;--bs-body-line-height: 1.5;--bs-body-color: #212529;--bs-body-color-rgb: 33,37,41;--bs-body-bg: #fff;--bs-body-bg-rgb: 255,255,255;--bs-emphasis-color: #000;--bs-emphasis-color-rgb: 0,0,0;--bs-secondary-color: rgba(33,37,41,0.75);--bs-secondary-color-rgb: 33,37,41;--bs-secondary-bg: #e9ecef;--bs-secondary-bg-rgb: 233,236,239;--bs-tertiary-color: rgba(33,37,41,0.5);--bs-tertiary-color-rgb: 33,37,41;--bs-tertiary-bg: #f8f9fa;--bs-tertiary-bg-rgb: 248,249,250;--bs-heading-color: inherit;--bs-link-color: #0d6efd;--bs-link-color-rgb: 13,110,253;--bs-link-decoration: underline;--bs-link-hover-color: #0a58ca;--bs-link-hover-color-rgb: 10,88,202;--bs-code-color: RGB(var(--bs-emphasis-color-rgb, 0, 0, 0));--bs-highlight-bg: #fff3cd;--bs-border-width: 1px;--bs-border-style: solid;--bs-border-color: #dee2e6;--bs-border-color-translucent: rgba(0,0,0,0.175);--bs-border-radius: .375rem;--bs-border-radius-sm: .25rem;--bs-border-radius-lg: .5rem;--bs-border-radius-xl: 1rem;--bs-border-radius-xxl: 2rem;--bs-border-radius-2xl: var(--bs-border-radius-xxl);--bs-border-radius-pill: 50rem;--bs-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15);--bs-box-shadow-sm: 0 0.125rem 0.25rem rgba(0,0,0,0.075);--bs-box-shadow-lg: 0 1rem 3rem rgba(0,0,0,0.175);--bs-box-shadow-inset: inset 0 1px 2px rgba(0,0,0,0.075);--bs-focus-ring-width: .25rem;--bs-focus-ring-opacity: .25;--bs-focus-ring-color: rgba(13,110,253,0.25);--bs-form-valid-color: #198754;--bs-form-valid-border-color: #198754;--bs-form-invalid-color: #dc3545;--bs-form-invalid-border-color: #dc3545}[data-bs-theme="dark"]{color-scheme:dark;--bs-body-color: #dee2e6;--bs-body-color-rgb: 222,226,230;--bs-body-bg: #212529;--bs-body-bg-rgb: 33,37,41;--bs-emphasis-color: #fff;--bs-emphasis-color-rgb: 255,255,255;--bs-secondary-color: rgba(222,226,230,0.75);--bs-secondary-color-rgb: 222,226,230;--bs-secondary-bg: #343a40;--bs-secondary-bg-rgb: 52,58,64;--bs-tertiary-color: rgba(222,226,230,0.5);--bs-tertiary-color-rgb: 222,226,230;--bs-tertiary-bg: #2b3035;--bs-tertiary-bg-rgb: 43,48,53;--bs-primary-text-emphasis: #6ea8fe;--bs-secondary-text-emphasis: #a7acb1;--bs-success-text-emphasis: #75b798;--bs-info-text-emphasis: #6edff6;--bs-warning-text-emphasis: #ffda6a;--bs-danger-text-emphasis: #ea868f;--bs-light-text-emphasis: #f8f9fa;--bs-dark-text-emphasis: #dee2e6;--bs-primary-bg-subtle: #031633;--bs-secondary-bg-subtle: #161719;--bs-success-bg-subtle: #051b11;--bs-info-bg-subtle: #032830;--bs-warning-bg-subtle: #332701;--bs-danger-bg-subtle: #2c0b0e;--bs-light-bg-subtle: #343a40;--bs-dark-bg-subtle: #1a1d20;--bs-primary-border-subtle: #084298;--bs-secondary-border-subtle: #41464b;--bs-success-border-subtle: #0f5132;--bs-info-border-subtle: #087990;--bs-warning-border-subtle: #997404;--bs-danger-border-subtle: #842029;--bs-light-border-subtle: #495057;--bs-dark-border-subtle: #343a40;--bs-heading-color: inherit;--bs-link-color: #6ea8fe;--bs-link-hover-color: #8bb9fe;--bs-link-color-rgb: 110,168,254;--bs-link-hover-color-rgb: 139,185,254;--bs-code-color: RGB(var(--bs-emphasis-color-rgb, 0, 0, 0));--bs-border-color: #495057;--bs-border-color-translucent: rgba(255,255,255,0.15);--bs-form-valid-color: #75b798;--bs-form-valid-border-color: #75b798;--bs-form-invalid-color: #ea868f;--bs-form-invalid-border-color: #ea868f}*,*::before,*::after{box-sizing:border-box}@media (prefers-reduced-motion: no-preference){:root{scroll-behavior:smooth}}body{margin:0;font-family:var(--bs-body-font-family);font-size:var(--bs-body-font-size);font-weight:var(--bs-body-font-weight);line-height:var(--bs-body-line-height);color:var(--bs-body-color);text-align:var(--bs-body-text-align);background-color:var(--bs-body-bg);-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}hr{margin:1rem 0;color:inherit;border:0;border-top:var(--bs-border-width) solid;opacity:.25}h6,.h6,h5,.h5,h4,.h4,h3,.h3,h2,.h2,h1,.h1{margin-top:0;margin-bottom:.5rem;font-family:"Roboto Slab";font-weight:500;line-height:1.2;color:var(--bs-heading-color)}h1,.h1{font-size:calc(1.375rem + 1.5vw)}@media (min-width: 1200px){h1,.h1{font-size:2.5rem}}h2,.h2{font-size:calc(1.325rem + .9vw)}@media (min-width: 1200px){h2,.h2{font-size:2rem}}h3,.h3{font-size:calc(1.3rem + .6vw)}@media (min-width: 1200px){h3,.h3{font-size:1.75rem}}h4,.h4{font-size:calc(1.275rem + .3vw)}@media (min-width: 1200px){h4,.h4{font-size:1.5rem}}h5,.h5{font-size:1.25rem}h6,.h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[title]{text-decoration:underline dotted;-webkit-text-decoration:underline dotted;-moz-text-decoration:underline dotted;-ms-text-decoration:underline dotted;-o-text-decoration:underline dotted;cursor:help;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem;padding:.625rem 1.25rem;border-left:.25rem solid #e9ecef}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}b,strong{font-weight:bolder}small,.small{font-size:.875em}mark,.mark{padding:.1875em;background-color:var(--bs-highlight-bg)}sub,sup{position:relative;font-size:.75em;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 1));text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}a:hover{--bs-link-color-rgb: var(--bs-link-hover-color-rgb)}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:var(--bs-font-monospace);font-size:1em}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:.875em;color:RGB(var(--bs-emphasis-color-rgb, 0, 0, 0));background-color:RGBA(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.04);padding:.5rem;border:1px solid var(--bs-border-color, #dee2e6);border-radius:.375rem}pre code{background-color:transparent;font-size:inherit;color:inherit;word-break:normal}code{font-size:.875em;color:var(--bs-code-color);background-color:RGBA(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.04);border-radius:.375rem;padding:.125rem .25rem;word-wrap:break-word}a>code{color:inherit}kbd{padding:.1875rem .375rem;font-size:.875em;color:var(--bs-body-bg);background-color:var(--bs-body-color);border-radius:.25rem}kbd kbd{padding:0;font-size:1em}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-secondary-color);text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role="button"]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]:not([type="date"]):not([type="datetime-local"]):not([type="month"]):not([type="week"]):not([type="time"])::-webkit-calendar-picker-indicator{display:none !important}button,[type="button"],[type="reset"],[type="submit"]{-webkit-appearance:button}button:not(:disabled),[type="button"]:not(:disabled),[type="reset"]:not(:disabled),[type="submit"]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + .3vw);line-height:inherit}@media (min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type="search"]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media (min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:.875em;color:#6c757d}.blockquote-footer::before{content:"\2014\00A0"}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:var(--bs-body-bg);border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius);max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:.875em;color:var(--bs-secondary-color)}.container,.container-fluid,.container-xxl,.container-xl,.container-lg,.container-md,.container-sm{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;width:100%;padding-right:calc(var(--bs-gutter-x) * .5);padding-left:calc(var(--bs-gutter-x) * .5);margin-right:auto;margin-left:auto}@media (min-width: 576px){.container-sm,.container{max-width:540px}}@media (min-width: 768px){.container-md,.container-sm,.container{max-width:720px}}@media (min-width: 992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media (min-width: 1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1140px}}@media (min-width: 1400px){.container-xxl,.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1320px}}:root{--bs-breakpoint-xs: 0;--bs-breakpoint-sm: 576px;--bs-breakpoint-md: 768px;--bs-breakpoint-lg: 992px;--bs-breakpoint-xl: 1200px;--bs-breakpoint-xxl: 1400px}.row{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;margin-top:calc(-1 * var(--bs-gutter-y));margin-right:calc(-.5 * var(--bs-gutter-x));margin-left:calc(-.5 * var(--bs-gutter-x))}.row>*{flex-shrink:0;-webkit-flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--bs-gutter-x) * .5);padding-left:calc(var(--bs-gutter-x) * .5);margin-top:var(--bs-gutter-y)}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media (min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media (min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media (min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media (min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media (min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.col{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-1{margin-left:8.33333%}.offset-2{margin-left:16.66667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333%}.offset-5{margin-left:41.66667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333%}.offset-8{margin-left:66.66667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333%}.offset-11{margin-left:91.66667%}.g-0,.gx-0{--bs-gutter-x: 0}.g-0,.gy-0{--bs-gutter-y: 0}.g-1,.gx-1{--bs-gutter-x: .25rem}.g-1,.gy-1{--bs-gutter-y: .25rem}.g-2,.gx-2{--bs-gutter-x: .5rem}.g-2,.gy-2{--bs-gutter-y: .5rem}.g-3,.gx-3{--bs-gutter-x: 1rem}.g-3,.gy-3{--bs-gutter-y: 1rem}.g-4,.gx-4{--bs-gutter-x: 1.5rem}.g-4,.gy-4{--bs-gutter-y: 1.5rem}.g-5,.gx-5{--bs-gutter-x: 3rem}.g-5,.gy-5{--bs-gutter-y: 3rem}@media (min-width: 576px){.col-sm{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-sm-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-sm-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-sm-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-sm-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-sm-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-sm-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-sm-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-sm-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-sm-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-sm-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-sm-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-sm-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-sm-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-sm-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-sm-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-sm-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-sm-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-sm-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-sm-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-sm-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333%}.offset-sm-2{margin-left:16.66667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333%}.offset-sm-5{margin-left:41.66667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333%}.offset-sm-8{margin-left:66.66667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333%}.offset-sm-11{margin-left:91.66667%}.g-sm-0,.gx-sm-0{--bs-gutter-x: 0}.g-sm-0,.gy-sm-0{--bs-gutter-y: 0}.g-sm-1,.gx-sm-1{--bs-gutter-x: .25rem}.g-sm-1,.gy-sm-1{--bs-gutter-y: .25rem}.g-sm-2,.gx-sm-2{--bs-gutter-x: .5rem}.g-sm-2,.gy-sm-2{--bs-gutter-y: .5rem}.g-sm-3,.gx-sm-3{--bs-gutter-x: 1rem}.g-sm-3,.gy-sm-3{--bs-gutter-y: 1rem}.g-sm-4,.gx-sm-4{--bs-gutter-x: 1.5rem}.g-sm-4,.gy-sm-4{--bs-gutter-y: 1.5rem}.g-sm-5,.gx-sm-5{--bs-gutter-x: 3rem}.g-sm-5,.gy-sm-5{--bs-gutter-y: 3rem}}@media (min-width: 768px){.col-md{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-md-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-md-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-md-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-md-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-md-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-md-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-md-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-md-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-md-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-md-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-md-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-md-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-md-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-md-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-md-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-md-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-md-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-md-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-md-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-md-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333%}.offset-md-2{margin-left:16.66667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333%}.offset-md-5{margin-left:41.66667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333%}.offset-md-8{margin-left:66.66667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333%}.offset-md-11{margin-left:91.66667%}.g-md-0,.gx-md-0{--bs-gutter-x: 0}.g-md-0,.gy-md-0{--bs-gutter-y: 0}.g-md-1,.gx-md-1{--bs-gutter-x: .25rem}.g-md-1,.gy-md-1{--bs-gutter-y: .25rem}.g-md-2,.gx-md-2{--bs-gutter-x: .5rem}.g-md-2,.gy-md-2{--bs-gutter-y: .5rem}.g-md-3,.gx-md-3{--bs-gutter-x: 1rem}.g-md-3,.gy-md-3{--bs-gutter-y: 1rem}.g-md-4,.gx-md-4{--bs-gutter-x: 1.5rem}.g-md-4,.gy-md-4{--bs-gutter-y: 1.5rem}.g-md-5,.gx-md-5{--bs-gutter-x: 3rem}.g-md-5,.gy-md-5{--bs-gutter-y: 3rem}}@media (min-width: 992px){.col-lg{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-lg-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-lg-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-lg-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-lg-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-lg-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-lg-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-lg-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-lg-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-lg-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-lg-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-lg-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-lg-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-lg-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-lg-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-lg-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-lg-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-lg-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-lg-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-lg-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-lg-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333%}.offset-lg-2{margin-left:16.66667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.33333%}.offset-lg-5{margin-left:41.66667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.33333%}.offset-lg-8{margin-left:66.66667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333%}.offset-lg-11{margin-left:91.66667%}.g-lg-0,.gx-lg-0{--bs-gutter-x: 0}.g-lg-0,.gy-lg-0{--bs-gutter-y: 0}.g-lg-1,.gx-lg-1{--bs-gutter-x: .25rem}.g-lg-1,.gy-lg-1{--bs-gutter-y: .25rem}.g-lg-2,.gx-lg-2{--bs-gutter-x: .5rem}.g-lg-2,.gy-lg-2{--bs-gutter-y: .5rem}.g-lg-3,.gx-lg-3{--bs-gutter-x: 1rem}.g-lg-3,.gy-lg-3{--bs-gutter-y: 1rem}.g-lg-4,.gx-lg-4{--bs-gutter-x: 1.5rem}.g-lg-4,.gy-lg-4{--bs-gutter-y: 1.5rem}.g-lg-5,.gx-lg-5{--bs-gutter-x: 3rem}.g-lg-5,.gy-lg-5{--bs-gutter-y: 3rem}}@media (min-width: 1200px){.col-xl{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-xl-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-xl-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-xl-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-xl-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-xl-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-xl-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-xl-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xl-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-xl-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-xl-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xl-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-xl-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-xl-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-xl-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-xl-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-xl-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-xl-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-xl-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-xl-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-xl-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333%}.offset-xl-2{margin-left:16.66667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333%}.offset-xl-5{margin-left:41.66667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333%}.offset-xl-8{margin-left:66.66667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333%}.offset-xl-11{margin-left:91.66667%}.g-xl-0,.gx-xl-0{--bs-gutter-x: 0}.g-xl-0,.gy-xl-0{--bs-gutter-y: 0}.g-xl-1,.gx-xl-1{--bs-gutter-x: .25rem}.g-xl-1,.gy-xl-1{--bs-gutter-y: .25rem}.g-xl-2,.gx-xl-2{--bs-gutter-x: .5rem}.g-xl-2,.gy-xl-2{--bs-gutter-y: .5rem}.g-xl-3,.gx-xl-3{--bs-gutter-x: 1rem}.g-xl-3,.gy-xl-3{--bs-gutter-y: 1rem}.g-xl-4,.gx-xl-4{--bs-gutter-x: 1.5rem}.g-xl-4,.gy-xl-4{--bs-gutter-y: 1.5rem}.g-xl-5,.gx-xl-5{--bs-gutter-x: 3rem}.g-xl-5,.gy-xl-5{--bs-gutter-y: 3rem}}@media (min-width: 1400px){.col-xxl{flex:1 0 0%;-webkit-flex:1 0 0%}.row-cols-xxl-auto>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.row-cols-xxl-1>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.row-cols-xxl-2>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.row-cols-xxl-3>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.row-cols-xxl-4>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.row-cols-xxl-5>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:20%}.row-cols-xxl-6>*{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xxl-auto{flex:0 0 auto;-webkit-flex:0 0 auto;width:auto}.col-xxl-1{flex:0 0 auto;-webkit-flex:0 0 auto;width:8.33333%}.col-xxl-2{flex:0 0 auto;-webkit-flex:0 0 auto;width:16.66667%}.col-xxl-3{flex:0 0 auto;-webkit-flex:0 0 auto;width:25%}.col-xxl-4{flex:0 0 auto;-webkit-flex:0 0 auto;width:33.33333%}.col-xxl-5{flex:0 0 auto;-webkit-flex:0 0 auto;width:41.66667%}.col-xxl-6{flex:0 0 auto;-webkit-flex:0 0 auto;width:50%}.col-xxl-7{flex:0 0 auto;-webkit-flex:0 0 auto;width:58.33333%}.col-xxl-8{flex:0 0 auto;-webkit-flex:0 0 auto;width:66.66667%}.col-xxl-9{flex:0 0 auto;-webkit-flex:0 0 auto;width:75%}.col-xxl-10{flex:0 0 auto;-webkit-flex:0 0 auto;width:83.33333%}.col-xxl-11{flex:0 0 auto;-webkit-flex:0 0 auto;width:91.66667%}.col-xxl-12{flex:0 0 auto;-webkit-flex:0 0 auto;width:100%}.offset-xxl-0{margin-left:0}.offset-xxl-1{margin-left:8.33333%}.offset-xxl-2{margin-left:16.66667%}.offset-xxl-3{margin-left:25%}.offset-xxl-4{margin-left:33.33333%}.offset-xxl-5{margin-left:41.66667%}.offset-xxl-6{margin-left:50%}.offset-xxl-7{margin-left:58.33333%}.offset-xxl-8{margin-left:66.66667%}.offset-xxl-9{margin-left:75%}.offset-xxl-10{margin-left:83.33333%}.offset-xxl-11{margin-left:91.66667%}.g-xxl-0,.gx-xxl-0{--bs-gutter-x: 0}.g-xxl-0,.gy-xxl-0{--bs-gutter-y: 0}.g-xxl-1,.gx-xxl-1{--bs-gutter-x: .25rem}.g-xxl-1,.gy-xxl-1{--bs-gutter-y: .25rem}.g-xxl-2,.gx-xxl-2{--bs-gutter-x: .5rem}.g-xxl-2,.gy-xxl-2{--bs-gutter-y: .5rem}.g-xxl-3,.gx-xxl-3{--bs-gutter-x: 1rem}.g-xxl-3,.gy-xxl-3{--bs-gutter-y: 1rem}.g-xxl-4,.gx-xxl-4{--bs-gutter-x: 1.5rem}.g-xxl-4,.gy-xxl-4{--bs-gutter-y: 1.5rem}.g-xxl-5,.gx-xxl-5{--bs-gutter-x: 3rem}.g-xxl-5,.gy-xxl-5{--bs-gutter-y: 3rem}}.table{--bs-table-color-type: initial;--bs-table-bg-type: initial;--bs-table-color-state: initial;--bs-table-bg-state: initial;--bs-table-color: var(--bs-body-color);--bs-table-bg: var(--bs-body-bg);--bs-table-border-color: var(--bs-border-color);--bs-table-accent-bg: rgba(0,0,0,0);--bs-table-striped-color: var(--bs-body-color);--bs-table-striped-bg: rgba(0,0,0,0.05);--bs-table-active-color: var(--bs-body-color);--bs-table-active-bg: rgba(0,0,0,0.1);--bs-table-hover-color: var(--bs-body-color);--bs-table-hover-bg: rgba(0,0,0,0.075);width:100%;margin-bottom:1rem;vertical-align:top;border-color:var(--bs-table-border-color)}.table>:not(caption)>*>*{padding:.5rem .5rem;color:var(--bs-table-color-state, var(--bs-table-color-type, var(--bs-table-color)));background-color:var(--bs-table-bg);border-bottom-width:var(--bs-border-width);box-shadow:inset 0 0 0 9999px var(--bs-table-bg-state, var(--bs-table-bg-type, var(--bs-table-accent-bg)))}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table-group-divider{border-top:calc(var(--bs-border-width) * 2) solid currentcolor}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:var(--bs-border-width) 0}.table-bordered>:not(caption)>*>*{border-width:0 var(--bs-border-width)}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-striped-columns>:not(caption)>tr>:nth-child(even){--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-active{--bs-table-color-state: var(--bs-table-active-color);--bs-table-bg-state: var(--bs-table-active-bg)}.table-hover>tbody>tr:hover>*{--bs-table-color-state: var(--bs-table-hover-color);--bs-table-bg-state: var(--bs-table-hover-bg)}.table-primary{--bs-table-color: #000;--bs-table-bg: #cfe2ff;--bs-table-border-color: #bacbe6;--bs-table-striped-bg: #c5d7f2;--bs-table-striped-color: #000;--bs-table-active-bg: #bacbe6;--bs-table-active-color: #000;--bs-table-hover-bg: #bfd1ec;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-secondary{--bs-table-color: #000;--bs-table-bg: #e2e3e5;--bs-table-border-color: #cbccce;--bs-table-striped-bg: #d7d8da;--bs-table-striped-color: #000;--bs-table-active-bg: #cbccce;--bs-table-active-color: #000;--bs-table-hover-bg: #d1d2d4;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-success{--bs-table-color: #000;--bs-table-bg: #d1e7dd;--bs-table-border-color: #bcd0c7;--bs-table-striped-bg: #c7dbd2;--bs-table-striped-color: #000;--bs-table-active-bg: #bcd0c7;--bs-table-active-color: #000;--bs-table-hover-bg: #c1d6cc;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-info{--bs-table-color: #000;--bs-table-bg: #cff4fc;--bs-table-border-color: #badce3;--bs-table-striped-bg: #c5e8ef;--bs-table-striped-color: #000;--bs-table-active-bg: #badce3;--bs-table-active-color: #000;--bs-table-hover-bg: #bfe2e9;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-warning{--bs-table-color: #000;--bs-table-bg: #fff3cd;--bs-table-border-color: #e6dbb9;--bs-table-striped-bg: #f2e7c3;--bs-table-striped-color: #000;--bs-table-active-bg: #e6dbb9;--bs-table-active-color: #000;--bs-table-hover-bg: #ece1be;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-danger{--bs-table-color: #000;--bs-table-bg: #f8d7da;--bs-table-border-color: #dfc2c4;--bs-table-striped-bg: #eccccf;--bs-table-striped-color: #000;--bs-table-active-bg: #dfc2c4;--bs-table-active-color: #000;--bs-table-hover-bg: #e5c7ca;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-light{--bs-table-color: #000;--bs-table-bg: #f8f9fa;--bs-table-border-color: #dfe0e1;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-dark{--bs-table-color: #fff;--bs-table-bg: #212529;--bs-table-border-color: #373b3e;--bs-table-striped-bg: #2c3034;--bs-table-striped-color: #fff;--bs-table-active-bg: #373b3e;--bs-table-active-color: #fff;--bs-table-hover-bg: #323539;--bs-table-hover-color: #fff;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media (max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media (max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(.375rem + var(--bs-border-width));padding-bottom:calc(.375rem + var(--bs-border-width));margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + var(--bs-border-width));padding-bottom:calc(.5rem + var(--bs-border-width));font-size:1.25rem}.col-form-label-sm{padding-top:calc(.25rem + var(--bs-border-width));padding-bottom:calc(.25rem + var(--bs-border-width));font-size:.875rem}.form-text{margin-top:.25rem;font-size:.875em;color:var(--bs-secondary-color)}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:var(--bs-body-color);appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-body-bg);background-clip:padding-box;border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius);transition:border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type="file"]{overflow:hidden}.form-control[type="file"]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:var(--bs-body-color);background-color:var(--bs-body-bg);border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.form-control::-webkit-date-and-time-value{min-width:85px;height:1.5em;margin:0}.form-control::-webkit-datetime-edit{display:block;padding:0}.form-control::placeholder{color:var(--bs-secondary-color);opacity:1}.form-control:disabled{background-color:var(--bs-secondary-bg);opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-.375rem -.75rem;margin-inline-end:.75rem;color:var(--bs-body-color);background-color:var(--bs-tertiary-bg);pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:var(--bs-border-width);border-radius:0;transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:var(--bs-secondary-bg)}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:var(--bs-body-color);background-color:transparent;border:solid transparent;border-width:var(--bs-border-width) 0}.form-control-plaintext:focus{outline:0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + .5rem + calc(var(--bs-border-width) * 2));padding:.25rem .5rem;font-size:.875rem;border-radius:var(--bs-border-radius-sm)}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-.25rem -.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + calc(var(--bs-border-width) * 2));padding:.5rem 1rem;font-size:1.25rem;border-radius:var(--bs-border-radius-lg)}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + .75rem + calc(var(--bs-border-width) * 2))}textarea.form-control-sm{min-height:calc(1.5em + .5rem + calc(var(--bs-border-width) * 2))}textarea.form-control-lg{min-height:calc(1.5em + 1rem + calc(var(--bs-border-width) * 2))}.form-control-color{width:3rem;height:calc(1.5em + .75rem + calc(var(--bs-border-width) * 2));padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{border:0 !important;border-radius:var(--bs-border-radius)}.form-control-color::-webkit-color-swatch{border:0 !important;border-radius:var(--bs-border-radius)}.form-control-color.form-control-sm{height:calc(1.5em + .5rem + calc(var(--bs-border-width) * 2))}.form-control-color.form-control-lg{height:calc(1.5em + 1rem + calc(var(--bs-border-width) * 2))}.form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e");display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:var(--bs-body-color);appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-body-bg);background-image:var(--bs-form-select-bg-img),var(--bs-form-select-bg-icon, none);background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius);transition:border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:var(--bs-secondary-bg)}.form-select:-moz-focusring{color:transparent;text-shadow:0 0 0 var(--bs-body-color)}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem;border-radius:var(--bs-border-radius-sm)}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem;border-radius:var(--bs-border-radius-lg)}[data-bs-theme="dark"] .form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23dee2e6' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e")}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-reverse{padding-right:0;padding-left:0;text-align:right}.form-check-reverse .form-check-input{float:right;margin-right:0;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{--bs-form-check-bg: var(--bs-body-bg);width:1em;height:1em;margin-top:.25em;vertical-align:top;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-form-check-bg);background-image:var(--bs-form-check-bg-image);background-repeat:no-repeat;background-position:center;background-size:contain;border:var(--bs-border-width) solid var(--bs-border-color);print-color-adjust:exact}.form-check-input[type="checkbox"],.shiny-input-container .checkbox input[type="checkbox"],.shiny-input-container .checkbox-inline input[type="checkbox"],.shiny-input-container .radio input[type="checkbox"],.shiny-input-container .radio-inline input[type="checkbox"]{border-radius:.25em}.form-check-input[type="radio"],.shiny-input-container .checkbox input[type="radio"],.shiny-input-container .checkbox-inline input[type="radio"],.shiny-input-container .radio input[type="radio"],.shiny-input-container .radio-inline input[type="radio"]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#0d6efd;border-color:#0d6efd}.form-check-input:checked[type="checkbox"],.shiny-input-container .checkbox input:checked[type="checkbox"],.shiny-input-container .checkbox-inline input:checked[type="checkbox"],.shiny-input-container .radio input:checked[type="checkbox"],.shiny-input-container .radio-inline input:checked[type="checkbox"]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='m6 10 3 3 6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type="radio"],.shiny-input-container .checkbox input:checked[type="radio"],.shiny-input-container .checkbox-inline input:checked[type="radio"],.shiny-input-container .radio input:checked[type="radio"],.shiny-input-container .radio-inline input:checked[type="radio"]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23fff'/%3e%3c/svg%3e")}.form-check-input[type="checkbox"]:indeterminate,.shiny-input-container .checkbox input[type="checkbox"]:indeterminate,.shiny-input-container .checkbox-inline input[type="checkbox"]:indeterminate,.shiny-input-container .radio input[type="checkbox"]:indeterminate,.shiny-input-container .radio-inline input[type="checkbox"]:indeterminate{background-color:#0d6efd;border-color:#0d6efd;--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{cursor:default;opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280,0,0,0.25%29'/%3e%3c/svg%3e");width:2em;margin-left:-2.5em;background-image:var(--bs-form-switch-bg);background-position:left center;border-radius:2em;transition:background-position 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2386b7fe'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.form-switch.form-check-reverse{padding-right:2.5em;padding-left:0}.form-switch.form-check-reverse .form-check-input{margin-right:-2.5em;margin-left:0}.form-check-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}[data-bs-theme="dark"] .form-switch .form-check-input:not(:checked):not(:focus){--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%28255,255,255,0.25%29'/%3e%3c/svg%3e")}.form-range{width:100%;height:1.5rem;padding:0;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:transparent}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,0.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,0.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#b6d4fe}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:var(--bs-tertiary-bg);border-color:transparent;border-radius:1rem}.form-range::-moz-range-thumb{width:1rem;height:1rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#b6d4fe}.form-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:var(--bs-tertiary-bg);border-color:transparent;border-radius:1rem}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:var(--bs-secondary-color)}.form-range:disabled::-moz-range-thumb{background-color:var(--bs-secondary-color)}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-control-plaintext,.form-floating>.form-select{height:calc(3.5rem + calc(var(--bs-border-width) * 2));min-height:calc(3.5rem + calc(var(--bs-border-width) * 2));line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;z-index:2;height:100%;padding:1rem .75rem;overflow:hidden;text-align:start;text-overflow:ellipsis;white-space:nowrap;pointer-events:none;border:var(--bs-border-width) solid transparent;transform-origin:0 0;transition:opacity 0.1s ease-in-out,transform 0.1s ease-in-out}@media (prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control,.form-floating>.form-control-plaintext{padding:1rem .75rem}.form-floating>.form-control::placeholder,.form-floating>.form-control-plaintext::placeholder{color:transparent}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown),.form-floating>.form-control-plaintext:focus,.form-floating>.form-control-plaintext:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill,.form-floating>.form-control-plaintext:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-control-plaintext~label,.form-floating>.form-select~label{color:rgba(var(--bs-body-color-rgb), .65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:focus~label::after,.form-floating>.form-control:not(:placeholder-shown)~label::after,.form-floating>.form-control-plaintext~label::after,.form-floating>.form-select~label::after{position:absolute;inset:1rem .375rem;z-index:-1;height:1.5em;content:"";background-color:var(--bs-body-bg);border-radius:var(--bs-border-radius)}.form-floating>.form-control:-webkit-autofill~label{color:rgba(var(--bs-body-color-rgb), .65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control-plaintext~label{border-width:var(--bs-border-width) 0}.form-floating>:disabled~label,.form-floating>.form-control:disabled~label{color:#6c757d}.form-floating>:disabled~label::after,.form-floating>.form-control:disabled~label::after{background-color:var(--bs-secondary-bg)}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select,.input-group>.form-floating{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus,.input-group>.form-floating:focus-within{z-index:5}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:5}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:var(--bs-body-color);text-align:center;white-space:nowrap;background-color:var(--bs-tertiary-bg);border:var(--bs-border-width) solid var(--bs-border-color);border-radius:var(--bs-border-radius)}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem;border-radius:var(--bs-border-radius-lg)}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:.875rem;border-radius:var(--bs-border-radius-sm)}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group:not(.has-validation)>:not(:last-child):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group:not(.has-validation)>.dropdown-toggle:nth-last-child(n + 3),.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-control,.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>:nth-last-child(n + 3):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group.has-validation>.dropdown-toggle:nth-last-child(n + 4),.input-group.has-validation>.form-floating:nth-last-child(n + 3)>.form-control,.input-group.has-validation>.form-floating:nth-last-child(n + 3)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:calc(var(--bs-border-width) * -1);border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.form-floating:not(:first-child)>.form-control,.input-group>.form-floating:not(:first-child)>.form-select{border-top-left-radius:0;border-bottom-left-radius:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:.875em;color:var(--bs-form-valid-color)}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;color:#fff;background-color:var(--bs-success);border-radius:var(--bs-border-radius)}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:var(--bs-form-valid-border-color);padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:var(--bs-form-valid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-success-rgb), 0.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:var(--bs-form-valid-border-color)}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:var(--bs-form-valid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-success-rgb), 0.25)}.was-validated .form-control-color:valid,.form-control-color.is-valid{width:calc(3rem + calc(1.5em + .75rem))}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:var(--bs-form-valid-border-color)}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:var(--bs-form-valid-color)}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(var(--bs-success-rgb), 0.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:var(--bs-form-valid-color)}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):valid,.input-group>.form-control:not(:focus).is-valid,.was-validated .input-group>.form-select:not(:focus):valid,.input-group>.form-select:not(:focus).is-valid,.was-validated .input-group>.form-floating:not(:focus-within):valid,.input-group>.form-floating:not(:focus-within).is-valid{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:.875em;color:var(--bs-form-invalid-color)}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;color:#fff;background-color:var(--bs-danger);border-radius:var(--bs-border-radius)}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:var(--bs-form-invalid-border-color);padding-right:calc(1.5em + .75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:var(--bs-form-invalid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-danger-rgb), 0.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:var(--bs-form-invalid-border-color)}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(.75em + .375rem) calc(.75em + .375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:var(--bs-form-invalid-border-color);box-shadow:0 0 0 .25rem rgba(var(--bs-danger-rgb), 0.25)}.was-validated .form-control-color:invalid,.form-control-color.is-invalid{width:calc(3rem + calc(1.5em + .75rem))}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:var(--bs-form-invalid-border-color)}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:var(--bs-form-invalid-color)}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(var(--bs-danger-rgb), 0.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:var(--bs-form-invalid-color)}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):invalid,.input-group>.form-control:not(:focus).is-invalid,.was-validated .input-group>.form-select:not(:focus):invalid,.input-group>.form-select:not(:focus).is-invalid,.was-validated .input-group>.form-floating:not(:focus-within):invalid,.input-group>.form-floating:not(:focus-within).is-invalid{z-index:4}.btn{--bs-btn-padding-x: .75rem;--bs-btn-padding-y: .375rem;--bs-btn-font-family: ;--bs-btn-font-size:1rem;--bs-btn-font-weight: 400;--bs-btn-line-height: 1.5;--bs-btn-color: var(--bs-body-color);--bs-btn-bg: transparent;--bs-btn-border-width: var(--bs-border-width);--bs-btn-border-color: transparent;--bs-btn-border-radius: var(--bs-border-radius);--bs-btn-hover-border-color: transparent;--bs-btn-box-shadow: inset 0 1px 0 rgba(255,255,255,0.15),0 1px 1px rgba(0,0,0,0.075);--bs-btn-disabled-opacity: .65;--bs-btn-focus-box-shadow: 0 0 0 .25rem rgba(var(--bs-btn-focus-shadow-rgb), .5);display:inline-block;padding:var(--bs-btn-padding-y) var(--bs-btn-padding-x);font-family:var(--bs-btn-font-family);font-size:var(--bs-btn-font-size);font-weight:var(--bs-btn-font-weight);line-height:var(--bs-btn-line-height);color:var(--bs-btn-color);text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;border:var(--bs-btn-border-width) solid var(--bs-btn-border-color);border-radius:var(--bs-btn-border-radius);background-color:var(--bs-btn-bg);transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color)}.btn-check+.btn:hover{color:var(--bs-btn-color);background-color:var(--bs-btn-bg);border-color:var(--bs-btn-border-color)}.btn:focus-visible{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:focus-visible+.btn{border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:checked+.btn,:not(.btn-check)+.btn:active,.btn:first-child:active,.btn.active,.btn.show{color:var(--bs-btn-active-color);background-color:var(--bs-btn-active-bg);border-color:var(--bs-btn-active-border-color)}.btn-check:checked+.btn:focus-visible,:not(.btn-check)+.btn:active:focus-visible,.btn:first-child:active:focus-visible,.btn.active:focus-visible,.btn.show:focus-visible{box-shadow:var(--bs-btn-focus-box-shadow)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{color:var(--bs-btn-disabled-color);pointer-events:none;background-color:var(--bs-btn-disabled-bg);border-color:var(--bs-btn-disabled-border-color);opacity:var(--bs-btn-disabled-opacity)}.btn-default{--bs-btn-color: #000;--bs-btn-bg: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #e3e6ea;--bs-btn-hover-border-color: #e1e5e9;--bs-btn-focus-shadow-rgb: 189,192,196;--bs-btn-active-color: #000;--bs-btn-active-bg: #e5e8eb;--bs-btn-active-border-color: #e1e5e9;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #dee2e6;--bs-btn-disabled-border-color: #dee2e6}.btn-primary{--bs-btn-color: #fff;--bs-btn-bg: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #0b5ed7;--bs-btn-hover-border-color: #0a58ca;--bs-btn-focus-shadow-rgb: 49,132,253;--bs-btn-active-color: #fff;--bs-btn-active-bg: #0a58ca;--bs-btn-active-border-color: #0a53be;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #0d6efd;--bs-btn-disabled-border-color: #0d6efd}.btn-secondary{--bs-btn-color: #fff;--bs-btn-bg: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #5c636a;--bs-btn-hover-border-color: #565e64;--bs-btn-focus-shadow-rgb: 130,138,145;--bs-btn-active-color: #fff;--bs-btn-active-bg: #565e64;--bs-btn-active-border-color: #51585e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #6c757d;--bs-btn-disabled-border-color: #6c757d}.btn-success{--bs-btn-color: #fff;--bs-btn-bg: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #157347;--bs-btn-hover-border-color: #146c43;--bs-btn-focus-shadow-rgb: 60,153,110;--bs-btn-active-color: #fff;--bs-btn-active-bg: #146c43;--bs-btn-active-border-color: #13653f;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #198754;--bs-btn-disabled-border-color: #198754}.btn-info{--bs-btn-color: #000;--bs-btn-bg: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #31d2f2;--bs-btn-hover-border-color: #25cff2;--bs-btn-focus-shadow-rgb: 11,172,204;--bs-btn-active-color: #000;--bs-btn-active-bg: #3dd5f3;--bs-btn-active-border-color: #25cff2;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #0dcaf0;--bs-btn-disabled-border-color: #0dcaf0}.btn-warning{--bs-btn-color: #000;--bs-btn-bg: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffca2c;--bs-btn-hover-border-color: #ffc720;--bs-btn-focus-shadow-rgb: 217,164,6;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffcd39;--bs-btn-active-border-color: #ffc720;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #ffc107;--bs-btn-disabled-border-color: #ffc107}.btn-danger{--bs-btn-color: #fff;--bs-btn-bg: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #bb2d3b;--bs-btn-hover-border-color: #b02a37;--bs-btn-focus-shadow-rgb: 225,83,97;--bs-btn-active-color: #fff;--bs-btn-active-bg: #b02a37;--bs-btn-active-border-color: #a52834;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #dc3545;--bs-btn-disabled-border-color: #dc3545}.btn-light{--bs-btn-color: #000;--bs-btn-bg: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #d3d4d5;--bs-btn-hover-border-color: #c6c7c8;--bs-btn-focus-shadow-rgb: 211,212,213;--bs-btn-active-color: #000;--bs-btn-active-bg: #c6c7c8;--bs-btn-active-border-color: #babbbc;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #f8f9fa;--bs-btn-disabled-border-color: #f8f9fa}.btn-dark{--bs-btn-color: #fff;--bs-btn-bg: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #424649;--bs-btn-hover-border-color: #373b3e;--bs-btn-focus-shadow-rgb: 66,70,73;--bs-btn-active-color: #fff;--bs-btn-active-bg: #4d5154;--bs-btn-active-border-color: #373b3e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #fff;--bs-btn-disabled-bg: #212529;--bs-btn-disabled-border-color: #212529}.btn-outline-default{--bs-btn-color: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #dee2e6;--bs-btn-hover-border-color: #dee2e6;--bs-btn-focus-shadow-rgb: 222,226,230;--bs-btn-active-color: #000;--bs-btn-active-bg: #dee2e6;--bs-btn-active-border-color: #dee2e6;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #dee2e6;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dee2e6;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-primary{--bs-btn-color: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #0d6efd;--bs-btn-hover-border-color: #0d6efd;--bs-btn-focus-shadow-rgb: 13,110,253;--bs-btn-active-color: #fff;--bs-btn-active-bg: #0d6efd;--bs-btn-active-border-color: #0d6efd;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #0d6efd;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0d6efd;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-secondary{--bs-btn-color: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #6c757d;--bs-btn-hover-border-color: #6c757d;--bs-btn-focus-shadow-rgb: 108,117,125;--bs-btn-active-color: #fff;--bs-btn-active-bg: #6c757d;--bs-btn-active-border-color: #6c757d;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #6c757d;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-success{--bs-btn-color: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #198754;--bs-btn-hover-border-color: #198754;--bs-btn-focus-shadow-rgb: 25,135,84;--bs-btn-active-color: #fff;--bs-btn-active-bg: #198754;--bs-btn-active-border-color: #198754;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #198754;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #198754;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-info{--bs-btn-color: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #0dcaf0;--bs-btn-hover-border-color: #0dcaf0;--bs-btn-focus-shadow-rgb: 13,202,240;--bs-btn-active-color: #000;--bs-btn-active-bg: #0dcaf0;--bs-btn-active-border-color: #0dcaf0;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #0dcaf0;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0dcaf0;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-warning{--bs-btn-color: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffc107;--bs-btn-hover-border-color: #ffc107;--bs-btn-focus-shadow-rgb: 255,193,7;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffc107;--bs-btn-active-border-color: #ffc107;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #ffc107;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ffc107;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-danger{--bs-btn-color: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #dc3545;--bs-btn-hover-border-color: #dc3545;--bs-btn-focus-shadow-rgb: 220,53,69;--bs-btn-active-color: #fff;--bs-btn-active-bg: #dc3545;--bs-btn-active-border-color: #dc3545;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #dc3545;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dc3545;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-light{--bs-btn-color: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #f8f9fa;--bs-btn-hover-border-color: #f8f9fa;--bs-btn-focus-shadow-rgb: 248,249,250;--bs-btn-active-color: #000;--bs-btn-active-bg: #f8f9fa;--bs-btn-active-border-color: #f8f9fa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #f8f9fa;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #f8f9fa;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-dark{--bs-btn-color: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #fff;--bs-btn-hover-bg: #212529;--bs-btn-hover-border-color: #212529;--bs-btn-focus-shadow-rgb: 33,37,41;--bs-btn-active-color: #fff;--bs-btn-active-bg: #212529;--bs-btn-active-border-color: #212529;--bs-btn-active-shadow: inset 0 3px 5px rgba(0,0,0,0.125);--bs-btn-disabled-color: #212529;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #212529;--bs-btn-bg: transparent;--bs-gradient: none}.btn-link{--bs-btn-font-weight: 400;--bs-btn-color: var(--bs-link-color);--bs-btn-bg: transparent;--bs-btn-border-color: transparent;--bs-btn-hover-color: var(--bs-link-hover-color);--bs-btn-hover-border-color: transparent;--bs-btn-active-color: var(--bs-link-hover-color);--bs-btn-active-border-color: transparent;--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-border-color: transparent;--bs-btn-box-shadow: 0 0 0 #000;--bs-btn-focus-shadow-rgb: 49,132,253;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:focus-visible{color:var(--bs-btn-color)}.btn-link:hover{color:var(--bs-btn-hover-color)}.btn-lg,.btn-group-lg>.btn{--bs-btn-padding-y: .5rem;--bs-btn-padding-x: 1rem;--bs-btn-font-size:1.25rem;--bs-btn-border-radius: var(--bs-border-radius-lg)}.btn-sm,.btn-group-sm>.btn{--bs-btn-padding-y: .25rem;--bs-btn-padding-x: .5rem;--bs-btn-font-size:.875rem;--bs-btn-border-radius: var(--bs-border-radius-sm)}.fade{transition:opacity 0.15s linear}@media (prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height 0.35s ease}@media (prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width 0.35s ease}@media (prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart,.dropup-center,.dropdown-center{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{--bs-dropdown-zindex: 1000;--bs-dropdown-min-width: 10rem;--bs-dropdown-padding-x: 0;--bs-dropdown-padding-y: .5rem;--bs-dropdown-spacer: .125rem;--bs-dropdown-font-size:1rem;--bs-dropdown-color: var(--bs-body-color);--bs-dropdown-bg: var(--bs-body-bg);--bs-dropdown-border-color: var(--bs-border-color-translucent);--bs-dropdown-border-radius: var(--bs-border-radius);--bs-dropdown-border-width: var(--bs-border-width);--bs-dropdown-inner-border-radius: calc(var(--bs-border-radius) - var(--bs-border-width));--bs-dropdown-divider-bg: var(--bs-border-color-translucent);--bs-dropdown-divider-margin-y: .5rem;--bs-dropdown-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15);--bs-dropdown-link-color: var(--bs-body-color);--bs-dropdown-link-hover-color: var(--bs-body-color);--bs-dropdown-link-hover-bg: var(--bs-tertiary-bg);--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: var(--bs-tertiary-color);--bs-dropdown-item-padding-x: 1rem;--bs-dropdown-item-padding-y: .25rem;--bs-dropdown-header-color: #6c757d;--bs-dropdown-header-padding-x: 1rem;--bs-dropdown-header-padding-y: .5rem;position:absolute;z-index:var(--bs-dropdown-zindex);display:none;min-width:var(--bs-dropdown-min-width);padding:var(--bs-dropdown-padding-y) var(--bs-dropdown-padding-x);margin:0;font-size:var(--bs-dropdown-font-size);color:var(--bs-dropdown-color);text-align:left;list-style:none;background-color:var(--bs-dropdown-bg);background-clip:padding-box;border:var(--bs-dropdown-border-width) solid var(--bs-dropdown-border-color);border-radius:var(--bs-dropdown-border-radius)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:var(--bs-dropdown-spacer)}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media (min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media (min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:var(--bs-dropdown-spacer)}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:var(--bs-dropdown-spacer)}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:var(--bs-dropdown-spacer)}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:var(--bs-dropdown-divider-margin-y) 0;overflow:hidden;border-top:1px solid var(--bs-dropdown-divider-bg);opacity:1}.dropdown-item{display:block;width:100%;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);clear:both;font-weight:400;color:var(--bs-dropdown-link-color);text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:transparent;border:0;border-radius:var(--bs-dropdown-item-border-radius, 0)}.dropdown-item:hover,.dropdown-item:focus{color:var(--bs-dropdown-link-hover-color);background-color:var(--bs-dropdown-link-hover-bg)}.dropdown-item.active,.dropdown-item:active{color:var(--bs-dropdown-link-active-color);text-decoration:none;background-color:var(--bs-dropdown-link-active-bg)}.dropdown-item.disabled,.dropdown-item:disabled{color:var(--bs-dropdown-link-disabled-color);pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:var(--bs-dropdown-header-padding-y) var(--bs-dropdown-header-padding-x);margin-bottom:0;font-size:.875rem;color:var(--bs-dropdown-header-color);white-space:nowrap}.dropdown-item-text{display:block;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);color:var(--bs-dropdown-link-color)}.dropdown-menu-dark{--bs-dropdown-color: #dee2e6;--bs-dropdown-bg: #343a40;--bs-dropdown-border-color: var(--bs-border-color-translucent);--bs-dropdown-box-shadow: ;--bs-dropdown-link-color: #dee2e6;--bs-dropdown-link-hover-color: #fff;--bs-dropdown-divider-bg: var(--bs-border-color-translucent);--bs-dropdown-link-hover-bg: rgba(255,255,255,0.15);--bs-dropdown-link-active-color: #fff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: #adb5bd;--bs-dropdown-header-color: #adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group{border-radius:var(--bs-border-radius)}.btn-group>:not(.btn-check:first-child)+.btn,.btn-group>.btn-group:not(:first-child){margin-left:calc(var(--bs-border-width) * -1)}.btn-group>.btn:not(:last-child):not(.dropdown-toggle),.btn-group>.btn.dropdown-toggle-split:first-child,.btn-group>.btn-group:not(:last-child)>.btn{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:nth-child(n + 3),.btn-group>:not(.btn-check)+.btn,.btn-group>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:calc(var(--bs-border-width) * -1)}.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle),.btn-group-vertical>.btn-group:not(:last-child)>.btn{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn~.btn,.btn-group-vertical>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-top-right-radius:0}.nav{--bs-nav-link-padding-x: 1rem;--bs-nav-link-padding-y: .5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-link-color);--bs-nav-link-hover-color: var(--bs-link-hover-color);--bs-nav-link-disabled-color: var(--bs-secondary-color);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:var(--bs-nav-link-padding-y) var(--bs-nav-link-padding-x);font-size:var(--bs-nav-link-font-size);font-weight:var(--bs-nav-link-font-weight);color:var(--bs-nav-link-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background:none;border:0;transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:var(--bs-nav-link-hover-color)}.nav-link:focus-visible{outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,0.25)}.nav-link.disabled,.nav-link:disabled{color:var(--bs-nav-link-disabled-color);pointer-events:none;cursor:default}.nav-tabs{--bs-nav-tabs-border-width: var(--bs-border-width);--bs-nav-tabs-border-color: var(--bs-border-color);--bs-nav-tabs-border-radius: var(--bs-border-radius);--bs-nav-tabs-link-hover-border-color: var(--bs-secondary-bg) var(--bs-secondary-bg) var(--bs-border-color);--bs-nav-tabs-link-active-color: var(--bs-emphasis-color);--bs-nav-tabs-link-active-bg: var(--bs-body-bg);--bs-nav-tabs-link-active-border-color: var(--bs-border-color) var(--bs-border-color) var(--bs-body-bg);border-bottom:var(--bs-nav-tabs-border-width) solid var(--bs-nav-tabs-border-color)}.nav-tabs .nav-link{margin-bottom:calc(-1 * var(--bs-nav-tabs-border-width));border:var(--bs-nav-tabs-border-width) solid transparent;border-top-left-radius:var(--bs-nav-tabs-border-radius);border-top-right-radius:var(--bs-nav-tabs-border-radius)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{isolation:isolate;border-color:var(--bs-nav-tabs-link-hover-border-color)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:var(--bs-nav-tabs-link-active-color);background-color:var(--bs-nav-tabs-link-active-bg);border-color:var(--bs-nav-tabs-link-active-border-color)}.nav-tabs .dropdown-menu{margin-top:calc(-1 * var(--bs-nav-tabs-border-width));border-top-left-radius:0;border-top-right-radius:0}.nav-pills{--bs-nav-pills-border-radius: var(--bs-border-radius);--bs-nav-pills-link-active-color: #fff;--bs-nav-pills-link-active-bg: #0d6efd}.nav-pills .nav-link{border-radius:var(--bs-nav-pills-border-radius)}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:var(--bs-nav-pills-link-active-color);background-color:var(--bs-nav-pills-link-active-bg)}.nav-underline{--bs-nav-underline-gap: 1rem;--bs-nav-underline-border-width: .125rem;--bs-nav-underline-link-active-color: var(--bs-emphasis-color);gap:var(--bs-nav-underline-gap)}.nav-underline .nav-link{padding-right:0;padding-left:0;border-bottom:var(--bs-nav-underline-border-width) solid transparent}.nav-underline .nav-link:hover,.nav-underline .nav-link:focus{border-bottom-color:currentcolor}.nav-underline .nav-link.active,.nav-underline .show>.nav-link{font-weight:700;color:var(--bs-nav-underline-link-active-color);border-bottom-color:currentcolor}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar,:where([data-bs-theme="light"]) .navbar{--bs-navbar-padding-x: 0;--bs-navbar-padding-y: .5rem;--bs-navbar-color: rgba(var(--bs-emphasis-color-rgb), 0.65);--bs-navbar-hover-color: rgba(var(--bs-emphasis-color-rgb), 0.8);--bs-navbar-disabled-color: rgba(var(--bs-emphasis-color-rgb), 0.3);--bs-navbar-active-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-padding-y: .3125rem;--bs-navbar-brand-margin-end: 1rem;--bs-navbar-brand-font-size: 1.25rem;--bs-navbar-brand-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-hover-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-nav-link-padding-x: .5rem;--bs-navbar-toggler-padding-y: .25rem;--bs-navbar-toggler-padding-x: .75rem;--bs-navbar-toggler-font-size: 1.25rem;--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%2833,37,41,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e");--bs-navbar-toggler-border-color: rgba(var(--bs-emphasis-color-rgb), 0.15);--bs-navbar-toggler-border-radius: var(--bs-border-radius);--bs-navbar-toggler-focus-width: .25rem;--bs-navbar-toggler-transition: box-shadow 0.15s ease-in-out}.navbar{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-navbar-padding-y) var(--bs-navbar-padding-x)}.navbar>.container,.navbar>.container-fluid,.navbar>.container-sm,.navbar>.container-md,.navbar>.container-lg,.navbar>.container-xl,.navbar>.container-xxl{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:var(--bs-navbar-brand-padding-y);padding-bottom:var(--bs-navbar-brand-padding-y);margin-right:var(--bs-navbar-brand-margin-end);font-size:var(--bs-navbar-brand-font-size);color:var(--bs-navbar-brand-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{color:var(--bs-navbar-brand-hover-color)}.navbar-nav{--bs-nav-link-padding-x: 0;--bs-nav-link-padding-y: .5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-navbar-color);--bs-nav-link-hover-color: var(--bs-navbar-hover-color);--bs-nav-link-disabled-color: var(--bs-navbar-disabled-color);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link.active,.navbar-nav .nav-link.show{color:var(--bs-navbar-active-color)}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-navbar-color)}.navbar-text a,.navbar-text a:hover,.navbar-text a:focus{color:var(--bs-navbar-active-color)}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:var(--bs-navbar-toggler-padding-y) var(--bs-navbar-toggler-padding-x);font-size:var(--bs-navbar-toggler-font-size);line-height:1;color:var(--bs-navbar-color);background-color:transparent;border:var(--bs-border-width) solid var(--bs-navbar-toggler-border-color);border-radius:var(--bs-navbar-toggler-border-radius);transition:var(--bs-navbar-toggler-transition)}@media (prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 var(--bs-navbar-toggler-focus-width)}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-image:var(--bs-navbar-toggler-icon-bg);background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media (min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-sm .offcanvas .offcanvas-header{display:none}.navbar-expand-sm .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-md .offcanvas .offcanvas-header{display:none}.navbar-expand-md .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-lg .offcanvas .offcanvas-header{display:none}.navbar-expand-lg .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xl .offcanvas .offcanvas-header{display:none}.navbar-expand-xl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media (min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xxl .offcanvas .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:transparent !important;border:0 !important;transform:none !important;transition:none}.navbar-expand .offcanvas .offcanvas-header{display:none}.navbar-expand .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-dark,:where([data-bs-theme="dark"]) .navbar,.navbar[data-bs-theme="dark"]{--bs-navbar-color: rgba(var(--bs-emphasis-color-rgb), 0.55);--bs-navbar-hover-color: rgba(var(--bs-emphasis-color-rgb), 0.75);--bs-navbar-disabled-color: rgba(var(--bs-emphasis-color-rgb), 0.25);--bs-navbar-active-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-hover-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-toggler-border-color: rgba(var(--bs-emphasis-color-rgb), 0.1);--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255,255,255,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}:where(.navbar[data-bs-theme="dark"] .navbar-toggler-icon){--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255,255,255,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}[data-bs-theme="dark"] :where(.navbar:not([data-bs-theme="light"]) .navbar-toggler-icon){--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255,255,255,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar[data-bs-theme="light"]{--bs-navbar-color: rgba(var(--bs-emphasis-color-rgb), 0.65);--bs-navbar-hover-color: rgba(var(--bs-emphasis-color-rgb), 0.8);--bs-navbar-disabled-color: rgba(var(--bs-emphasis-color-rgb), 0.3);--bs-navbar-active-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-brand-hover-color: rgba(var(--bs-emphasis-color-rgb), 1);--bs-navbar-toggler-border-color: rgba(var(--bs-emphasis-color-rgb), 0.15)}.navbar[data-bs-theme="light"] .navbar-toggler-icon{--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%2833,37,41,0.75%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.card{--bs-card-spacer-y: 1rem;--bs-card-spacer-x: 1rem;--bs-card-title-spacer-y: .5rem;--bs-card-title-color: ;--bs-card-subtitle-color: ;--bs-card-border-width: var(--bs-border-width);--bs-card-border-color: var(--bs-border-color-translucent);--bs-card-border-radius: var(--bs-border-radius);--bs-card-box-shadow: ;--bs-card-inner-border-radius: calc(var(--bs-border-radius) - (var(--bs-border-width)));--bs-card-cap-padding-y: .5rem;--bs-card-cap-padding-x: 1rem;--bs-card-cap-bg: rgba(var(--bs-body-color-rgb), 0.03);--bs-card-cap-color: ;--bs-card-height: ;--bs-card-color: ;--bs-card-bg: var(--bs-body-bg);--bs-card-img-overlay-padding: 1rem;--bs-card-group-margin: .75rem;position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;height:var(--bs-card-height);color:var(--bs-body-color);word-wrap:break-word;background-color:var(--bs-card-bg);background-clip:border-box;border:var(--bs-card-border-width) solid var(--bs-card-border-color);border-radius:var(--bs-card-border-radius)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-card-spacer-y) var(--bs-card-spacer-x);color:var(--bs-card-color)}.card-title{margin-bottom:var(--bs-card-title-spacer-y);color:var(--bs-card-title-color)}.card-subtitle{margin-top:calc(-.5 * var(--bs-card-title-spacer-y));margin-bottom:0;color:var(--bs-card-subtitle-color)}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:var(--bs-card-spacer-x)}.card-header{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);margin-bottom:0;color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-bottom:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-header:first-child{border-radius:var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius) 0 0}.card-footer{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-top:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-footer:last-child{border-radius:0 0 var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius)}.card-header-tabs{margin-right:calc(-.5 * var(--bs-card-cap-padding-x));margin-bottom:calc(-1 * var(--bs-card-cap-padding-y));margin-left:calc(-.5 * var(--bs-card-cap-padding-x));border-bottom:0}.card-header-tabs .nav-link.active{background-color:var(--bs-card-bg);border-bottom-color:var(--bs-card-bg)}.card-header-pills{margin-right:calc(-.5 * var(--bs-card-cap-padding-x));margin-left:calc(-.5 * var(--bs-card-cap-padding-x))}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:var(--bs-card-img-overlay-padding);border-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-img,.card-img-top{border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-bottom{border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card-group>.card{margin-bottom:var(--bs-card-group-margin)}@media (min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-img-top,.card-group>.card:not(:last-child) .card-header{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-img-bottom,.card-group>.card:not(:last-child) .card-footer{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-img-top,.card-group>.card:not(:first-child) .card-header{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-img-bottom,.card-group>.card:not(:first-child) .card-footer{border-bottom-left-radius:0}}.accordion{--bs-accordion-color: var(--bs-body-color);--bs-accordion-bg: var(--bs-body-bg);--bs-accordion-transition: color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out,border-radius 0.15s ease;--bs-accordion-border-color: var(--bs-border-color);--bs-accordion-border-width: var(--bs-border-width);--bs-accordion-border-radius: var(--bs-border-radius);--bs-accordion-inner-border-radius: calc(var(--bs-border-radius) - (var(--bs-border-width)));--bs-accordion-btn-padding-x: 1.25rem;--bs-accordion-btn-padding-y: 1rem;--bs-accordion-btn-color: var(--bs-body-color);--bs-accordion-btn-bg: var(--bs-accordion-bg);--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23212529'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-icon-width: 1.25rem;--bs-accordion-btn-icon-transform: rotate(-180deg);--bs-accordion-btn-icon-transition: transform 0.2s ease-in-out;--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23052c65'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-focus-border-color: #86b7fe;--bs-accordion-btn-focus-box-shadow: 0 0 0 .25rem rgba(13,110,253,0.25);--bs-accordion-body-padding-x: 1.25rem;--bs-accordion-body-padding-y: 1rem;--bs-accordion-active-color: var(--bs-primary-text-emphasis);--bs-accordion-active-bg: var(--bs-primary-bg-subtle)}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:var(--bs-accordion-btn-padding-y) var(--bs-accordion-btn-padding-x);font-size:1rem;color:var(--bs-accordion-btn-color);text-align:left;background-color:var(--bs-accordion-btn-bg);border:0;border-radius:0;overflow-anchor:none;transition:var(--bs-accordion-transition)}@media (prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:var(--bs-accordion-active-color);background-color:var(--bs-accordion-active-bg);box-shadow:inset 0 calc(-1 * var(--bs-accordion-border-width)) 0 var(--bs-accordion-border-color)}.accordion-button:not(.collapsed)::after{background-image:var(--bs-accordion-btn-active-icon);transform:var(--bs-accordion-btn-icon-transform)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:var(--bs-accordion-btn-icon-width);height:var(--bs-accordion-btn-icon-width);margin-left:auto;content:"";background-image:var(--bs-accordion-btn-icon);background-repeat:no-repeat;background-size:var(--bs-accordion-btn-icon-width);transition:var(--bs-accordion-btn-icon-transition)}@media (prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:var(--bs-accordion-btn-focus-border-color);outline:0;box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.accordion-header{margin-bottom:0}.accordion-item{color:var(--bs-accordion-color);background-color:var(--bs-accordion-bg);border:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.accordion-item:first-of-type{border-top-left-radius:var(--bs-accordion-border-radius);border-top-right-radius:var(--bs-accordion-border-radius)}.accordion-item:first-of-type .accordion-button{border-top-left-radius:var(--bs-accordion-inner-border-radius);border-top-right-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:not(:first-of-type){border-top:0}.accordion-item:last-of-type{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-item:last-of-type .accordion-button.collapsed{border-bottom-right-radius:var(--bs-accordion-inner-border-radius);border-bottom-left-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:last-of-type .accordion-collapse{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-body{padding:var(--bs-accordion-body-padding-y) var(--bs-accordion-body-padding-x)}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0;border-radius:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}.accordion-flush .accordion-item .accordion-button,.accordion-flush .accordion-item .accordion-button.collapsed{border-radius:0}[data-bs-theme="dark"] .accordion-button::after{--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.breadcrumb{--bs-breadcrumb-padding-x: 0;--bs-breadcrumb-padding-y: 0;--bs-breadcrumb-margin-bottom: 1rem;--bs-breadcrumb-bg: ;--bs-breadcrumb-border-radius: ;--bs-breadcrumb-divider-color: var(--bs-secondary-color);--bs-breadcrumb-item-padding-x: .5rem;--bs-breadcrumb-item-active-color: var(--bs-secondary-color);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:var(--bs-breadcrumb-padding-y) var(--bs-breadcrumb-padding-x);margin-bottom:var(--bs-breadcrumb-margin-bottom);font-size:var(--bs-breadcrumb-font-size);list-style:none;background-color:var(--bs-breadcrumb-bg);border-radius:var(--bs-breadcrumb-border-radius)}.breadcrumb-item+.breadcrumb-item{padding-left:var(--bs-breadcrumb-item-padding-x)}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:var(--bs-breadcrumb-item-padding-x);color:var(--bs-breadcrumb-divider-color);content:var(--bs-breadcrumb-divider, "/") /* rtl: var(--bs-breadcrumb-divider, "/") */}.breadcrumb-item.active{color:var(--bs-breadcrumb-item-active-color)}.pagination{--bs-pagination-padding-x: .75rem;--bs-pagination-padding-y: .375rem;--bs-pagination-font-size:1rem;--bs-pagination-color: var(--bs-link-color);--bs-pagination-bg: var(--bs-body-bg);--bs-pagination-border-width: var(--bs-border-width);--bs-pagination-border-color: var(--bs-border-color);--bs-pagination-border-radius: var(--bs-border-radius);--bs-pagination-hover-color: var(--bs-link-hover-color);--bs-pagination-hover-bg: var(--bs-tertiary-bg);--bs-pagination-hover-border-color: var(--bs-border-color);--bs-pagination-focus-color: var(--bs-link-hover-color);--bs-pagination-focus-bg: var(--bs-secondary-bg);--bs-pagination-focus-box-shadow: 0 0 0 .25rem rgba(13,110,253,0.25);--bs-pagination-active-color: #fff;--bs-pagination-active-bg: #0d6efd;--bs-pagination-active-border-color: #0d6efd;--bs-pagination-disabled-color: var(--bs-secondary-color);--bs-pagination-disabled-bg: var(--bs-secondary-bg);--bs-pagination-disabled-border-color: var(--bs-border-color);display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;padding:var(--bs-pagination-padding-y) var(--bs-pagination-padding-x);font-size:var(--bs-pagination-font-size);color:var(--bs-pagination-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-pagination-bg);border:var(--bs-pagination-border-width) solid var(--bs-pagination-border-color);transition:color 0.15s ease-in-out,background-color 0.15s ease-in-out,border-color 0.15s ease-in-out,box-shadow 0.15s ease-in-out}@media (prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:var(--bs-pagination-hover-color);background-color:var(--bs-pagination-hover-bg);border-color:var(--bs-pagination-hover-border-color)}.page-link:focus{z-index:3;color:var(--bs-pagination-focus-color);background-color:var(--bs-pagination-focus-bg);outline:0;box-shadow:var(--bs-pagination-focus-box-shadow)}.page-link.active,.active>.page-link{z-index:3;color:var(--bs-pagination-active-color);background-color:var(--bs-pagination-active-bg);border-color:var(--bs-pagination-active-border-color)}.page-link.disabled,.disabled>.page-link{color:var(--bs-pagination-disabled-color);pointer-events:none;background-color:var(--bs-pagination-disabled-bg);border-color:var(--bs-pagination-disabled-border-color)}.page-item:not(:first-child) .page-link{margin-left:calc(var(--bs-border-width) * -1)}.page-item:first-child .page-link{border-top-left-radius:var(--bs-pagination-border-radius);border-bottom-left-radius:var(--bs-pagination-border-radius)}.page-item:last-child .page-link{border-top-right-radius:var(--bs-pagination-border-radius);border-bottom-right-radius:var(--bs-pagination-border-radius)}.pagination-lg{--bs-pagination-padding-x: 1.5rem;--bs-pagination-padding-y: .75rem;--bs-pagination-font-size:1.25rem;--bs-pagination-border-radius: var(--bs-border-radius-lg)}.pagination-sm{--bs-pagination-padding-x: .5rem;--bs-pagination-padding-y: .25rem;--bs-pagination-font-size:.875rem;--bs-pagination-border-radius: var(--bs-border-radius-sm)}.badge{--bs-badge-padding-x: .65em;--bs-badge-padding-y: .35em;--bs-badge-font-size:.75em;--bs-badge-font-weight: 700;--bs-badge-color: #fff;--bs-badge-border-radius: var(--bs-border-radius);display:inline-block;padding:var(--bs-badge-padding-y) var(--bs-badge-padding-x);font-size:var(--bs-badge-font-size);font-weight:var(--bs-badge-font-weight);line-height:1;color:var(--bs-badge-color);text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:var(--bs-badge-border-radius)}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{--bs-alert-bg: transparent;--bs-alert-padding-x: 1rem;--bs-alert-padding-y: 1rem;--bs-alert-margin-bottom: 1rem;--bs-alert-color: inherit;--bs-alert-border-color: transparent;--bs-alert-border: var(--bs-border-width) solid var(--bs-alert-border-color);--bs-alert-border-radius: var(--bs-border-radius);--bs-alert-link-color: inherit;position:relative;padding:var(--bs-alert-padding-y) var(--bs-alert-padding-x);margin-bottom:var(--bs-alert-margin-bottom);color:var(--bs-alert-color);background-color:var(--bs-alert-bg);border:var(--bs-alert-border);border-radius:var(--bs-alert-border-radius)}.alert-heading{color:inherit}.alert-link{font-weight:700;color:var(--bs-alert-link-color)}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{--bs-alert-color: var(--bs-default-text-emphasis);--bs-alert-bg: var(--bs-default-bg-subtle);--bs-alert-border-color: var(--bs-default-border-subtle);--bs-alert-link-color: var(--bs-default-text-emphasis)}.alert-primary{--bs-alert-color: var(--bs-primary-text-emphasis);--bs-alert-bg: var(--bs-primary-bg-subtle);--bs-alert-border-color: var(--bs-primary-border-subtle);--bs-alert-link-color: var(--bs-primary-text-emphasis)}.alert-secondary{--bs-alert-color: var(--bs-secondary-text-emphasis);--bs-alert-bg: var(--bs-secondary-bg-subtle);--bs-alert-border-color: var(--bs-secondary-border-subtle);--bs-alert-link-color: var(--bs-secondary-text-emphasis)}.alert-success{--bs-alert-color: var(--bs-success-text-emphasis);--bs-alert-bg: var(--bs-success-bg-subtle);--bs-alert-border-color: var(--bs-success-border-subtle);--bs-alert-link-color: var(--bs-success-text-emphasis)}.alert-info{--bs-alert-color: var(--bs-info-text-emphasis);--bs-alert-bg: var(--bs-info-bg-subtle);--bs-alert-border-color: var(--bs-info-border-subtle);--bs-alert-link-color: var(--bs-info-text-emphasis)}.alert-warning{--bs-alert-color: var(--bs-warning-text-emphasis);--bs-alert-bg: var(--bs-warning-bg-subtle);--bs-alert-border-color: var(--bs-warning-border-subtle);--bs-alert-link-color: var(--bs-warning-text-emphasis)}.alert-danger{--bs-alert-color: var(--bs-danger-text-emphasis);--bs-alert-bg: var(--bs-danger-bg-subtle);--bs-alert-border-color: var(--bs-danger-border-subtle);--bs-alert-link-color: var(--bs-danger-text-emphasis)}.alert-light{--bs-alert-color: var(--bs-light-text-emphasis);--bs-alert-bg: var(--bs-light-bg-subtle);--bs-alert-border-color: var(--bs-light-border-subtle);--bs-alert-link-color: var(--bs-light-text-emphasis)}.alert-dark{--bs-alert-color: var(--bs-dark-text-emphasis);--bs-alert-bg: var(--bs-dark-bg-subtle);--bs-alert-border-color: var(--bs-dark-border-subtle);--bs-alert-link-color: var(--bs-dark-text-emphasis)}@keyframes progress-bar-stripes{0%{background-position-x:1rem}}.progress,.progress-stacked{--bs-progress-height: 1rem;--bs-progress-font-size:.75rem;--bs-progress-bg: var(--bs-secondary-bg);--bs-progress-border-radius: var(--bs-border-radius);--bs-progress-box-shadow: var(--bs-box-shadow-inset);--bs-progress-bar-color: #fff;--bs-progress-bar-bg: #0d6efd;--bs-progress-bar-transition: width 0.6s ease;display:flex;display:-webkit-flex;height:var(--bs-progress-height);overflow:hidden;font-size:var(--bs-progress-font-size);background-color:var(--bs-progress-bg);border-radius:var(--bs-progress-border-radius)}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:var(--bs-progress-bar-color);text-align:center;white-space:nowrap;background-color:var(--bs-progress-bar-bg);transition:var(--bs-progress-bar-transition)}@media (prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255,255,255,0.15) 25%, transparent 25%, transparent 50%, rgba(255,255,255,0.15) 50%, rgba(255,255,255,0.15) 75%, transparent 75%, transparent);background-size:var(--bs-progress-height) var(--bs-progress-height)}.progress-stacked>.progress{overflow:visible}.progress-stacked>.progress>.progress-bar{width:100%}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media (prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{--bs-list-group-color: var(--bs-body-color);--bs-list-group-bg: var(--bs-body-bg);--bs-list-group-border-color: var(--bs-border-color);--bs-list-group-border-width: var(--bs-border-width);--bs-list-group-border-radius: var(--bs-border-radius);--bs-list-group-item-padding-x: 1rem;--bs-list-group-item-padding-y: .5rem;--bs-list-group-action-color: var(--bs-secondary-color);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-tertiary-bg);--bs-list-group-action-active-color: var(--bs-body-color);--bs-list-group-action-active-bg: var(--bs-secondary-bg);--bs-list-group-disabled-color: var(--bs-secondary-color);--bs-list-group-disabled-bg: var(--bs-body-bg);--bs-list-group-active-color: #fff;--bs-list-group-active-bg: #0d6efd;--bs-list-group-active-border-color: #0d6efd;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;border-radius:var(--bs-list-group-border-radius)}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>.list-group-item::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:var(--bs-list-group-action-color);text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:var(--bs-list-group-action-hover-color);text-decoration:none;background-color:var(--bs-list-group-action-hover-bg)}.list-group-item-action:active{color:var(--bs-list-group-action-active-color);background-color:var(--bs-list-group-action-active-bg)}.list-group-item{position:relative;display:block;padding:var(--bs-list-group-item-padding-y) var(--bs-list-group-item-padding-x);color:var(--bs-list-group-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-list-group-bg);border:var(--bs-list-group-border-width) solid var(--bs-list-group-border-color)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:var(--bs-list-group-disabled-color);pointer-events:none;background-color:var(--bs-list-group-disabled-bg)}.list-group-item.active{z-index:2;color:var(--bs-list-group-active-color);background-color:var(--bs-list-group-active-bg);border-color:var(--bs-list-group-active-border-color)}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:calc(-1 * var(--bs-list-group-border-width));border-top-width:var(--bs-list-group-border-width)}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}@media (min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media (min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xxl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:calc(-1 * var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 var(--bs-list-group-border-width)}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{--bs-list-group-color: var(--bs-default-text-emphasis);--bs-list-group-bg: var(--bs-default-bg-subtle);--bs-list-group-border-color: var(--bs-default-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-default-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-default-border-subtle);--bs-list-group-active-color: var(--bs-default-bg-subtle);--bs-list-group-active-bg: var(--bs-default-text-emphasis);--bs-list-group-active-border-color: var(--bs-default-text-emphasis)}.list-group-item-primary{--bs-list-group-color: var(--bs-primary-text-emphasis);--bs-list-group-bg: var(--bs-primary-bg-subtle);--bs-list-group-border-color: var(--bs-primary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-primary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-primary-border-subtle);--bs-list-group-active-color: var(--bs-primary-bg-subtle);--bs-list-group-active-bg: var(--bs-primary-text-emphasis);--bs-list-group-active-border-color: var(--bs-primary-text-emphasis)}.list-group-item-secondary{--bs-list-group-color: var(--bs-secondary-text-emphasis);--bs-list-group-bg: var(--bs-secondary-bg-subtle);--bs-list-group-border-color: var(--bs-secondary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-secondary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-secondary-border-subtle);--bs-list-group-active-color: var(--bs-secondary-bg-subtle);--bs-list-group-active-bg: var(--bs-secondary-text-emphasis);--bs-list-group-active-border-color: var(--bs-secondary-text-emphasis)}.list-group-item-success{--bs-list-group-color: var(--bs-success-text-emphasis);--bs-list-group-bg: var(--bs-success-bg-subtle);--bs-list-group-border-color: var(--bs-success-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-success-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-success-border-subtle);--bs-list-group-active-color: var(--bs-success-bg-subtle);--bs-list-group-active-bg: var(--bs-success-text-emphasis);--bs-list-group-active-border-color: var(--bs-success-text-emphasis)}.list-group-item-info{--bs-list-group-color: var(--bs-info-text-emphasis);--bs-list-group-bg: var(--bs-info-bg-subtle);--bs-list-group-border-color: var(--bs-info-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-info-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-info-border-subtle);--bs-list-group-active-color: var(--bs-info-bg-subtle);--bs-list-group-active-bg: var(--bs-info-text-emphasis);--bs-list-group-active-border-color: var(--bs-info-text-emphasis)}.list-group-item-warning{--bs-list-group-color: var(--bs-warning-text-emphasis);--bs-list-group-bg: var(--bs-warning-bg-subtle);--bs-list-group-border-color: var(--bs-warning-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-warning-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-warning-border-subtle);--bs-list-group-active-color: var(--bs-warning-bg-subtle);--bs-list-group-active-bg: var(--bs-warning-text-emphasis);--bs-list-group-active-border-color: var(--bs-warning-text-emphasis)}.list-group-item-danger{--bs-list-group-color: var(--bs-danger-text-emphasis);--bs-list-group-bg: var(--bs-danger-bg-subtle);--bs-list-group-border-color: var(--bs-danger-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-danger-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-danger-border-subtle);--bs-list-group-active-color: var(--bs-danger-bg-subtle);--bs-list-group-active-bg: var(--bs-danger-text-emphasis);--bs-list-group-active-border-color: var(--bs-danger-text-emphasis)}.list-group-item-light{--bs-list-group-color: var(--bs-light-text-emphasis);--bs-list-group-bg: var(--bs-light-bg-subtle);--bs-list-group-border-color: var(--bs-light-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-light-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-light-border-subtle);--bs-list-group-active-color: var(--bs-light-bg-subtle);--bs-list-group-active-bg: var(--bs-light-text-emphasis);--bs-list-group-active-border-color: var(--bs-light-text-emphasis)}.list-group-item-dark{--bs-list-group-color: var(--bs-dark-text-emphasis);--bs-list-group-bg: var(--bs-dark-bg-subtle);--bs-list-group-border-color: var(--bs-dark-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-dark-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-dark-border-subtle);--bs-list-group-active-color: var(--bs-dark-bg-subtle);--bs-list-group-active-bg: var(--bs-dark-text-emphasis);--bs-list-group-active-border-color: var(--bs-dark-text-emphasis)}.btn-close{--bs-btn-close-color: #000;--bs-btn-close-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 0 1 1.414 0L8 6.586 14.293.293a1 1 0 1 1 1.414 1.414L9.414 8l6.293 6.293a1 1 0 0 1-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 0 1-1.414-1.414L6.586 8 .293 1.707a1 1 0 0 1 0-1.414z'/%3e%3c/svg%3e");--bs-btn-close-opacity: .5;--bs-btn-close-hover-opacity: .75;--bs-btn-close-focus-shadow: 0 0 0 .25rem rgba(13,110,253,0.25);--bs-btn-close-focus-opacity: 1;--bs-btn-close-disabled-opacity: .25;--bs-btn-close-white-filter: invert(1) grayscale(100%) brightness(200%);box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:var(--bs-btn-close-color);background:transparent var(--bs-btn-close-bg) center/1em auto no-repeat;border:0;border-radius:.375rem;opacity:var(--bs-btn-close-opacity)}.btn-close:hover{color:var(--bs-btn-close-color);text-decoration:none;opacity:var(--bs-btn-close-hover-opacity)}.btn-close:focus{outline:0;box-shadow:var(--bs-btn-close-focus-shadow);opacity:var(--bs-btn-close-focus-opacity)}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:var(--bs-btn-close-disabled-opacity)}.btn-close-white{filter:var(--bs-btn-close-white-filter)}[data-bs-theme="dark"] .btn-close{filter:var(--bs-btn-close-white-filter)}.toast{--bs-toast-zindex: 1090;--bs-toast-padding-x: .75rem;--bs-toast-padding-y: .5rem;--bs-toast-spacing: 1.5rem;--bs-toast-max-width: 350px;--bs-toast-font-size:.875rem;--bs-toast-color: ;--bs-toast-bg: rgba(var(--bs-body-bg-rgb), 0.85);--bs-toast-border-width: var(--bs-border-width);--bs-toast-border-color: var(--bs-border-color-translucent);--bs-toast-border-radius: var(--bs-border-radius);--bs-toast-box-shadow: var(--bs-box-shadow);--bs-toast-header-color: var(--bs-secondary-color);--bs-toast-header-bg: rgba(var(--bs-body-bg-rgb), 0.85);--bs-toast-header-border-color: var(--bs-border-color-translucent);width:var(--bs-toast-max-width);max-width:100%;font-size:var(--bs-toast-font-size);color:var(--bs-toast-color);pointer-events:auto;background-color:var(--bs-toast-bg);background-clip:padding-box;border:var(--bs-toast-border-width) solid var(--bs-toast-border-color);box-shadow:var(--bs-toast-box-shadow);border-radius:var(--bs-toast-border-radius)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{--bs-toast-zindex: 1090;position:absolute;z-index:var(--bs-toast-zindex);width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:var(--bs-toast-spacing)}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:var(--bs-toast-padding-y) var(--bs-toast-padding-x);color:var(--bs-toast-header-color);background-color:var(--bs-toast-header-bg);background-clip:padding-box;border-bottom:var(--bs-toast-border-width) solid var(--bs-toast-header-border-color);border-top-left-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width));border-top-right-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width))}.toast-header .btn-close{margin-right:calc(-.5 * var(--bs-toast-padding-x));margin-left:var(--bs-toast-padding-x)}.toast-body{padding:var(--bs-toast-padding-x);word-wrap:break-word}.modal{--bs-modal-zindex: 1055;--bs-modal-width: 500px;--bs-modal-padding: 1rem;--bs-modal-margin: .5rem;--bs-modal-color: ;--bs-modal-bg: var(--bs-body-bg);--bs-modal-border-color: var(--bs-border-color-translucent);--bs-modal-border-width: var(--bs-border-width);--bs-modal-border-radius: var(--bs-border-radius-lg);--bs-modal-box-shadow: 0 0.125rem 0.25rem rgba(0,0,0,0.075);--bs-modal-inner-border-radius: calc(var(--bs-border-radius-lg) - (var(--bs-border-width)));--bs-modal-header-padding-x: 1rem;--bs-modal-header-padding-y: 1rem;--bs-modal-header-padding: 1rem 1rem;--bs-modal-header-border-color: var(--bs-border-color);--bs-modal-header-border-width: var(--bs-border-width);--bs-modal-title-line-height: 1.5;--bs-modal-footer-gap: .5rem;--bs-modal-footer-bg: ;--bs-modal-footer-border-color: var(--bs-border-color);--bs-modal-footer-border-width: var(--bs-border-width);position:fixed;top:0;left:0;z-index:var(--bs-modal-zindex);display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:var(--bs-modal-margin);pointer-events:none}.modal.fade .modal-dialog{transition:transform 0.3s ease-out;transform:translate(0, -50px)}@media (prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - var(--bs-modal-margin) * 2)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - var(--bs-modal-margin) * 2)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;color:var(--bs-modal-color);pointer-events:auto;background-color:var(--bs-modal-bg);background-clip:padding-box;border:var(--bs-modal-border-width) solid var(--bs-modal-border-color);border-radius:var(--bs-modal-border-radius);outline:0}.modal-backdrop{--bs-backdrop-zindex: 1050;--bs-backdrop-bg: #000;--bs-backdrop-opacity: .5;position:fixed;top:0;left:0;z-index:var(--bs-backdrop-zindex);width:100vw;height:100vh;background-color:var(--bs-backdrop-bg)}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:var(--bs-backdrop-opacity)}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-modal-header-padding);border-bottom:var(--bs-modal-header-border-width) solid var(--bs-modal-header-border-color);border-top-left-radius:var(--bs-modal-inner-border-radius);border-top-right-radius:var(--bs-modal-inner-border-radius)}.modal-header .btn-close{padding:calc(var(--bs-modal-header-padding-y) * .5) calc(var(--bs-modal-header-padding-x) * .5);margin:calc(-.5 * var(--bs-modal-header-padding-y)) calc(-.5 * var(--bs-modal-header-padding-x)) calc(-.5 * var(--bs-modal-header-padding-y)) auto}.modal-title{margin-bottom:0;line-height:var(--bs-modal-title-line-height)}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-modal-padding)}.modal-footer{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:calc(var(--bs-modal-padding) - var(--bs-modal-footer-gap) * .5);background-color:var(--bs-modal-footer-bg);border-top:var(--bs-modal-footer-border-width) solid var(--bs-modal-footer-border-color);border-bottom-right-radius:var(--bs-modal-inner-border-radius);border-bottom-left-radius:var(--bs-modal-inner-border-radius)}.modal-footer>*{margin:calc(var(--bs-modal-footer-gap) * .5)}@media (min-width: 576px){.modal{--bs-modal-margin: 1.75rem;--bs-modal-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15)}.modal-dialog{max-width:var(--bs-modal-width);margin-right:auto;margin-left:auto}.modal-sm{--bs-modal-width: 300px}}@media (min-width: 992px){.modal-lg,.modal-xl{--bs-modal-width: 800px}}@media (min-width: 1200px){.modal-xl{--bs-modal-width: 1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen .modal-header,.modal-fullscreen .modal-footer{border-radius:0}.modal-fullscreen .modal-body{overflow-y:auto}@media (max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-sm-down .modal-header,.modal-fullscreen-sm-down .modal-footer{border-radius:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media (max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-md-down .modal-header,.modal-fullscreen-md-down .modal-footer{border-radius:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media (max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-lg-down .modal-header,.modal-fullscreen-lg-down .modal-footer{border-radius:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media (max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xl-down .modal-header,.modal-fullscreen-xl-down .modal-footer{border-radius:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media (max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xxl-down .modal-header,.modal-fullscreen-xxl-down .modal-footer{border-radius:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{--bs-tooltip-zindex: 1080;--bs-tooltip-max-width: 200px;--bs-tooltip-padding-x: .5rem;--bs-tooltip-padding-y: .25rem;--bs-tooltip-margin: ;--bs-tooltip-font-size:.875rem;--bs-tooltip-color: var(--bs-body-bg);--bs-tooltip-bg: var(--bs-emphasis-color);--bs-tooltip-border-radius: var(--bs-border-radius);--bs-tooltip-opacity: .9;--bs-tooltip-arrow-width: .8rem;--bs-tooltip-arrow-height: .4rem;z-index:var(--bs-tooltip-zindex);display:block;margin:var(--bs-tooltip-margin);font-family:Roboto;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-tooltip-font-size);word-wrap:break-word;opacity:0}.tooltip.show{opacity:var(--bs-tooltip-opacity)}.tooltip .tooltip-arrow{display:block;width:var(--bs-tooltip-arrow-width);height:var(--bs-tooltip-arrow-height)}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="top"] .tooltip-arrow{bottom:calc(-1 * var(--bs-tooltip-arrow-height))}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="top"] .tooltip-arrow::before{top:-1px;border-width:var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width) * .5) 0;border-top-color:var(--bs-tooltip-bg)}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="right"] .tooltip-arrow{left:calc(-1 * var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="right"] .tooltip-arrow::before{right:-1px;border-width:calc(var(--bs-tooltip-arrow-width) * .5) var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width) * .5) 0;border-right-color:var(--bs-tooltip-bg)}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="bottom"] .tooltip-arrow{top:calc(-1 * var(--bs-tooltip-arrow-height))}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="bottom"] .tooltip-arrow::before{bottom:-1px;border-width:0 calc(var(--bs-tooltip-arrow-width) * .5) var(--bs-tooltip-arrow-height);border-bottom-color:var(--bs-tooltip-bg)}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^="left"] .tooltip-arrow{right:calc(-1 * var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^="left"] .tooltip-arrow::before{left:-1px;border-width:calc(var(--bs-tooltip-arrow-width) * .5) 0 calc(var(--bs-tooltip-arrow-width) * .5) var(--bs-tooltip-arrow-height);border-left-color:var(--bs-tooltip-bg)}.tooltip-inner{max-width:var(--bs-tooltip-max-width);padding:var(--bs-tooltip-padding-y) var(--bs-tooltip-padding-x);color:var(--bs-tooltip-color);text-align:center;background-color:var(--bs-tooltip-bg);border-radius:var(--bs-tooltip-border-radius)}.popover{--bs-popover-zindex: 1070;--bs-popover-max-width: 276px;--bs-popover-font-size:.875rem;--bs-popover-bg: var(--bs-body-bg);--bs-popover-border-width: var(--bs-border-width);--bs-popover-border-color: var(--bs-border-color-translucent);--bs-popover-border-radius: var(--bs-border-radius-lg);--bs-popover-inner-border-radius: calc(var(--bs-border-radius-lg) - var(--bs-border-width));--bs-popover-box-shadow: 0 0.5rem 1rem rgba(0,0,0,0.15);--bs-popover-header-padding-x: 1rem;--bs-popover-header-padding-y: .5rem;--bs-popover-header-font-size:1rem;--bs-popover-header-color: inherit;--bs-popover-header-bg: var(--bs-secondary-bg);--bs-popover-body-padding-x: 1rem;--bs-popover-body-padding-y: 1rem;--bs-popover-body-color: var(--bs-body-color);--bs-popover-arrow-width: 1rem;--bs-popover-arrow-height: .5rem;--bs-popover-arrow-border: var(--bs-popover-border-color);z-index:var(--bs-popover-zindex);display:block;max-width:var(--bs-popover-max-width);font-family:Roboto;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-popover-font-size);word-wrap:break-word;background-color:var(--bs-popover-bg);background-clip:padding-box;border:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-radius:var(--bs-popover-border-radius)}.popover .popover-arrow{display:block;width:var(--bs-popover-arrow-width);height:var(--bs-popover-arrow-height)}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:transparent;border-style:solid;border-width:0}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow{bottom:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::before,.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::after{border-width:var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width) * .5) 0}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::before{bottom:0;border-top-color:var(--bs-popover-arrow-border)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="top"]>.popover-arrow::after{bottom:var(--bs-popover-border-width);border-top-color:var(--bs-popover-bg)}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow{left:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::before,.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width) * .5) var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width) * .5) 0}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::before{left:0;border-right-color:var(--bs-popover-arrow-border)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="right"]>.popover-arrow::after{left:var(--bs-popover-border-width);border-right-color:var(--bs-popover-bg)}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow{top:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::before,.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::after{border-width:0 calc(var(--bs-popover-arrow-width) * .5) var(--bs-popover-arrow-height)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::before{top:0;border-bottom-color:var(--bs-popover-arrow-border)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="bottom"]>.popover-arrow::after{top:var(--bs-popover-border-width);border-bottom-color:var(--bs-popover-bg)}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^="bottom"] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:var(--bs-popover-arrow-width);margin-left:calc(-.5 * var(--bs-popover-arrow-width));content:"";border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-header-bg)}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow{right:calc(-1 * (var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::before,.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width) * .5) 0 calc(var(--bs-popover-arrow-width) * .5) var(--bs-popover-arrow-height)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::before{right:0;border-left-color:var(--bs-popover-arrow-border)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^="left"]>.popover-arrow::after{right:var(--bs-popover-border-width);border-left-color:var(--bs-popover-bg)}.popover-header{padding:var(--bs-popover-header-padding-y) var(--bs-popover-header-padding-x);margin-bottom:0;font-size:var(--bs-popover-header-font-size);color:var(--bs-popover-header-color);background-color:var(--bs-popover-header-bg);border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-top-left-radius:var(--bs-popover-inner-border-radius);border-top-right-radius:var(--bs-popover-inner-border-radius)}.popover-header:empty{display:none}.popover-body{padding:var(--bs-popover-body-padding-y) var(--bs-popover-body-padding-x);color:var(--bs-popover-body-color)}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media (prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity 0.15s ease}@media (prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity 0.6s ease}@media (prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}[data-bs-theme="dark"] .carousel .carousel-control-prev-icon,[data-bs-theme="dark"] .carousel .carousel-control-next-icon,[data-bs-theme="dark"].carousel .carousel-control-prev-icon,[data-bs-theme="dark"].carousel .carousel-control-next-icon{filter:invert(1) grayscale(100)}[data-bs-theme="dark"] .carousel .carousel-indicators [data-bs-target],[data-bs-theme="dark"].carousel .carousel-indicators [data-bs-target]{background-color:#000}[data-bs-theme="dark"] .carousel .carousel-caption,[data-bs-theme="dark"].carousel .carousel-caption{color:#000}.spinner-grow,.spinner-border{display:inline-block;width:var(--bs-spinner-width);height:var(--bs-spinner-height);vertical-align:var(--bs-spinner-vertical-align);border-radius:50%;animation:var(--bs-spinner-animation-speed) linear infinite var(--bs-spinner-animation-name)}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -.125em;--bs-spinner-border-width: .25em;--bs-spinner-animation-speed: .75s;--bs-spinner-animation-name: spinner-border;border:var(--bs-spinner-border-width) solid currentcolor;border-right-color:transparent}.spinner-border-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem;--bs-spinner-border-width: .2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -.125em;--bs-spinner-animation-speed: .75s;--bs-spinner-animation-name: spinner-grow;background-color:currentcolor;opacity:0}.spinner-grow-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem}@media (prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{--bs-spinner-animation-speed: 1.5s}}.offcanvas,.offcanvas-xxl,.offcanvas-xl,.offcanvas-lg,.offcanvas-md,.offcanvas-sm{--bs-offcanvas-zindex: 1045;--bs-offcanvas-width: 400px;--bs-offcanvas-height: 30vh;--bs-offcanvas-padding-x: 1rem;--bs-offcanvas-padding-y: 1rem;--bs-offcanvas-color: var(--bs-body-color);--bs-offcanvas-bg: var(--bs-body-bg);--bs-offcanvas-border-width: var(--bs-border-width);--bs-offcanvas-border-color: var(--bs-border-color-translucent);--bs-offcanvas-box-shadow: 0 0.125rem 0.25rem rgba(0,0,0,0.075);--bs-offcanvas-transition: transform .3s ease-in-out;--bs-offcanvas-title-line-height: 1.5}@media (max-width: 575.98px){.offcanvas-sm{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 575.98px) and (prefers-reduced-motion: reduce){.offcanvas-sm{transition:none}}@media (max-width: 575.98px){.offcanvas-sm.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-sm.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-sm.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-sm.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-sm.showing,.offcanvas-sm.show:not(.hiding){transform:none}.offcanvas-sm.showing,.offcanvas-sm.hiding,.offcanvas-sm.show{visibility:visible}}@media (min-width: 576px){.offcanvas-sm{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-sm .offcanvas-header{display:none}.offcanvas-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 767.98px){.offcanvas-md{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 767.98px) and (prefers-reduced-motion: reduce){.offcanvas-md{transition:none}}@media (max-width: 767.98px){.offcanvas-md.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-md.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-md.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-md.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-md.showing,.offcanvas-md.show:not(.hiding){transform:none}.offcanvas-md.showing,.offcanvas-md.hiding,.offcanvas-md.show{visibility:visible}}@media (min-width: 768px){.offcanvas-md{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-md .offcanvas-header{display:none}.offcanvas-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 991.98px){.offcanvas-lg{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 991.98px) and (prefers-reduced-motion: reduce){.offcanvas-lg{transition:none}}@media (max-width: 991.98px){.offcanvas-lg.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-lg.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-lg.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-lg.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-lg.showing,.offcanvas-lg.show:not(.hiding){transform:none}.offcanvas-lg.showing,.offcanvas-lg.hiding,.offcanvas-lg.show{visibility:visible}}@media (min-width: 992px){.offcanvas-lg{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-lg .offcanvas-header{display:none}.offcanvas-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 1199.98px){.offcanvas-xl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 1199.98px) and (prefers-reduced-motion: reduce){.offcanvas-xl{transition:none}}@media (max-width: 1199.98px){.offcanvas-xl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xl.showing,.offcanvas-xl.show:not(.hiding){transform:none}.offcanvas-xl.showing,.offcanvas-xl.hiding,.offcanvas-xl.show{visibility:visible}}@media (min-width: 1200px){.offcanvas-xl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-xl .offcanvas-header{display:none}.offcanvas-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}@media (max-width: 1399.98px){.offcanvas-xxl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media (max-width: 1399.98px) and (prefers-reduced-motion: reduce){.offcanvas-xxl{transition:none}}@media (max-width: 1399.98px){.offcanvas-xxl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xxl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xxl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xxl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xxl.showing,.offcanvas-xxl.show:not(.hiding){transform:none}.offcanvas-xxl.showing,.offcanvas-xxl.hiding,.offcanvas-xxl.show{visibility:visible}}@media (min-width: 1400px){.offcanvas-xxl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:transparent !important}.offcanvas-xxl .offcanvas-header{display:none}.offcanvas-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:transparent !important}}.offcanvas{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}@media (prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas.showing,.offcanvas.show:not(.hiding){transform:none}.offcanvas.showing,.offcanvas.hiding,.offcanvas.show{visibility:visible}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x)}.offcanvas-header .btn-close{padding:calc(var(--bs-offcanvas-padding-y) * .5) calc(var(--bs-offcanvas-padding-x) * .5);margin-top:calc(-.5 * var(--bs-offcanvas-padding-y));margin-right:calc(-.5 * var(--bs-offcanvas-padding-x));margin-bottom:calc(-.5 * var(--bs-offcanvas-padding-y))}.offcanvas-title{margin-bottom:0;line-height:var(--bs-offcanvas-title-line-height)}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x);overflow-y:auto}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentcolor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0,0,0,0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0,0,0,0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.text-bg-default{color:#000 !important;background-color:RGBA(var(--bs-default-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-primary{color:#fff !important;background-color:RGBA(var(--bs-primary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-secondary{color:#fff !important;background-color:RGBA(var(--bs-secondary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-success{color:#fff !important;background-color:RGBA(var(--bs-success-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-info{color:#000 !important;background-color:RGBA(var(--bs-info-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-warning{color:#000 !important;background-color:RGBA(var(--bs-warning-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-danger{color:#fff !important;background-color:RGBA(var(--bs-danger-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-light{color:#000 !important;background-color:RGBA(var(--bs-light-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-dark{color:#fff !important;background-color:RGBA(var(--bs-dark-rgb), var(--bs-bg-opacity, 1)) !important}.link-default{color:RGBA(var(--bs-default-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-default-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-default:hover,.link-default:focus{color:RGBA(229,232,235, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(229,232,235, var(--bs-link-underline-opacity, 1)) !important}.link-primary{color:RGBA(var(--bs-primary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-primary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-primary:hover,.link-primary:focus{color:RGBA(10,88,202, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(10,88,202, var(--bs-link-underline-opacity, 1)) !important}.link-secondary{color:RGBA(var(--bs-secondary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-secondary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-secondary:hover,.link-secondary:focus{color:RGBA(86,94,100, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(86,94,100, var(--bs-link-underline-opacity, 1)) !important}.link-success{color:RGBA(var(--bs-success-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-success-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-success:hover,.link-success:focus{color:RGBA(20,108,67, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(20,108,67, var(--bs-link-underline-opacity, 1)) !important}.link-info{color:RGBA(var(--bs-info-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-info-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-info:hover,.link-info:focus{color:RGBA(61,213,243, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(61,213,243, var(--bs-link-underline-opacity, 1)) !important}.link-warning{color:RGBA(var(--bs-warning-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-warning-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-warning:hover,.link-warning:focus{color:RGBA(255,205,57, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(255,205,57, var(--bs-link-underline-opacity, 1)) !important}.link-danger{color:RGBA(var(--bs-danger-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-danger-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-danger:hover,.link-danger:focus{color:RGBA(176,42,55, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(176,42,55, var(--bs-link-underline-opacity, 1)) !important}.link-light{color:RGBA(var(--bs-light-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-light-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-light:hover,.link-light:focus{color:RGBA(249,250,251, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(249,250,251, var(--bs-link-underline-opacity, 1)) !important}.link-dark{color:RGBA(var(--bs-dark-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-dark-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-dark:hover,.link-dark:focus{color:RGBA(26,30,33, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(26,30,33, var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis:hover,.link-body-emphasis:focus{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 0.75)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 0.75)) !important}.focus-ring:focus{outline:0;box-shadow:var(--bs-focus-ring-x, 0) var(--bs-focus-ring-y, 0) var(--bs-focus-ring-blur, 0) var(--bs-focus-ring-width) var(--bs-focus-ring-color)}.icon-link{display:inline-flex;gap:.375rem;align-items:center;-webkit-align-items:center;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 0.5));text-underline-offset:.25em;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden}.icon-link>.bi{flex-shrink:0;-webkit-flex-shrink:0;width:1em;height:1em;fill:currentcolor;transition:0.2s ease-in-out transform}@media (prefers-reduced-motion: reduce){.icon-link>.bi{transition:none}}.icon-link-hover:hover>.bi,.icon-link-hover:focus-visible>.bi{transform:var(--bs-icon-link-transform, translate3d(0.25em, 0, 0))}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: calc(3 / 4 * 100%)}.ratio-16x9{--bs-aspect-ratio: calc(9 / 16 * 100%)}.ratio-21x9{--bs-aspect-ratio: calc(9 / 21 * 100%)}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}.sticky-bottom{position:sticky;bottom:0;z-index:1020}@media (min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}.sticky-sm-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}.sticky-md-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}.sticky-lg-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}.sticky-xl-bottom{position:sticky;bottom:0;z-index:1020}}@media (min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}.sticky-xxl-bottom{position:sticky;bottom:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.visually-hidden:not(caption),.visually-hidden-focusable:not(:focus):not(:focus-within):not(caption){position:absolute !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:var(--bs-border-width);min-height:1em;background-color:currentcolor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.object-fit-contain{object-fit:contain !important}.object-fit-cover{object-fit:cover !important}.object-fit-fill{object-fit:fill !important}.object-fit-scale{object-fit:scale-down !important}.object-fit-none{object-fit:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.overflow-x-auto{overflow-x:auto !important}.overflow-x-hidden{overflow-x:hidden !important}.overflow-x-visible{overflow-x:visible !important}.overflow-x-scroll{overflow-x:scroll !important}.overflow-y-auto{overflow-y:auto !important}.overflow-y-hidden{overflow-y:hidden !important}.overflow-y-visible{overflow-y:visible !important}.overflow-y-scroll{overflow-y:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-inline-grid{display:inline-grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 0.5rem 1rem rgba(0,0,0,0.15) !important}.shadow-sm{box-shadow:0 0.125rem 0.25rem rgba(0,0,0,0.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,0.175) !important}.shadow-none{box-shadow:none !important}.focus-ring-default{--bs-focus-ring-color: rgba(var(--bs-default-rgb), var(--bs-focus-ring-opacity))}.focus-ring-primary{--bs-focus-ring-color: rgba(var(--bs-primary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-secondary{--bs-focus-ring-color: rgba(var(--bs-secondary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-success{--bs-focus-ring-color: rgba(var(--bs-success-rgb), var(--bs-focus-ring-opacity))}.focus-ring-info{--bs-focus-ring-color: rgba(var(--bs-info-rgb), var(--bs-focus-ring-opacity))}.focus-ring-warning{--bs-focus-ring-color: rgba(var(--bs-warning-rgb), var(--bs-focus-ring-opacity))}.focus-ring-danger{--bs-focus-ring-color: rgba(var(--bs-danger-rgb), var(--bs-focus-ring-opacity))}.focus-ring-light{--bs-focus-ring-color: rgba(var(--bs-light-rgb), var(--bs-focus-ring-opacity))}.focus-ring-dark{--bs-focus-ring-color: rgba(var(--bs-dark-rgb), var(--bs-focus-ring-opacity))}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-0{border:0 !important}.border-top{border-top:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-top-0{border-top:0 !important}.border-end{border-right:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-start-0{border-left:0 !important}.border-default{--bs-border-opacity: 1;border-color:rgba(var(--bs-default-rgb), var(--bs-border-opacity)) !important}.border-primary{--bs-border-opacity: 1;border-color:rgba(var(--bs-primary-rgb), var(--bs-border-opacity)) !important}.border-secondary{--bs-border-opacity: 1;border-color:rgba(var(--bs-secondary-rgb), var(--bs-border-opacity)) !important}.border-success{--bs-border-opacity: 1;border-color:rgba(var(--bs-success-rgb), var(--bs-border-opacity)) !important}.border-info{--bs-border-opacity: 1;border-color:rgba(var(--bs-info-rgb), var(--bs-border-opacity)) !important}.border-warning{--bs-border-opacity: 1;border-color:rgba(var(--bs-warning-rgb), var(--bs-border-opacity)) !important}.border-danger{--bs-border-opacity: 1;border-color:rgba(var(--bs-danger-rgb), var(--bs-border-opacity)) !important}.border-light{--bs-border-opacity: 1;border-color:rgba(var(--bs-light-rgb), var(--bs-border-opacity)) !important}.border-dark{--bs-border-opacity: 1;border-color:rgba(var(--bs-dark-rgb), var(--bs-border-opacity)) !important}.border-black{--bs-border-opacity: 1;border-color:rgba(var(--bs-black-rgb), var(--bs-border-opacity)) !important}.border-white{--bs-border-opacity: 1;border-color:rgba(var(--bs-white-rgb), var(--bs-border-opacity)) !important}.border-primary-subtle{border-color:var(--bs-primary-border-subtle) !important}.border-secondary-subtle{border-color:var(--bs-secondary-border-subtle) !important}.border-success-subtle{border-color:var(--bs-success-border-subtle) !important}.border-info-subtle{border-color:var(--bs-info-border-subtle) !important}.border-warning-subtle{border-color:var(--bs-warning-border-subtle) !important}.border-danger-subtle{border-color:var(--bs-danger-border-subtle) !important}.border-light-subtle{border-color:var(--bs-light-border-subtle) !important}.border-dark-subtle{border-color:var(--bs-dark-border-subtle) !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.border-opacity-10{--bs-border-opacity: .1}.border-opacity-25{--bs-border-opacity: .25}.border-opacity-50{--bs-border-opacity: .5}.border-opacity-75{--bs-border-opacity: .75}.border-opacity-100{--bs-border-opacity: 1}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.row-gap-0{row-gap:0 !important}.row-gap-1{row-gap:.25rem !important}.row-gap-2{row-gap:.5rem !important}.row-gap-3{row-gap:1rem !important}.row-gap-4{row-gap:1.5rem !important}.row-gap-5{row-gap:3rem !important}.column-gap-0{column-gap:0 !important}.column-gap-1{column-gap:.25rem !important}.column-gap-2{column-gap:.5rem !important}.column-gap-3{column-gap:1rem !important}.column-gap-4{column-gap:1.5rem !important}.column-gap-5{column-gap:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.375rem + 1.5vw) !important}.fs-2{font-size:calc(1.325rem + .9vw) !important}.fs-3{font-size:calc(1.3rem + .6vw) !important}.fs-4{font-size:calc(1.275rem + .3vw) !important}.fs-5{font-size:1.25rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-lighter{font-weight:lighter !important}.fw-light{font-weight:300 !important}.fw-normal{font-weight:400 !important}.fw-medium{font-weight:500 !important}.fw-semibold{font-weight:600 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,0.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,0.5) !important}.text-body-secondary{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-body-tertiary{--bs-text-opacity: 1;color:var(--bs-tertiary-color) !important}.text-body-emphasis{--bs-text-opacity: 1;color:var(--bs-emphasis-color) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: .25}.text-opacity-50{--bs-text-opacity: .5}.text-opacity-75{--bs-text-opacity: .75}.text-opacity-100{--bs-text-opacity: 1}.text-primary-emphasis{color:var(--bs-primary-text-emphasis) !important}.text-secondary-emphasis{color:var(--bs-secondary-text-emphasis) !important}.text-success-emphasis{color:var(--bs-success-text-emphasis) !important}.text-info-emphasis{color:var(--bs-info-text-emphasis) !important}.text-warning-emphasis{color:var(--bs-warning-text-emphasis) !important}.text-danger-emphasis{color:var(--bs-danger-text-emphasis) !important}.text-light-emphasis{color:var(--bs-light-text-emphasis) !important}.text-dark-emphasis{color:var(--bs-dark-text-emphasis) !important}.link-opacity-10{--bs-link-opacity: .1}.link-opacity-10-hover:hover{--bs-link-opacity: .1}.link-opacity-25{--bs-link-opacity: .25}.link-opacity-25-hover:hover{--bs-link-opacity: .25}.link-opacity-50{--bs-link-opacity: .5}.link-opacity-50-hover:hover{--bs-link-opacity: .5}.link-opacity-75{--bs-link-opacity: .75}.link-opacity-75-hover:hover{--bs-link-opacity: .75}.link-opacity-100{--bs-link-opacity: 1}.link-opacity-100-hover:hover{--bs-link-opacity: 1}.link-offset-1{text-underline-offset:.125em !important}.link-offset-1-hover:hover{text-underline-offset:.125em !important}.link-offset-2{text-underline-offset:.25em !important}.link-offset-2-hover:hover{text-underline-offset:.25em !important}.link-offset-3{text-underline-offset:.375em !important}.link-offset-3-hover:hover{text-underline-offset:.375em !important}.link-underline-default{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-default-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-primary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-primary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-secondary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-secondary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-success{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-success-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-info{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-info-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-warning{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-warning-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-danger{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-danger-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-light{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-light-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-dark{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-dark-rgb), var(--bs-link-underline-opacity)) !important}.link-underline{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-underline-opacity-0{--bs-link-underline-opacity: 0}.link-underline-opacity-0-hover:hover{--bs-link-underline-opacity: 0}.link-underline-opacity-10{--bs-link-underline-opacity: .1}.link-underline-opacity-10-hover:hover{--bs-link-underline-opacity: .1}.link-underline-opacity-25{--bs-link-underline-opacity: .25}.link-underline-opacity-25-hover:hover{--bs-link-underline-opacity: .25}.link-underline-opacity-50{--bs-link-underline-opacity: .5}.link-underline-opacity-50-hover:hover{--bs-link-underline-opacity: .5}.link-underline-opacity-75{--bs-link-underline-opacity: .75}.link-underline-opacity-75-hover:hover{--bs-link-underline-opacity: .75}.link-underline-opacity-100{--bs-link-underline-opacity: 1}.link-underline-opacity-100-hover:hover{--bs-link-underline-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-body-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-body-tertiary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-tertiary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-opacity-10{--bs-bg-opacity: .1}.bg-opacity-25{--bs-bg-opacity: .25}.bg-opacity-50{--bs-bg-opacity: .5}.bg-opacity-75{--bs-bg-opacity: .75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-primary-subtle{background-color:var(--bs-primary-bg-subtle) !important}.bg-secondary-subtle{background-color:var(--bs-secondary-bg-subtle) !important}.bg-success-subtle{background-color:var(--bs-success-bg-subtle) !important}.bg-info-subtle{background-color:var(--bs-info-bg-subtle) !important}.bg-warning-subtle{background-color:var(--bs-warning-bg-subtle) !important}.bg-danger-subtle{background-color:var(--bs-danger-bg-subtle) !important}.bg-light-subtle{background-color:var(--bs-light-bg-subtle) !important}.bg-dark-subtle{background-color:var(--bs-dark-bg-subtle) !important}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:var(--bs-border-radius) !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:var(--bs-border-radius-sm) !important}.rounded-2{border-radius:var(--bs-border-radius) !important}.rounded-3{border-radius:var(--bs-border-radius-lg) !important}.rounded-4{border-radius:var(--bs-border-radius-xl) !important}.rounded-5{border-radius:var(--bs-border-radius-xxl) !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:var(--bs-border-radius-pill) !important}.rounded-top{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-0{border-top-left-radius:0 !important;border-top-right-radius:0 !important}.rounded-top-1{border-top-left-radius:var(--bs-border-radius-sm) !important;border-top-right-radius:var(--bs-border-radius-sm) !important}.rounded-top-2{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-3{border-top-left-radius:var(--bs-border-radius-lg) !important;border-top-right-radius:var(--bs-border-radius-lg) !important}.rounded-top-4{border-top-left-radius:var(--bs-border-radius-xl) !important;border-top-right-radius:var(--bs-border-radius-xl) !important}.rounded-top-5{border-top-left-radius:var(--bs-border-radius-xxl) !important;border-top-right-radius:var(--bs-border-radius-xxl) !important}.rounded-top-circle{border-top-left-radius:50% !important;border-top-right-radius:50% !important}.rounded-top-pill{border-top-left-radius:var(--bs-border-radius-pill) !important;border-top-right-radius:var(--bs-border-radius-pill) !important}.rounded-end{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-0{border-top-right-radius:0 !important;border-bottom-right-radius:0 !important}.rounded-end-1{border-top-right-radius:var(--bs-border-radius-sm) !important;border-bottom-right-radius:var(--bs-border-radius-sm) !important}.rounded-end-2{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-3{border-top-right-radius:var(--bs-border-radius-lg) !important;border-bottom-right-radius:var(--bs-border-radius-lg) !important}.rounded-end-4{border-top-right-radius:var(--bs-border-radius-xl) !important;border-bottom-right-radius:var(--bs-border-radius-xl) !important}.rounded-end-5{border-top-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-right-radius:var(--bs-border-radius-xxl) !important}.rounded-end-circle{border-top-right-radius:50% !important;border-bottom-right-radius:50% !important}.rounded-end-pill{border-top-right-radius:var(--bs-border-radius-pill) !important;border-bottom-right-radius:var(--bs-border-radius-pill) !important}.rounded-bottom{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-0{border-bottom-right-radius:0 !important;border-bottom-left-radius:0 !important}.rounded-bottom-1{border-bottom-right-radius:var(--bs-border-radius-sm) !important;border-bottom-left-radius:var(--bs-border-radius-sm) !important}.rounded-bottom-2{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-3{border-bottom-right-radius:var(--bs-border-radius-lg) !important;border-bottom-left-radius:var(--bs-border-radius-lg) !important}.rounded-bottom-4{border-bottom-right-radius:var(--bs-border-radius-xl) !important;border-bottom-left-radius:var(--bs-border-radius-xl) !important}.rounded-bottom-5{border-bottom-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-left-radius:var(--bs-border-radius-xxl) !important}.rounded-bottom-circle{border-bottom-right-radius:50% !important;border-bottom-left-radius:50% !important}.rounded-bottom-pill{border-bottom-right-radius:var(--bs-border-radius-pill) !important;border-bottom-left-radius:var(--bs-border-radius-pill) !important}.rounded-start{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-0{border-bottom-left-radius:0 !important;border-top-left-radius:0 !important}.rounded-start-1{border-bottom-left-radius:var(--bs-border-radius-sm) !important;border-top-left-radius:var(--bs-border-radius-sm) !important}.rounded-start-2{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-3{border-bottom-left-radius:var(--bs-border-radius-lg) !important;border-top-left-radius:var(--bs-border-radius-lg) !important}.rounded-start-4{border-bottom-left-radius:var(--bs-border-radius-xl) !important;border-top-left-radius:var(--bs-border-radius-xl) !important}.rounded-start-5{border-bottom-left-radius:var(--bs-border-radius-xxl) !important;border-top-left-radius:var(--bs-border-radius-xxl) !important}.rounded-start-circle{border-bottom-left-radius:50% !important;border-top-left-radius:50% !important}.rounded-start-pill{border-bottom-left-radius:var(--bs-border-radius-pill) !important;border-top-left-radius:var(--bs-border-radius-pill) !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}.z-n1{z-index:-1 !important}.z-0{z-index:0 !important}.z-1{z-index:1 !important}.z-2{z-index:2 !important}.z-3{z-index:3 !important}@media (min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.object-fit-sm-contain{object-fit:contain !important}.object-fit-sm-cover{object-fit:cover !important}.object-fit-sm-fill{object-fit:fill !important}.object-fit-sm-scale{object-fit:scale-down !important}.object-fit-sm-none{object-fit:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-inline-grid{display:inline-grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.row-gap-sm-0{row-gap:0 !important}.row-gap-sm-1{row-gap:.25rem !important}.row-gap-sm-2{row-gap:.5rem !important}.row-gap-sm-3{row-gap:1rem !important}.row-gap-sm-4{row-gap:1.5rem !important}.row-gap-sm-5{row-gap:3rem !important}.column-gap-sm-0{column-gap:0 !important}.column-gap-sm-1{column-gap:.25rem !important}.column-gap-sm-2{column-gap:.5rem !important}.column-gap-sm-3{column-gap:1rem !important}.column-gap-sm-4{column-gap:1.5rem !important}.column-gap-sm-5{column-gap:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media (min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.object-fit-md-contain{object-fit:contain !important}.object-fit-md-cover{object-fit:cover !important}.object-fit-md-fill{object-fit:fill !important}.object-fit-md-scale{object-fit:scale-down !important}.object-fit-md-none{object-fit:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-inline-grid{display:inline-grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.row-gap-md-0{row-gap:0 !important}.row-gap-md-1{row-gap:.25rem !important}.row-gap-md-2{row-gap:.5rem !important}.row-gap-md-3{row-gap:1rem !important}.row-gap-md-4{row-gap:1.5rem !important}.row-gap-md-5{row-gap:3rem !important}.column-gap-md-0{column-gap:0 !important}.column-gap-md-1{column-gap:.25rem !important}.column-gap-md-2{column-gap:.5rem !important}.column-gap-md-3{column-gap:1rem !important}.column-gap-md-4{column-gap:1.5rem !important}.column-gap-md-5{column-gap:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media (min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.object-fit-lg-contain{object-fit:contain !important}.object-fit-lg-cover{object-fit:cover !important}.object-fit-lg-fill{object-fit:fill !important}.object-fit-lg-scale{object-fit:scale-down !important}.object-fit-lg-none{object-fit:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-inline-grid{display:inline-grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.row-gap-lg-0{row-gap:0 !important}.row-gap-lg-1{row-gap:.25rem !important}.row-gap-lg-2{row-gap:.5rem !important}.row-gap-lg-3{row-gap:1rem !important}.row-gap-lg-4{row-gap:1.5rem !important}.row-gap-lg-5{row-gap:3rem !important}.column-gap-lg-0{column-gap:0 !important}.column-gap-lg-1{column-gap:.25rem !important}.column-gap-lg-2{column-gap:.5rem !important}.column-gap-lg-3{column-gap:1rem !important}.column-gap-lg-4{column-gap:1.5rem !important}.column-gap-lg-5{column-gap:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media (min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.object-fit-xl-contain{object-fit:contain !important}.object-fit-xl-cover{object-fit:cover !important}.object-fit-xl-fill{object-fit:fill !important}.object-fit-xl-scale{object-fit:scale-down !important}.object-fit-xl-none{object-fit:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-inline-grid{display:inline-grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.row-gap-xl-0{row-gap:0 !important}.row-gap-xl-1{row-gap:.25rem !important}.row-gap-xl-2{row-gap:.5rem !important}.row-gap-xl-3{row-gap:1rem !important}.row-gap-xl-4{row-gap:1.5rem !important}.row-gap-xl-5{row-gap:3rem !important}.column-gap-xl-0{column-gap:0 !important}.column-gap-xl-1{column-gap:.25rem !important}.column-gap-xl-2{column-gap:.5rem !important}.column-gap-xl-3{column-gap:1rem !important}.column-gap-xl-4{column-gap:1.5rem !important}.column-gap-xl-5{column-gap:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media (min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.object-fit-xxl-contain{object-fit:contain !important}.object-fit-xxl-cover{object-fit:cover !important}.object-fit-xxl-fill{object-fit:fill !important}.object-fit-xxl-scale{object-fit:scale-down !important}.object-fit-xxl-none{object-fit:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-inline-grid{display:inline-grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.row-gap-xxl-0{row-gap:0 !important}.row-gap-xxl-1{row-gap:.25rem !important}.row-gap-xxl-2{row-gap:.5rem !important}.row-gap-xxl-3{row-gap:1rem !important}.row-gap-xxl-4{row-gap:1.5rem !important}.row-gap-xxl-5{row-gap:3rem !important}.column-gap-xxl-0{column-gap:0 !important}.column-gap-xxl-1{column-gap:.25rem !important}.column-gap-xxl-2{column-gap:.5rem !important}.column-gap-xxl-3{column-gap:1rem !important}.column-gap-xxl-4{column-gap:1.5rem !important}.column-gap-xxl-5{column-gap:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#000}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#000}.bg-warning{color:#000}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media (min-width: 1200px){.fs-1{font-size:2.5rem !important}.fs-2{font-size:2rem !important}.fs-3{font-size:1.75rem !important}.fs-4{font-size:1.5rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-inline-grid{display:inline-grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}.table th[align=left]{text-align:left}.table th[align=right]{text-align:right}.table th[align=center]{text-align:center}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre,.bslib-gap-spacing>.shiny-html-output>.bslib-mb-spacing,.bslib-gap-spacing>.shiny-html-output>.form-group,.bslib-gap-spacing>.shiny-html-output>p,.bslib-gap-spacing>.shiny-html-output>pre,.bslib-gap-spacing>.shiny-panel-conditional>.bslib-mb-spacing,.bslib-gap-spacing>.shiny-panel-conditional>.form-group,.bslib-gap-spacing>.shiny-panel-conditional>p,.bslib-gap-spacing>.shiny-panel-conditional>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.bg-blue{--bslib-color-bg: #0d6efd;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #0d6efd;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #6f42c1;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #6f42c1;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #d63384;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #d63384;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #dc3545;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #dc3545;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #fd7e14;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #fd7e14;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ffc107;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ffc107;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #198754;--bslib-color-fg: #fff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #198754;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #0dcaf0;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #dee2e6}.bg-default{--bslib-color-bg: #dee2e6;--bslib-color-fg: #000}.text-primary{--bslib-color-fg: #0d6efd}.bg-primary{--bslib-color-bg: #0d6efd;--bslib-color-fg: #fff}.text-secondary{--bslib-color-fg: #6c757d}.bg-secondary{--bslib-color-bg: #6c757d;--bslib-color-fg: #fff}.text-success{--bslib-color-fg: #198754}.bg-success{--bslib-color-bg: #198754;--bslib-color-fg: #fff}.text-info{--bslib-color-fg: #0dcaf0}.bg-info{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000}.text-warning{--bslib-color-fg: #ffc107}.bg-warning{--bslib-color-bg: #ffc107;--bslib-color-fg: #000}.text-danger{--bslib-color-fg: #dc3545}.bg-danger{--bslib-color-bg: #dc3545;--bslib-color-fg: #fff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #212529}.bg-dark{--bslib-color-bg: #212529;--bslib-color-fg: #fff}.bg-gradient-blue-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #3148f9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3148f9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #fff;--bslib-color-bg: #345ce5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #345ce5;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #fff;--bslib-color-bg: #5d56cd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d56cd;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #fff;--bslib-color-bg: #6057b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6057b3;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #fff;--bslib-color-bg: #6d74a0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6d74a0;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6e8f9b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6e8f9b;color:#000}.bg-gradient-blue-green{--bslib-color-fg: #fff;--bslib-color-bg: #1278b9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1278b9;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #000;--bslib-color-bg: #1592d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1592d4;color:#000}.bg-gradient-blue-cyan{--bslib-color-fg: #000;--bslib-color-bg: #0d93f8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #0d93f8;color:#000}.bg-gradient-indigo-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4236f6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4236f6;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #fff;--bslib-color-bg: #6a24de;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #6a24de;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #fff;--bslib-color-bg: #931ec6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #931ec6;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #fff;--bslib-color-bg: #951fad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #951fad;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #fff;--bslib-color-bg: #a23c99;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a23c99;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #fff;--bslib-color-bg: #a35794;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a35794;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #fff;--bslib-color-bg: #4740b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4740b3;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #fff;--bslib-color-bg: #425af1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #425af1;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #fff;--bslib-color-bg: #4854d9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4854d9;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #6b2ed5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #6b2ed5;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #fff;--bslib-color-bg: #983ca9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #983ca9;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #fff;--bslib-color-bg: #9b3d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #9b3d8f;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #fff;--bslib-color-bg: #a85a7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a85a7c;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #000;--bslib-color-bg: #a97577;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a97577;color:#000}.bg-gradient-purple-green{--bslib-color-fg: #fff;--bslib-color-bg: #4d5e95;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4d5e95;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #fff;--bslib-color-bg: #4f78b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4f78b0;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #000;--bslib-color-bg: #4878d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #4878d4;color:#000}.bg-gradient-pink-blue{--bslib-color-fg: #fff;--bslib-color-bg: #864bb4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #864bb4;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #a925b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #a925b0;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #fff;--bslib-color-bg: #ad399c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #ad399c;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #fff;--bslib-color-bg: #d8346b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #d8346b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #000;--bslib-color-bg: #e65157;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e65157;color:#000}.bg-gradient-pink-yellow{--bslib-color-fg: #000;--bslib-color-bg: #e66c52;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #e66c52;color:#000}.bg-gradient-pink-green{--bslib-color-fg: #fff;--bslib-color-bg: #8a5571;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8a5571;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #000;--bslib-color-bg: #8d6f8c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #8d6f8c;color:#000}.bg-gradient-pink-cyan{--bslib-color-fg: #000;--bslib-color-bg: #866faf;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #866faf;color:#000}.bg-gradient-red-blue{--bslib-color-fg: #fff;--bslib-color-bg: #894c8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #894c8f;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #ad268a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #ad268a;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #fff;--bslib-color-bg: #b03a77;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #b03a77;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #fff;--bslib-color-bg: #da345e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #da345e;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #000;--bslib-color-bg: #e95231;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e95231;color:#000}.bg-gradient-red-yellow{--bslib-color-fg: #000;--bslib-color-bg: #ea6d2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #ea6d2c;color:#000}.bg-gradient-red-green{--bslib-color-fg: #fff;--bslib-color-bg: #8e564b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8e564b;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #000;--bslib-color-bg: #917066;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #917066;color:#000}.bg-gradient-red-cyan{--bslib-color-fg: #000;--bslib-color-bg: #897189;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #897189;color:#000}.bg-gradient-orange-blue{--bslib-color-fg: #000;--bslib-color-bg: #9d7871;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9d7871;color:#000}.bg-gradient-orange-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c1526d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c1526d;color:#000}.bg-gradient-orange-purple{--bslib-color-fg: #000;--bslib-color-bg: #c46659;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c46659;color:#000}.bg-gradient-orange-pink{--bslib-color-fg: #000;--bslib-color-bg: #ed6041;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ed6041;color:#000}.bg-gradient-orange-red{--bslib-color-fg: #000;--bslib-color-bg: #f06128;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f06128;color:#000}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #fe990f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #fe990f;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a2822e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a2822e;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #a59c48;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a59c48;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9d9c6c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9d9c6c;color:#000}.bg-gradient-yellow-blue{--bslib-color-fg: #000;--bslib-color-bg: #9ea069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9ea069;color:#000}.bg-gradient-yellow-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c27a65;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c27a65;color:#000}.bg-gradient-yellow-purple{--bslib-color-fg: #000;--bslib-color-bg: #c58e51;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c58e51;color:#000}.bg-gradient-yellow-pink{--bslib-color-fg: #000;--bslib-color-bg: #ef8839;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ef8839;color:#000}.bg-gradient-yellow-red{--bslib-color-fg: #000;--bslib-color-bg: #f18920;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f18920;color:#000}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #fea60c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #fea60c;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #000;--bslib-color-bg: #a3aa26;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a3aa26;color:#000}.bg-gradient-yellow-teal{--bslib-color-fg: #000;--bslib-color-bg: #a6c441;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6c441;color:#000}.bg-gradient-yellow-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9ec564;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9ec564;color:#000}.bg-gradient-green-blue{--bslib-color-fg: #fff;--bslib-color-bg: #147d98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #147d98;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #fff;--bslib-color-bg: #385793;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #385793;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #fff;--bslib-color-bg: #3b6b80;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3b6b80;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #fff;--bslib-color-bg: #656567;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #656567;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #fff;--bslib-color-bg: #67664e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #67664e;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #74833a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #74833a;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #000;--bslib-color-bg: #759e35;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #759e35;color:#000}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #1ca16f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1ca16f;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #000;--bslib-color-bg: #14a292;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #14a292;color:#000}.bg-gradient-teal-blue{--bslib-color-fg: #000;--bslib-color-bg: #18a5c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #18a5c0;color:#000}.bg-gradient-teal-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#000}.bg-gradient-teal-purple{--bslib-color-fg: #000;--bslib-color-bg: #4093a8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #4093a8;color:#000}.bg-gradient-teal-pink{--bslib-color-fg: #000;--bslib-color-bg: #698d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #698d8f;color:#000}.bg-gradient-teal-red{--bslib-color-fg: #000;--bslib-color-bg: #6b8e76;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6b8e76;color:#000}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #78ab63;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #78ab63;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #000;--bslib-color-bg: #79c65d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #79c65d;color:#000}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #1daf7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1daf7c;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #000;--bslib-color-bg: #18c9bb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #18c9bb;color:#000}.bg-gradient-cyan-blue{--bslib-color-fg: #000;--bslib-color-bg: #0da5f5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #0da5f5;color:#000}.bg-gradient-cyan-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3180f1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3180f1;color:#000}.bg-gradient-cyan-purple{--bslib-color-fg: #000;--bslib-color-bg: #3494dd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3494dd;color:#000}.bg-gradient-cyan-pink{--bslib-color-fg: #000;--bslib-color-bg: #5d8ec5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d8ec5;color:#000}.bg-gradient-cyan-red{--bslib-color-fg: #000;--bslib-color-bg: #608eac;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #608eac;color:#000}.bg-gradient-cyan-orange{--bslib-color-fg: #000;--bslib-color-bg: #6dac98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6dac98;color:#000}.bg-gradient-cyan-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6ec693;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6ec693;color:#000}.bg-gradient-cyan-green{--bslib-color-fg: #000;--bslib-color-bg: #12afb2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #12afb2;color:#000}.bg-gradient-cyan-teal{--bslib-color-fg: #000;--bslib-color-bg: #15cacc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #15cacc;color:#000}.row>main{max-width:50rem;overflow-wrap:break-word;hyphens:auto}@media (min-width: 1200px) and (max-width: 1399.98px){.container .row{justify-content:space-evenly}}@media (min-width: 1400px){body{font-size:18px}.col-md-3{margin-left:5rem}}.navbar{background:RGBA(var(--bs-body-color-rgb), 0.1);background:color-mix(in oklab, color-mix(in oklab, var(--bs-body-bg) 95%, var(--bs-primary)) 95%, var(--bs-body-color));line-height:initial}.nav-item .nav-link{border-radius:.375rem}.nav-item.active .nav-link{background:RGBA(var(--bs-body-color-rgb), 0.1)}.nav-item .nav-link:hover{background:RGBA(var(--bs-primary-rgb), 0.1)}.navbar>.container{align-items:baseline;-webkit-align-items:baseline}input[type="search"]{width:12rem}[aria-labelledby=dropdown-lightswitch] span.fa{opacity:0.5}@media (max-width: 991.98px){.algolia-autocomplete,input[type="search"],#navbar .dropdown-menu{width:100%}#navbar .dropdown-item{white-space:normal}input[type="search"]{margin:0.25rem 0}}.headroom{will-change:transform;transition:transform 400ms ease}.headroom--pinned{transform:translateY(0%)}.headroom--unpinned{transform:translateY(-100%)}.row>main,.row>aside{margin-top:56px}html,body{scroll-padding:56px}@media (min-width: 576px){#toc{position:sticky;top:56px;max-height:calc(100vh - 56px - 1rem);overflow-y:auto}}aside h2,aside .h2{margin-top:1.5rem;font-size:1.25rem}aside .roles{color:RGBA(var(--bs-body-color-rgb), 0.8)}aside .list-unstyled li{margin-bottom:0.5rem}aside .dev-status .list-unstyled li{margin-bottom:0.1rem}@media (max-width: 767.98px){.row>aside{margin:0.5rem;width:calc(100vw - 1rem);background-color:RGBA(var(--bs-body-color-rgb), 0.1);border-color:var(--bs-border-color);border-radius:.375rem}.row>aside h2:first-child,.row>aside .h2:first-child{margin-top:1rem}}body{position:relative}#toc>.nav{margin-bottom:1rem}#toc>.nav a.nav-link{color:inherit;padding:0.25rem 0.5rem;margin-bottom:2px;border-radius:.375rem}#toc>.nav a.nav-link:hover,#toc>.nav a.nav-link:focus{background-color:RGBA(var(--bs-primary-rgb), 0.1)}#toc>.nav a.nav-link.active{background-color:RGBA(var(--bs-body-color-rgb), 0.1)}#toc>.nav .nav a.nav-link{margin-left:0.5rem}#toc>.nav .nav{display:none !important}#toc>.nav a.active+.nav{display:flex !important}footer{margin:1rem 0 1rem 0;padding-top:1rem;font-size:.875em;border-top:1px solid #dee2e6;background:rgba(0,0,0,0);color:RGBA(var(--bs-body-color-rgb), 0.8);display:flex;column-gap:1rem}@media (max-width: 575.98px){footer{flex-direction:column}}@media (min-width: 576px){footer .pkgdown-footer-right{text-align:right}}footer div{flex:1 1 auto}html,body{height:100%}body>.container{min-height:100%;display:flex;flex-direction:column}body>.container .row{flex:1 0 auto}main img{max-width:100%;height:auto}main table{display:block;overflow:auto}body{font-display:fallback}.page-header{border-bottom:1px solid var(--bs-border-color);padding-bottom:0.5rem;margin-bottom:0.5rem;margin-top:1.5rem}dl{margin-bottom:0}dd{padding-left:1.5rem;margin-bottom:0.25rem}h2,.h2{font-size:1.75rem;margin-top:1.5rem}h3,.h3{font-size:1.25rem;margin-top:1rem;font-weight:bold}h4,.h4{font-size:1.1rem;font-weight:bold}h5,.h5{font-size:1rem;font-weight:bold}summary{margin-bottom:0.5rem}details{margin-bottom:1rem}.html-widget{margin-bottom:1rem}a.anchor{display:none;margin-left:2px;vertical-align:top;width:Min(0.9em, 20px);height:Min(0.9em, 20px);background-image:url(../../link.svg);background-repeat:no-repeat;background-size:Min(0.9em, 20px) Min(0.9em, 20px);background-position:center center}h2:hover .anchor,.h2:hover .anchor,h2:target .anchor,.h2:target .anchor,h3:hover .anchor,.h3:hover .anchor,h3:target .anchor,.h3:target .anchor,h4:hover .anchor,.h4:hover .anchor,h4:target .anchor,.h4:target .anchor,h5:hover .anchor,.h5:hover .anchor,h5:target .anchor,.h5:target .anchor,h6:hover .anchor,.h6:hover .anchor,h6:target .anchor,.h6:target .anchor,dt:hover .anchor,dt:target .anchor{display:inline-block}dt:target,dt:target+dd{border-left:0.25rem solid var(--bs-primary);margin-left:-0.75rem}dt:target{padding-left:0.5rem}dt:target+dd{padding-left:2rem}.orcid{color:#A6CE39;margin-right:4px}.fab{font-family:"Font Awesome 5 Brands" !important}img.logo{float:right;width:100px;margin-left:30px}.template-home img.logo{width:120px}@media (max-width: 575.98px){img.logo{width:80px}}@media (min-width: 576px){.page-header{min-height:88px}.template-home .page-header{min-height:104px}}.line-block{margin-bottom:1rem}.template-reference-index dt{font-weight:normal}.template-reference-index code{word-wrap:normal}.icon{float:right}.icon img{width:40px}a[href='#main']{position:absolute;margin:4px;padding:0.75rem;background-color:var(--bs-body-bg);text-decoration:none;z-index:2000}.lifecycle{color:var(--bs-secondary-color);background-color:var(--bs-secondary-bg);border-radius:5px}.lifecycle-stable{background-color:#108001;color:var(--bs-white)}.lifecycle-superseded{background-color:#074080;color:var(--bs-white)}.lifecycle-experimental,.lifecycle-deprecated{background-color:#fd8008;color:var(--bs-black)}a.footnote-ref{cursor:pointer}.popover{width:Min(100vw, 32rem);font-size:0.9rem;box-shadow:4px 4px 8px RGBA(var(--bs-body-color-rgb), 0.3)}.popover-body{padding:0.75rem}.popover-body p:last-child{margin-bottom:0}.tab-content{padding:1rem}.tabset-pills .tab-content{border:solid 1px #e5e5e5}.tab-content{display:flex}.tab-content>.tab-pane{display:block;visibility:hidden;margin-right:-100%;width:100%}.tab-content>.active{visibility:visible}div.csl-entry{clear:both}.hanging-indent div.csl-entry{margin-left:2em;text-indent:-2em}div.csl-left-margin{min-width:2em;float:left}div.csl-right-inline{margin-left:2em;padding-left:1em}div.csl-indent{margin-left:2em}pre,pre code{word-wrap:normal}[data-bs-theme="dark"] pre,[data-bs-theme="dark"] code{background-color:RGBA(var(--bs-body-color-rgb), 0.1)}[data-bs-theme="dark"] pre code{background:transparent}code{overflow-wrap:break-word}.hasCopyButton{position:relative}.btn-copy-ex{position:absolute;right:5px;top:5px;visibility:hidden}.hasCopyButton:hover button.btn-copy-ex{visibility:visible}pre{padding:0.75rem}pre div.gt-table{white-space:normal;margin-top:1rem}@media (max-width: 575.98px){div>div>pre{margin-left:calc(var(--bs-gutter-x) * -.5);margin-right:calc(var(--bs-gutter-x) * -.5);border-radius:0;padding-left:1rem;padding-right:1rem}.btn-copy-ex{right:calc(var(--bs-gutter-x) * -.5 + 5px)}}code a:any-link{color:inherit;text-decoration-color:RGBA(var(--bs-body-color-rgb), 0.6)}pre code{padding:0;background:transparent}pre code .error,pre code .warning{font-weight:bolder}pre .img img,pre .r-plt img{margin:5px 0;background-color:#fff}[data-bs-theme="dark"] pre img{opacity:0.66;transition:opacity 250ms ease-in-out}[data-bs-theme="dark"] pre img:hover,[data-bs-theme="dark"] pre img:focus,[data-bs-theme="dark"] pre img:active{opacity:1}@media print{code a:link:after,code a:visited:after{content:""}}a.sourceLine:hover{text-decoration:none}mark,.mark{background:linear-gradient(-100deg, RGBA(var(--bs-info-rgb), 0.2), RGBA(var(--bs-info-rgb), 0.7) 95%, RGBA(var(--bs-info-rgb), 0.1))}.algolia-autocomplete .aa-dropdown-menu{margin-top:0.5rem;padding:0.5rem 0.25rem;width:MAX(100%, 20rem);max-height:50vh;overflow-y:auto;background-color:var(--bs-body-bg);border:var(--bs-border-width) solid var(--bs-border-color);border-radius:.375rem}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion{cursor:pointer;font-size:1rem;padding:0.5rem 0.25rem;line-height:1.3}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion:hover{background-color:var(--bs-tertiary-bg);color:var(--bs-body-color)}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion .search-details{text-decoration:underline;display:inline}span.smallcaps{font-variant:small-caps}ul.task-list{list-style:none}ul.task-list li input[type="checkbox"]{width:0.8em;margin:0 0.8em 0.2em -1em;vertical-align:middle}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:0.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:0.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption.quarto-float-caption-bottom{margin-bottom:0.5em}figure>figcaption.quarto-float-caption-top{margin-top:0.5em}:root{--mermaid-bg-color: transparent;--mermaid-edge-color: var(--bs-secondary);--mermaid-fg-color: var(--bs-body-color);--mermaid-fg-color--lighter: RGBA(var(--bs-body-color-rgb), 0.9);--mermaid-fg-color--lightest: RGBA(var(--bs-body-color-rgb), 0.8);--mermaid-font-family: var(--bs-body-font-family);--mermaid-label-bg-color: var(--bs-primary);--mermaid-label-fg-color: var(--bs-body-color);--mermaid-node-bg-color: RGBA(var(--bs-primary-rgb), 0.1);--mermaid-node-fg-color: var(--bs-primary)}pre{background-color:#f1f3f5}pre code{color:#003B4F}pre code span.al{color:#AD0000}pre code span.an{color:#5E5E5E}pre code span.at{color:#657422}pre code span.bn{color:#AD0000}pre code span.cf{color:#003B4F}pre code span.ch{color:#20794D}pre code span.cn{color:#8f5902}pre code span.co{color:#5E5E5E}pre code span.cv{color:#5E5E5E;font-style:italic}pre code span.do{color:#5E5E5E;font-style:italic}pre code span.dt{color:#AD0000}pre code span.dv{color:#AD0000}pre code span.er{color:#AD0000}pre code span.fl{color:#AD0000}pre code span.fu{color:#4758AB}pre code span.im{color:#00769E}pre code span.in{color:#5E5E5E}pre code span.kw{color:#003B4F}pre code span.op{color:#5E5E5E}pre code span.ot{color:#003B4F}pre code span.pp{color:#AD0000}pre code span.sc{color:#5E5E5E}pre code span.ss{color:#20794D}pre code span.st{color:#20794D}pre code span.va{color:#111111}pre code span.vs{color:#20794D}pre code span.wa{color:#5E5E5E;font-style:italic}a{text-decoration:none !important;color:#03638e}.text-default{--bs-text-opacity: 1;color:#03638e !important}.navbar-dark{background-color:#fff !important;border-bottom:1px solid #dee2e6 !important}.bg-light{background-color:#fff !important;border-bottom:1px solid #dee2e6 !important}body{font-size:0.85rem !important}.navbar-light .navbar-nav .nav-link{color:black !important}.template-home img.logo{width:90px !important}.template-home .page-header{min-height:75px !important}.row>main{max-width:50rem}@media (min-width: 1200px) and (max-width: 1399.98px){.container .row{justify-content:space-evenly}}@media (min-width: 1400px){body{font-size:18px}.col-md-3{margin-left:5rem}}.navbar-nav .nav-item>.nav-link{border-radius:.375rem;padding:0.5rem}.navbar-light .navbar-nav .active>.nav-link{background:#e9ecef;color:#212529}.navbar-dark .navbar-nav .active>.nav-link{background:#343a40;color:#fff}.navbar-dark .navbar-nav .nav-item>.nav-link:hover,.navbar-light .navbar-nav .nav-item>.nav-link:hover{background:rgba(13,110,253,0.1)}.navbar-dark input[type="search"]{border-color:#6c757d;background-color:#212529;color:#e9ecef}input[type="search"]{border-color:#dee2e6;width:12rem}.headroom{will-change:transform;transition:transform 400ms ease}.headroom--pinned{transform:translateY(0%)}.headroom--unpinned{transform:translateY(-100%)}.row>main,.row>aside{margin-top:56px}html,body{scroll-padding:56px}@media (min-width: 576px){#toc{position:sticky;top:56px;max-height:calc(100vh - 56px - 1rem);overflow-y:auto}}aside h2,aside .h2{margin-top:1.5rem;font-size:1.25rem}aside .roles{color:#4d5154}aside .list-unstyled li{margin-bottom:0.5rem}aside .dev-status .list-unstyled li{margin-bottom:0.1rem}@media (max-width: 575.98px){aside{margin:0.5rem;width:calc(100vw - 1rem);background-color:#f8f9fa;border-color:#dee2e6;border-radius:.375rem}aside h2:first-child,aside .h2:first-child{margin-top:1rem}}body{position:relative}#toc>.nav{margin-bottom:1rem}#toc>.nav a.nav-link{color:inherit;padding:0.25rem 0.5rem;margin-bottom:2px;border-radius:.375rem;border:0 solid #dee2e6}#toc>.nav a.nav-link:hover,#toc>.nav a.nav-link:focus{background-color:rgba(13,110,253,0.1);color:#000}#toc>.nav a.nav-link.active{background-color:#e9e9ea;color:#000}#toc>.nav .nav a.nav-link{margin-left:0.5rem}#toc>.nav .nav{display:none !important}#toc>.nav a.active+.nav{display:flex !important}footer{margin:1rem 0 1rem 0;font-size:.875em;border-top:1px solid #dee2e6;background:rgba(0,0,0,0);color:RGBA(var(--bs-body-color-rgb), 0.8);display:flex;column-gap:1rem}@media (max-width: 575.98px){footer{flex-direction:column}}@media (min-width: 576px){footer .pkgdown-footer-right{text-align:right}}footer div{flex:1 1 auto}html,body{height:100%}body>.container{min-height:100%;display:flex;flex-direction:column}body>.container .row{flex:1 0 auto}::selection{background-color:#cfe2ff}main img{max-width:100%;height:auto}main table{display:block;overflow:auto}body{font-display:fallback}.page-header{border-bottom:1px solid #dee2e6;padding-bottom:0.5rem;margin-bottom:0.5rem;margin-top:1.5rem}dd{margin-left:1.5rem}summary{margin-bottom:0.5rem}details{margin-bottom:1rem}.html-widget{margin-bottom:1rem}a.anchor{display:none;margin-left:5px;width:Min(0.9em, 20px);height:Min(0.9em, 20px);background-image:url(../../link.svg);background-repeat:no-repeat;background-size:Min(0.9em, 20px) Min(0.9em, 20px);background-position:center center}h2:hover .anchor,.h2:hover .anchor,h3:hover .anchor,.h3:hover .anchor,h4:hover .anchor,.h4:hover .anchor,h5:hover .anchor,.h5:hover .anchor,h6:hover .anchor,.h6:hover .anchor{display:inline-block}.orcid{color:#A6CE39;margin-right:4px}.fab{font-family:"Font Awesome 5 Brands" !important}img.logo{float:right;width:100px;margin-left:30px}.template-home img.logo{width:120px}@media (max-width: 575.98px){img.logo{width:80px}}@media (min-width: 576px){.page-header{min-height:88px}.template-home .page-header{min-height:104px}}.line-block{margin-bottom:1rem}.template-reference-index dt{font-weight:normal}.template-reference-index code{word-wrap:normal}.icon{float:right}.icon img{width:40px}a.footnote-ref{cursor:pointer}.popover{width:Min(100vw, 32rem);font-size:0.9rem;box-shadow:4px 4px 8px rgba(0,0,0,0.3)}.popover-body{padding:0.75rem}.popover-body p:last-child{margin-bottom:0}.tab-content{padding:1rem}.tabset-pills .tab-content{border:solid 1px #e5e5e5}.tab-content{display:flex}.tab-content>.tab-pane{display:block;visibility:hidden;margin-right:-100%;width:100%}.tab-content>.active{visibility:visible}div.csl-entry{clear:both}.hanging-indent div.csl-entry{margin-left:2em;text-indent:-2em}div.csl-left-margin{min-width:2em;float:left}div.csl-right-inline{margin-left:2em;padding-left:1em}div.csl-indent{margin-left:2em}pre,pre code{white-space:pre-wrap;word-break:break-all;overflow-wrap:break-word}.hasCopyButton{position:relative}.btn-copy-ex{position:absolute;right:5px;top:5px;visibility:hidden}.hasCopyButton:hover button.btn-copy-ex{visibility:visible}pre{padding:1rem 0.5rem}@media (max-width: 575.98px){div>div>pre{margin-left:calc(var(--bs-gutter-x) * -.5);margin-right:calc(var(--bs-gutter-x) * -.5);border-radius:0;padding-left:1rem;padding-right:1rem}.btn-copy-ex{right:calc(var(--bs-gutter-x) * -.5 + 5px)}}pre code{padding:0;background:transparent}pre code a:any-link{color:inherit;text-decoration-color:#6c757d}pre code .error,pre code .warning{font-weight:bolder}pre .img img,pre .r-plt img{margin:5px 0;background-color:#fff}@media print{code a:link:after,code a:visited:after{content:""}}a.sourceLine:hover{text-decoration:none}mark,.mark{background:linear-gradient(-100deg, rgba(13,202,240,0.2), rgba(13,202,240,0.7) 95%, rgba(13,202,240,0.1))}.algolia-autocomplete .aa-hint{color:#212529}.algolia-autocomplete .aa-dropdown-menu{width:Max(100%, 20rem);background-color:#fff;border:1px solid var(--bs-border-color);margin-top:2px;max-height:50vh;overflow-y:auto}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion{cursor:pointer;padding:5px 4px;border-bottom:1px #e9ecef solid;font-size:0.9rem;color:#212529}.search-details{font-size:0.9rem;color:#0d6efd;display:inline;font-weight:bolder}.algolia-autocomplete .aa-dropdown-menu .aa-suggestion.aa-cursor{background-color:#e7f1ff}[data-bs-theme="dark"] pre code{color:#f8f8f2}[data-bs-theme="dark"] pre code span.al{color:#f07178;background-color:#2a0f15;font-weight:bold}[data-bs-theme="dark"] pre code span.an{color:#d4d0ab}[data-bs-theme="dark"] pre code span.at{color:#00e0e0}[data-bs-theme="dark"] pre code span.bn{color:#d4d0ab}[data-bs-theme="dark"] pre code span.bu{color:#abe338}[data-bs-theme="dark"] pre code span.cf{color:#ffa07a;font-weight:bold}[data-bs-theme="dark"] pre code span.ch{color:#abe338}[data-bs-theme="dark"] pre code span.cn{color:#ffd700}[data-bs-theme="dark"] pre code span.co{color:#f8f8f2;font-style:italic}[data-bs-theme="dark"] pre code span.cv{color:#ffd700}[data-bs-theme="dark"] pre code span.do{color:#f8f8f2}[data-bs-theme="dark"] pre code span.dt{color:#ffa07a}[data-bs-theme="dark"] pre code span.dv{color:#d4d0ab}[data-bs-theme="dark"] pre code span.er{color:#f07178;text-decoration:underline}[data-bs-theme="dark"] pre code span.ex{color:#00e0e0;font-weight:bold}[data-bs-theme="dark"] pre code span.fl{color:#d4d0ab}[data-bs-theme="dark"] pre code span.fu{color:#ffa07a}[data-bs-theme="dark"] pre code span.im{color:#abe338}[data-bs-theme="dark"] pre code span.in{color:#d4d0ab}[data-bs-theme="dark"] pre code span.kw{color:#ffa07a;font-weight:bold}[data-bs-theme="dark"] pre code span.op{color:#ffa07a}[data-bs-theme="dark"] pre code span.ot{color:#00e0e0}[data-bs-theme="dark"] pre code span.pp{color:#dcc6e0}[data-bs-theme="dark"] pre code span.re{color:#00e0e0;background-color:#f8f8f2}[data-bs-theme="dark"] pre code span.sc{color:#abe338}[data-bs-theme="dark"] pre code span.ss{color:#abe338}[data-bs-theme="dark"] pre code span.st{color:#abe338}[data-bs-theme="dark"] pre code span.va{color:#00e0e0}[data-bs-theme="dark"] pre code span.vs{color:#abe338}[data-bs-theme="dark"] pre code span.wa{color:#dcc6e0} diff --git a/dev/pkgdown.yml b/dev/pkgdown.yml index 20a399a3..6a0b0e9c 100644 --- a/dev/pkgdown.yml +++ b/dev/pkgdown.yml @@ -2,7 +2,7 @@ pandoc: 3.1.11 pkgdown: 2.1.1 pkgdown_sha: ~ articles: {} -last_built: 2024-12-21T09:19Z +last_built: 2025-02-12T21:04Z urls: reference: https://mlr3cluster.mlr-org.com/reference article: https://mlr3cluster.mlr-org.com/articles diff --git a/dev/reference/as_prediction_clust.html b/dev/reference/as_prediction_clust.html index a789540a..31531b72 100644 --- a/dev/reference/as_prediction_clust.html +++ b/dev/reference/as_prediction_clust.html @@ -104,6 +104,9 @@

Examples sapply(preds, function(p) p$score(task = task)) } #> Loading required namespace: e1071 +#> Superclass MeasureClust has cloneable=FALSE, but subclass MeasureClustFPC has cloneable=TRUE. A subclass cannot be cloneable when its superclass is not cloneable, so cloning will be disabled for MeasureClustFPC. +#> Superclass MeasureClust has cloneable=FALSE, but subclass MeasureClustFPC has cloneable=TRUE. A subclass cannot be cloneable when its superclass is not cloneable, so cloning will be disabled for MeasureClustFPC. +#> Superclass MeasureClust has cloneable=FALSE, but subclass MeasureClustFPC has cloneable=TRUE. A subclass cannot be cloneable when its superclass is not cloneable, so cloning will be disabled for MeasureClustFPC. #> (31.9,51.7].clust.dunn (51.7,71.3].clust.dunn (71.3,91.1].clust.dunn #> 0.7096902 0.1226172 0.2538652

diff --git a/dev/search.json b/dev/search.json index 2227d934..5019c109 100644 --- a/dev/search.json +++ b/dev/search.json @@ -1 +1 @@ -[{"path":"https://mlr3cluster.mlr-org.com/dev/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Maximilian Mücke. Author, maintainer. Damir Pulatov. Author. Michel Lang. Author. Marc Becker. Contributor.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Mücke M, Pulatov D, Lang M (2024). mlr3cluster: Cluster Extension 'mlr3'. R package version 0.1.10.9000, https://github.com/mlr-org/mlr3cluster, https://mlr3cluster.mlr-org.com.","code":"@Manual{, title = {mlr3cluster: Cluster Extension for 'mlr3'}, author = {Maximilian Mücke and Damir Pulatov and Michel Lang}, year = {2024}, note = {R package version 0.1.10.9000, https://github.com/mlr-org/mlr3cluster}, url = {https://mlr3cluster.mlr-org.com}, }"},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"mlr3cluster","dir":"","previous_headings":"","what":"Cluster Extension for mlr3","title":"Cluster Extension for mlr3","text":"Package website: release | dev Cluster analysis mlr3. mlr3cluster extension package cluster analysis within mlr3 ecosystem. successor clustering capabilities mlr2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Cluster Extension for mlr3","text":"Install last release CRAN: Install development version GitHub:","code":"install.packages(\"mlr3cluster\") # install.packages(\"pak\") pak::pak(\"mlr-org/mlr3cluster\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"feature-overview","dir":"","previous_headings":"","what":"Feature Overview","title":"Cluster Extension for mlr3","text":"current version mlr3cluster contains: selection 24 clustering learners represent wide variety clusterers: partitional, hierarchical, fuzzy, etc. selection 4 performance measures Two built-tasks get started clustering Also, package integrated mlr3viz enables create great visualizations just one line code!","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Cluster Extension for mlr3","text":"","code":"library(mlr3) library(mlr3cluster) task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") learner$train(task) prediction = learner$predict(task = task)"},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"more-resources","dir":"","previous_headings":"","what":"More Resources","title":"Cluster Extension for mlr3","text":"Check blogpost detailed introduction package. Also, mlr3book section clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"future-plans","dir":"","previous_headings":"","what":"Future Plans","title":"Cluster Extension for mlr3","text":"Add learners measures Integrate package mlr3pipelines (work progress) questions, feedback ideas, feel free open issue .","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Learner — LearnerClust","title":"Cluster Learner — LearnerClust","text":"Learner specializes mlr3::Learner cluster problems: task_type set \"clust\". Creates mlr3::Predictions class PredictionClust. Possible values predict_types : \"partition\": Integer indicating cluster membership. \"prob\": Probability belonging cluster. Predefined learners can found mlr3misc::Dictionary mlr3::mlr_learners.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner -> LearnerClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"Cluster Learner — LearnerClust","text":"assignments (NULL | vector()) Cluster assignments learned model. save_assignments (logical()) assignments 'train' data saved learner? Default TRUE.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Learner — LearnerClust","text":"LearnerClust$new() LearnerClust$reset() LearnerClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Learner — LearnerClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$new( id, param_set = ps(), predict_types = \"partition\", feature_types = character(), properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"id (character(1)) Identifier new instance. param_set (paradox::ParamSet) Set hyperparameters. predict_types (character()) Supported predict types. Must subset mlr_reflections$learner_predict_types. feature_types (character()) Feature types learner operates . Must subset mlr_reflections$task_feature_types. properties (character()) Set properties mlr3::Learner. Must subset mlr_reflections$learner_properties. following properties currently standardized understood learners mlr3: \"missings\": learner can handle missing values data. \"weights\": learner supports observation weights. \"importance\": learner supports extraction importance scores, .e. comes $importance() extractor function (see section optional extractors mlr3::Learner). \"selected_features\": learner supports extraction set selected features, .e. comes $selected_features() extractor function (see section optional extractors mlr3::Learner). \"oob_error\": learner supports extraction estimated bag error, .e. comes oob_error() extractor function (see section optional extractors mlr3::Learner). packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"method-reset-","dir":"Reference","previous_headings":"","what":"Method reset()","title":"Cluster Learner — LearnerClust","text":"Reset assignments field calling parent's reset().","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$reset()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Learner — LearnerClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Learner — LearnerClust","text":"","code":"library(mlr3) library(mlr3cluster) ids = mlr_learners$keys(\"^clust\") ids #> [1] \"clust.MBatchKMeans\" \"clust.SimpleKMeans\" \"clust.agnes\" #> [4] \"clust.ap\" \"clust.bico\" \"clust.birch\" #> [7] \"clust.cmeans\" \"clust.cobweb\" \"clust.dbscan\" #> [10] \"clust.dbscan_fpc\" \"clust.diana\" \"clust.em\" #> [13] \"clust.fanny\" \"clust.featureless\" \"clust.ff\" #> [16] \"clust.hclust\" \"clust.hdbscan\" \"clust.kkmeans\" #> [19] \"clust.kmeans\" \"clust.mclust\" \"clust.meanshift\" #> [22] \"clust.optics\" \"clust.pam\" \"clust.xmeans\" # get a specific learner from mlr_learners: learner = lrn(\"clust.kmeans\") print(learner) #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Measure — MeasureClust","title":"Cluster Measure — MeasureClust","text":"measure specializes mlr3::Measure cluster analysis: task_type set \"clust\". Possible values predict_type \"partition\" \"prob\". Predefined measures can found mlr3misc::Dictionary mlr3::mlr_measures.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure -> MeasureClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure$aggregate() mlr3::Measure$format() mlr3::Measure$help() mlr3::Measure$print() mlr3::Measure$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Measure — MeasureClust","text":"MeasureClust$new()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Measure — MeasureClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Measure — MeasureClust","text":"","code":"MeasureClust$new( id, range, minimize = NA, aggregator = NULL, properties = character(), predict_type = \"partition\", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Measure — MeasureClust","text":"id (character(1)) Identifier new instance. range (numeric(2)) Feasible range measure c(lower_bound, upper_bound). bounds may infinite. minimize (logical(1)) Set TRUE good predictions correspond small values, FALSE good predictions correspond large values. set NA (default), tuning measure possible. aggregator (function(x)) Function aggregate individual performance scores x x numeric vector. NULL, defaults mean(). properties (character()) Properties measure. Must subset mlr_reflections$measure_properties. Supported mlr3: \"requires_task\" (requires complete mlr3::Task), \"requires_learner\" (requires trained mlr3::Learner), \"requires_train_set\" (requires training indices mlr3::Resampling), \"na_score\" (measure expected occasionally return NA NaN). predict_type (character(1)) Required predict type mlr3::Learner. Possible values stored mlr_reflections$learner_predict_types. task_properties (character()) Required task properties, see mlr3::Task. packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Object for Cluster Analysis — PredictionClust","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"object wraps predictions returned learner class LearnerClust, .e. predicted partition cluster probability.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction -> PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"active-bindings","dir":"Reference","previous_headings":"","what":"Active bindings","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"partition (integer()) Access stored partition. prob (matrix()) Access stored probabilities.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction$filter() mlr3::Prediction$format() mlr3::Prediction$help() mlr3::Prediction$obs_loss() mlr3::Prediction$print() mlr3::Prediction$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"PredictionClust$new() PredictionClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$new( task = NULL, row_ids = task$row_ids, partition = NULL, prob = NULL, check = TRUE )"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"task (TaskClust) Task, used extract defaults row_ids. row_ids (integer()) Row ids predicted observations, .e. row ids test set. partition (integer()) Vector cluster partitions. prob (matrix()) Numeric matrix cluster membership probabilities one column cluster one row observation. Columns must named cluster numbers, row names automatically removed. prob provided, partition , cluster memberships calculated probabilities using max.col() ties.method set \"first\". check (logical(1)) TRUE, performs argument checks predict type conversions.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"library(mlr3) library(mlr3cluster) task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") p = learner$train(task)$predict(task) p$predict_types #> [1] \"partition\" head(as.data.table(p)) #> row_ids partition #> #> 1: 1 2 #> 2: 2 2 #> 3: 3 2 #> 4: 4 2 #> 5: 5 2 #> 6: 6 2"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Task — TaskClust","title":"Cluster Task — TaskClust","text":"task specializes mlr3::Task cluster problems. unsupervised task, task target column. task_type set \"clust\". Predefined tasks stored dictionary mlr3::mlr_tasks.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cluster Task — TaskClust","text":"mlr3::Task -> mlr3::TaskUnsupervised -> TaskClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Task — TaskClust","text":"mlr3::Task$add_strata() mlr3::Task$cbind() mlr3::Task$data() mlr3::Task$divide() mlr3::Task$droplevels() mlr3::Task$filter() mlr3::Task$format() mlr3::Task$formula() mlr3::Task$head() mlr3::Task$help() mlr3::Task$levels() mlr3::Task$missings() mlr3::Task$print() mlr3::Task$rbind() mlr3::Task$rename() mlr3::Task$select() mlr3::Task$set_col_roles() mlr3::Task$set_levels() mlr3::Task$set_row_roles()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Task — TaskClust","text":"TaskClust$new() TaskClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Task — TaskClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$new(id, backend, label = NA_character_)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"id (character(1)) Identifier new instance. backend (mlr3::DataBackend) Either mlr3::DataBackend, object convertible mlr3::DataBackend as_data_backend(). E.g., data.frame() converted mlr3::DataBackendDataTable. label (character(1)) Label new instance.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Task — TaskClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Task — TaskClust","text":"","code":"library(mlr3) library(mlr3cluster) task = TaskClust$new(\"usarrests\", backend = USArrests) task$task_type #> [1] \"clust\" # possible properties: mlr_reflections$task_properties$clust #> [1] \"strata\" \"groups\" \"weights\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Prediction — as_prediction_clust","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"Convert object PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"as_prediction_clust(x, ...) # S3 method for class 'PredictionClust' as_prediction_clust(x, ...) # S3 method for class 'data.frame' as_prediction_clust(x, ...)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"x () Object convert. ... () Additional arguments.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"if (requireNamespace(\"e1071\")) { # create a prediction object task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") learner = lrn(\"clust.cmeans\", predict_type = \"prob\") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_clust(tab) # split data.table into a 3 data.tables based on UrbanPop f = cut(task$data(rows = tab$row_ids)$UrbanPop, 3) tabs = split(tab, f) # convert back to list of predictions preds = lapply(tabs, as_prediction_clust) # calculate performance in each group sapply(preds, function(p) p$score(task = task)) } #> Loading required namespace: e1071 #> (31.9,51.7].clust.dunn (51.7,71.3].clust.dunn (71.3,91.1].clust.dunn #> 0.7096902 0.1226172 0.2538652"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Task — as_task_clust","title":"Convert to a Cluster Task — as_task_clust","text":"Convert object TaskClust. S3 generic, specialized least following objects: TaskClust: ensure identity. data.frame() mlr3::DataBackend: provides alternative calling constructor TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(x, ...) # S3 method for class 'TaskClust' as_task_clust(x, clone = FALSE, ...) # S3 method for class 'data.frame' as_task_clust(x, id = deparse1(substitute(x)), ...) # S3 method for class 'DataBackend' as_task_clust(x, id = deparse1(substitute(x)), ...) # S3 method for class 'formula' as_task_clust(x, data, id = deparse1(substitute(data)), ...)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Task — as_task_clust","text":"x () Object convert. ... () Additional arguments. clone (logical(1)) TRUE, ensures returned object input x. id (character(1)) Id new task. Defaults (deparsed substituted) name data argument. data (data.frame()) Data frame containing columns specified formula x.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Task — as_task_clust","text":"TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(datasets::USArrests) #> (50 x 4) #> * Target: - #> * Properties: - #> * Features (4): #> - int (2): Assault, UrbanPop #> - dbl (2): Murder, Rape"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr3cluster-package.html","id":null,"dir":"Reference","previous_headings":"","what":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Extends 'mlr3' package cluster analysis.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr3cluster-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Maintainer: Maximilian Mücke muecke.maximilian@gmail.com (ORCID) Authors: Damir Pulatov damirpolat@protonmail.com Michel Lang michellang@gmail.com (ORCID) contributors: Marc Becker marcbecker@posteo.de (ORCID) [contributor]","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClust mini batch k-means clustering implemented ClusterR::MiniBatchKmeans(). ClusterR::MiniBatchKmeans() default value number clusters. Therefore, clusters parameter set 2 default. predict method uses ClusterR::predict_MBatchKMeans() compute cluster memberships new data. learner supports partitional fuzzy clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.MBatchKMeans\") lrn(\"clust.MBatchKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, ClusterR","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Sculley, David (2010). “Web-scale k-means clustering.” Proceedings 19th international conference World wide web, 1177–1178.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMiniBatchKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClustMiniBatchKMeans$new() LearnerClustMiniBatchKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"if (requireNamespace(\"ClusterR\")) { learner = mlr3::lrn(\"clust.MBatchKMeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Mini Batch K-Means #> * Model: - #> * Parameters: clusters=2 #> * Packages: mlr3, mlr3cluster, ClusterR #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, fuzzy, partitional #> [1] \"clusters\" \"batch_size\" \"num_init\" \"max_iters\" #> [5] \"init_fraction\" \"initializer\" \"early_stop_iter\" \"verbose\" #> [9] \"CENTROIDS\" \"tol\" \"tol_optimal_init\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClust Simple K Means clustering implemented RWeka::SimpleKMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.SimpleKMeans\") lrn(\"clust.SimpleKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Forgy, W E (1965). “Cluster analysis multivariate data: efficiency versus interpretability classifications.” Biometrics, 21, 768–769. Lloyd, P S (1982). “Least squares quantization PCM.” IEEE Transactions Information Theory, 28(2), 129–137. MacQueen, James (1967). “methods classification analysis multivariate observations.” Proceedings Fifth Berkeley Symposium Mathematical Statistics Probability, volume 1, 281–297.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClustSimpleKMeans$new() LearnerClustSimpleKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.SimpleKMeans\") print(learner) # available parameters: learner$param_set$ids() } #> : K-Means (Weka) #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"A\" \"C\" \"fast\" #> [4] \"I\" \"init\" \"M\" #> [7] \"max_candidates\" \"min_density\" \"N\" #> [10] \"num_slots\" \"O\" \"periodic_pruning\" #> [13] \"S\" \"t2\" \"t1\" #> [16] \"V\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClust agglomerative hierarchical clustering implemented cluster::agnes(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default number k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.agnes\") lrn(\"clust.agnes\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups data: introduction cluster analysis. John Wiley & Sons.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClustAgnes$new() LearnerClustAgnes$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.agnes\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"method\" \"trace.lev\" \"k\" #> [6] \"par.method\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":null,"dir":"Reference","previous_headings":"","what":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClust Affinity Propagation clustering implemented apcluster::apcluster(). apcluster::apcluster() set default similarity function. predict method computes closest cluster exemplar find cluster memberships new data. code taken StackOverflow answer apcluster package maintainer.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.ap\") lrn(\"clust.ap\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, apcluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Bodenhofer, Ulrich, Kothmeier, Andreas, Hochreiter, Sepp (2011). “APCluster: R package affinity propagation clustering.” Bioinformatics, 27(17), 2463–2464. Frey, J B, Dueck, Delbert (2007). “Clustering passing messages data points.” science, 315(5814), 972–976.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAP","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClustAP$new() LearnerClustAP$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"if (requireNamespace(\"apcluster\")) { learner = mlr3::lrn(\"clust.ap\") print(learner) # available parameters: learner$param_set$ids() } #> : Affinity Propagation Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, apcluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"s\" \"p\" \"q\" \"maxits\" \"convits\" #> [6] \"lam\" \"includeSim\" \"details\" \"nonoise\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":null,"dir":"Reference","previous_headings":"","what":"BICO Clustering Learner — mlr_learners_clust.bico","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"BICO (Fast computation k-means coresets data stream) clustering. Calls stream::DSC_BICO() stream.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.bico\") lrn(\"clust.bico\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"Task type: “clust” Predict Types: “partition” Feature Types: “integer”, “numeric” Required Packages: mlr3, mlr3cluster, stream","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"Fichtenberger, Hendrik, Gille, Marc, Schmidt, Melanie, Schwiegelshohn, Chris, Sohler, Christian (2013). “BICO: BIRCH Meets Coresets k-Means Clustering.” Algorithms–ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings 21, 481–492. Springer. Hahsler M, Bolaños M, Forrest J (2017). “Introduction stream: Extensible Framework Data Stream Clustering Research R.” Journal Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBICO","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"LearnerClustBICO$new() LearnerClustBICO$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"","code":"LearnerClustBICO$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"","code":"LearnerClustBICO$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"","code":"if (requireNamespace(\"stream\")) { learner = mlr3::lrn(\"clust.bico\") print(learner) # available parameters: learner$param_set$ids() } #> : BICO Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, stream #> * Predict Types: [partition] #> * Feature Types: integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"k\" \"space\" \"p\" \"iterations\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":null,"dir":"Reference","previous_headings":"","what":"BIRCH Clustering Learner — mlr_learners_clust.birch","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) clustering. Calls stream::DSC_BIRCH() stream.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.birch\") lrn(\"clust.birch\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"Task type: “clust” Predict Types: “partition” Feature Types: “integer”, “numeric” Required Packages: mlr3, mlr3cluster, stream","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1996). “BIRCH: Efficient Data Clustering Method Large Databases.” ACM sigmod record, 25(2), 103–114. Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1997). “BIRCH: new data clustering algorithm applications.” Data Mining Knowledge Discovery, 1, 141–182. Hahsler M, Bolaños M, Forrest J (2017). “Introduction stream: Extensible Framework Data Stream Clustering Research R.” Journal Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBIRCH","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"LearnerClustBIRCH$new() LearnerClustBIRCH$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"","code":"LearnerClustBIRCH$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"","code":"LearnerClustBIRCH$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"","code":"if (requireNamespace(\"stream\")) { learner = mlr3::lrn(\"clust.birch\") print(learner) # available parameters: learner$param_set$ids() } #> : BIRCH Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, stream #> * Predict Types: [partition] #> * Feature Types: integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"threshold\" \"branching\" \"maxLeaf\" \"maxMem\" #> [5] \"outlierThreshold\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClust fuzzy clustering implemented e1071::cmeans(). e1071::cmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.cmeans\") lrn(\"clust.cmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, e1071","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Dimitriadou, Evgenia, Hornik, Kurt, Leisch, Friedrich, Meyer, David, Weingessel, Andreas (2008). “Misc functions Department Statistics (e1071), TU Wien.” R package, 1, 5–24. Bezdek, C J (2013). Pattern recognition fuzzy objective function algorithms. Springer Science & Business Media.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClustCMeans$new() LearnerClustCMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"if (requireNamespace(\"e1071\")) { learner = mlr3::lrn(\"clust.cmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy C-Means Clustering Learner #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, e1071 #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"centers\" \"iter.max\" \"verbose\" \"dist\" \"method\" \"m\" \"rate.par\" #> [8] \"weights\" \"control\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":null,"dir":"Reference","previous_headings":"","what":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClust Cobweb clustering implemented RWeka::Cobweb(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.cobweb\") lrn(\"clust.cobweb\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Fisher, H D (1987). “Knowledge acquisition via incremental conceptual clustering.” Machine learning, 2, 139–172. Gennari, H J, Langley, Pat, Fisher, Doug (1989). “Models incremental concept formation.” Artificial intelligence, 40(1-3), 11–61.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClustCobweb$new() LearnerClustCobweb$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.cobweb\") print(learner) # available parameters: learner$param_set$ids() } #> : Cobweb Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"A\" \"C\" \"S\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"DBSCAN (Density-based spatial clustering applications noise) clustering. Calls dbscan::dbscan() dbscan.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.dbscan\") lrn(\"clust.dbscan\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering R.” Journal Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 . Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “density-based algorithm discovering clusters large spatial databases noise.” kdd, volume 96 number 34, 226–231.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"LearnerClustDBSCAN$new() LearnerClustDBSCAN$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.dbscan\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"eps\" \"minPts\" \"borderPoints\" \"weights\" \"search\" #> [6] \"bucketSize\" \"splitRule\" \"approx\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"DBSCAN (Density-based spatial clustering applications noise) clustering. Calls fpc::dbscan() fpc.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.dbscan_fpc\") lrn(\"clust.dbscan_fpc\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, fpc","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “density-based algorithm discovering clusters large spatial databases noise.” kdd, volume 96 number 34, 226–231.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCANfpc","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"LearnerClustDBSCANfpc$new() LearnerClustDBSCANfpc$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"","code":"if (requireNamespace(\"fpc\")) { learner = mlr3::lrn(\"clust.dbscan_fpc\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering with fpc #> * Model: - #> * Parameters: MinPts=5, scale=FALSE, seeds=TRUE, showplot=FALSE #> * Packages: mlr3, mlr3cluster, fpc #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"eps\" \"MinPts\" \"scale\" \"method\" \"seeds\" \"showplot\" #> [7] \"countmode\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":null,"dir":"Reference","previous_headings":"","what":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClust divisive hierarchical clustering implemented cluster::diana(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default value k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.diana\") lrn(\"clust.diana\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups data: introduction cluster analysis. John Wiley & Sons.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDiana","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClustDiana$new() LearnerClustDiana$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.diana\") print(learner) # available parameters: learner$param_set$ids() } #> : Divisive Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"trace.lev\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":null,"dir":"Reference","previous_headings":"","what":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClust Expectation-Maximization clustering implemented RWeka::list_Weka_interfaces(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.em\") lrn(\"clust.em\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Dempster, P , Laird, M N, Rubin, B D (1977). “Maximum likelihood incomplete data via EM algorithm.” Journal royal statistical society: series B (methodological), 39(1), 1–22.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustEM","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClustEM$new() LearnerClustEM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.em\") print(learner) # available parameters: learner$param_set$ids() } #> : Expectation-Maximization Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"I\" \"ll_cv\" \"ll_iter\" #> [4] \"M\" \"max\" \"N\" #> [7] \"num_slots\" \"S\" \"X\" #> [10] \"K\" \"V\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClust fuzzy clustering implemented cluster::fanny(). cluster::fanny() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method copies cluster assignments memberships generated train data. predict work new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.fanny\") lrn(\"clust.fanny\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups data: introduction cluster analysis. John Wiley & Sons.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClustFanny$new() LearnerClustFanny$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.fanny\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy Analysis Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"k\" \"memb.exp\" \"metric\" \"stand\" \"maxit\" \"tol\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":null,"dir":"Reference","previous_headings":"","what":"Featureless Clustering Learner — mlr_learners_clust.featureless","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"simple LearnerClust randomly (evenly) assigns observations num_clusters partitions (default: 1 partition).","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.featureless\") lrn(\"clust.featureless\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster","code":""},{"path":[]},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFeatureless","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"LearnerClustFeatureless$new() LearnerClustFeatureless$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"if (requireNamespace(\"mlr3\")) { learner = mlr3::lrn(\"clust.featureless\") print(learner) # available parameters: learner$param_set$ids() } #> : Featureless Clustering #> * Model: - #> * Parameters: num_clusters=1 #> * Packages: mlr3, mlr3cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, missings, partitional #> [1] \"num_clusters\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":null,"dir":"Reference","previous_headings":"","what":"Farthest First Clustering Learner — mlr_learners_clust.ff","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClust Farthest First clustering implemented RWeka::FarthestFirst(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.ff\") lrn(\"clust.ff\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Hochbaum, S D, Shmoys, B D (1985). “best possible heuristic k-center problem.” Mathematics operations research, 10(2), 180–184.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFF","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClustFarthestFirst$new() LearnerClustFarthestFirst$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.ff\") print(learner) # available parameters: learner$param_set$ids() } #> : Farthest First Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"N\" \"S\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClust agglomerative hierarchical clustering implemented stats::hclust(). Difference Calculation done stats::dist()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.hclust\") lrn(\"clust.hclust\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats'","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Becker, R, Chambers, M J, Wilks, R (1988). New S Language. Wadsworth & Brooks/Cole. Everitt, S B (1974). Cluster Analysis. Heinemann Educational Books. Hartigan, J (1975). Clustering Algorithms. John Wiley & Sons. Sneath, HA P, Sokal, R R (1973). Numerical Taxonomy. Freeman. Anderberg, R M (1973). Cluster Analysis Applications. Academic Press. Gordon, David (1999). Classification, 2 edition. Chapman Hall / CRC. Murtagh, Fionn (1985). “Multidimensional Clustering Algorithms.” COMPSTAT Lectures 4. Physica-Verlag. McQuitty, L L (1966). “Similarity Analysis Reciprocal Pairs Discrete Continuous Data.” Educational Psychological Measurement, 26(4), 825–831. doi:10.1177/001316446602600402 . Legendre, Pierre, Legendre, Louis (2012). Numerical Ecology, 3 edition. Elsevier Science BV. Murtagh, Fionn, Legendre, Pierre (2014). “Ward's Hierarchical Agglomerative Clustering Method: Algorithms Implement Ward's Criterion?” Journal Classification, 31, 274–295. doi:10.1007/s00357-014-9161-z .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClustHclust$new() LearnerClustHclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"if (requireNamespace(\"stats\")) { learner = mlr3::lrn(\"clust.hclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: distmethod=euclidean, k=2 #> * Packages: mlr3, mlr3cluster, stats #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"method\" \"members\" \"distmethod\" \"diag\" \"upper\" #> [6] \"p\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":null,"dir":"Reference","previous_headings":"","what":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"HDBSCAN (Hierarchical DBSCAN) clustering. Calls dbscan::hdbscan() dbscan.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.hdbscan\") lrn(\"clust.hdbscan\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering R.” Journal Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 . Campello, JGB R, Moulavi, Davoud, Sander, Jörg (2013). “Density-based clustering based hierarchical density estimates.” Pacific-Asia conference knowledge discovery data mining, 160–172. Springer.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHDBSCAN","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"LearnerClustHDBSCAN$new() LearnerClustHDBSCAN$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"","code":"LearnerClustHDBSCAN$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"","code":"LearnerClustHDBSCAN$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.hdbscan\") print(learner) # available parameters: learner$param_set$ids() } #> : HDBSCAN Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"minPts\" \"gen_hdbscan_tree\" \"gen_simplified_tree\" #> [4] \"verbose\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClust kernel k-means clustering implemented kernlab::kkmeans(). kernlab::kkmeans() default value number clusters. Therefore, centers parameter set 2 default. Kernel parameters passed directly using kpar list kkmeans. predict method finds nearest center kernel distance assign clusters new data points.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.kkmeans\") lrn(\"clust.kkmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, kernlab","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Karatzoglou, Alexandros, Smola, Alexandros, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-S4 package kernel methods R.” Journal statistical software, 11, 1–20. Dhillon, S , Guan, Yuqiang, Kulis, Brian (2004). unified view kernel k-means, spectral clustering graph cuts. Citeseer.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClustKKMeans$new() LearnerClustKKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"if (requireNamespace(\"kernlab\")) { learner = mlr3::lrn(\"clust.kkmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Kernel K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, kernlab #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"kernel\" \"sigma\" \"degree\" \"scale\" \"offset\" \"order\" #> [8] \"alg\" \"p\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner — mlr_learners_clust.kmeans","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClust k-means clustering implemented stats::kmeans(). stats::kmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.kmeans\") lrn(\"clust.kmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats', clue","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Forgy, W E (1965). “Cluster analysis multivariate data: efficiency versus interpretability classifications.” Biometrics, 21, 768–769. Hartigan, J, Wong, M (1979). “Algorithm 136: K-means clustering algorithm.” Journal Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108. doi:10.2307/2346830 . Lloyd, P S (1982). “Least squares quantization PCM.” IEEE Transactions Information Theory, 28(2), 129–137. MacQueen, James (1967). “methods classification analysis multivariate observations.” Proceedings Fifth Berkeley Symposium Mathematical Statistics Probability, volume 1, 281–297.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClustKMeans$new() LearnerClustKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"if (requireNamespace(\"stats\") && requireNamespace(\"clue\")) { learner = mlr3::lrn(\"clust.kmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"iter.max\" \"algorithm\" \"nstart\" \"trace\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClust model-based clustering implemented mclust::Mclust(). predict method uses mclust::predict.Mclust() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.mclust\") lrn(\"clust.mclust\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, mclust","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Scrucca, Luca, Fop, Michael, Murphy, Brendan T, Raftery, E (2016). “mclust 5: clustering, classification density estimation using Gaussian finite mixture models.” R journal, 8(1), 289. Fraley, Chris, Raftery, E (2002). “Model-based clustering, discriminant analysis, density estimation.” Journal American statistical Association, 97(458), 611–631.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClustMclust$new() LearnerClustMclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"if (requireNamespace(\"mclust\")) { learner = mlr3::lrn(\"clust.mclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Gaussian Mixture Models Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, mclust #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"G\" \"modelNames\" \"prior\" \"control\" #> [5] \"initialization\" \"x\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClust Mean Shift clustering implemented LPCM::ms(). predict method LPCM::ms(), method returns cluster labels 'training' data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.meanshift\") lrn(\"clust.meanshift\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, LPCM","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Cheng, Yizong (1995). “Mean shift, mode seeking, clustering.” IEEE transactions pattern analysis machine intelligence, 17(8), 790–799.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClustMeanShift$new() LearnerClustMeanShift$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"if (requireNamespace(\"LPCM\")) { learner = mlr3::lrn(\"clust.meanshift\") print(learner) # available parameters: learner$param_set$ids() } #> : Mean Shift Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, LPCM #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"h\" \"subset\" \"scaled\" \"iter\" \"thr\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":null,"dir":"Reference","previous_headings":"","what":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"OPTICS (Ordering points identify clustering structure) point ordering clustering. Calls dbscan::optics() dbscan.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.optics\") lrn(\"clust.optics\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering R.” Journal Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 . Ankerst, Mihael, Breunig, M M, Kriegel, Hans-Peter, Sander, Jörg (1999). “OPTICS: Ordering points identify clustering structure.” ACM Sigmod record, 28(2), 49–60.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustOPTICS","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"LearnerClustOPTICS$new() LearnerClustOPTICS$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"","code":"LearnerClustOPTICS$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"","code":"LearnerClustOPTICS$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.optics\") print(learner) # available parameters: learner$param_set$ids() } #> : OPTICS Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"eps\" \"minPts\" \"search\" \"bucketSize\" \"splitRule\" #> [6] \"approx\" \"eps_cl\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":null,"dir":"Reference","previous_headings":"","what":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClust PAM clustering implemented cluster::pam(). cluster::pam() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.pam\") lrn(\"clust.pam\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Reynolds, P , Richards, Graeme, de la Iglesia, Beatriz, Rayward-Smith, J V (2006). “Clustering rules: comparison partitioning hierarchical clustering algorithms.” Journal Mathematical Modelling Algorithms, 5, 475–504. Schubert, Erich, Rousseeuw, J P (2019). “Faster k-medoids clustering: improving PAM, CLARA, CLARANS algorithms.” Similarity Search Applications: 12th International Conference, SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings 12, 171–187. Springer.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustPAM","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClustPAM$new() LearnerClustPAM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.pam\") print(learner) # available parameters: learner$param_set$ids() } #> : Partitioning Around Medoids #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"k\" \"metric\" \"medoids\" \"stand\" \"do.swap\" \"pamonce\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"X-means Clustering Learner — mlr_learners_clust.xmeans","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClust X-means clustering implemented RWeka::XMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.xmeans\") lrn(\"clust.xmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Pelleg, Dan, Moore, W , others (2000). “X-means: Extending k-means efficient estimation number clusters.” Icml, volume 1, 727–734.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClustXMeans$new() LearnerClustXMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.xmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : X-means #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"B\" \"C\" \"D\" #> [4] \"H\" \"I\" \"J\" #> [7] \"K\" \"L\" \"M\" #> [10] \"S\" \"U\" \"use_kdtree\" #> [13] \"N\" \"O\" \"Y\" #> [16] \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":null,"dir":"Reference","previous_headings":"","what":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"score function calls fpc::cluster.stats() package fpc. \"ch\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.ch\") msr(\"clust.ch\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":null,"dir":"Reference","previous_headings":"","what":"Dunn Index — mlr_measures_clust.dunn","title":"Dunn Index — mlr_measures_clust.dunn","text":"score function calls fpc::cluster.stats() package fpc. \"dunn\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Dunn Index — mlr_measures_clust.dunn","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Dunn Index — mlr_measures_clust.dunn","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.dunn\") msr(\"clust.dunn\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Dunn Index — mlr_measures_clust.dunn","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":null,"dir":"Reference","previous_headings":"","what":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"score function calls cluster::silhouette() package cluster. \"sil_width\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.silhouette\") msr(\"clust.silhouette\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":null,"dir":"Reference","previous_headings":"","what":"Within Sum of Squares — mlr_measures_clust.wss","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"score function calls fpc::cluster.stats() package fpc. \"within.cluster.ss\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.wss\") msr(\"clust.wss\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"Range: \\([0, \\infty)\\) Minimize: TRUE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":null,"dir":"Reference","previous_headings":"","what":"Ruspini Cluster Task — mlr_tasks_ruspini","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"cluster task cluster::ruspini data set.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"mlr3::Task can instantiated via dictionary mlr3::mlr_tasks associated sugar function mlr3::tsk():","code":"mlr_tasks$get(\"ruspini\") tsk(\"ruspini\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"Task type: “clust” Dimensions: 75x2 Properties: - Missings: FALSE Target: - Features: “x”, “y”","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"Ruspini EH (1970). “Numerical methods fuzzy clustering.” Information Sciences, 2(3), 319-350. doi:10.1016/S0020-0255(70)80056-1 .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":null,"dir":"Reference","previous_headings":"","what":"US Arrests Cluster Task — mlr_tasks_usarrests","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"cluster task datasets::USArrests data set. Rownames stored variable \"states\" column role \"name\".","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"mlr3::Task can instantiated via dictionary mlr3::mlr_tasks associated sugar function mlr3::tsk():","code":"mlr_tasks$get(\"usarrests\") tsk(\"usarrests\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"Task type: “clust” Dimensions: 50x4 Properties: - Missings: FALSE Target: - Features: “Assault”, “Murder”, “Rape”, “UrbanPop”","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"Berry, Brian J (1979). “Interactive Data Analysis: Practical Primer.” Journal Royal Statistical Society: Series C (Applied Statistics), 28, 181.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-development-version","dir":"Changelog","previous_headings":"","what":"mlr3cluster (development version)","title":"mlr3cluster (development version)","text":"fix: Mclust learner longer sets control default function import stay compliant {paradox} conventions","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-0110","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.10","title":"mlr3cluster 0.1.10","text":"CRAN release: 2024-10-03 Add BIRCH learner ‘stream’ package Add BICO learner ‘stream’ package","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-019","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.9","title":"mlr3cluster 0.1.9","text":"CRAN release: 2024-03-18 Add DBSCAN learner ‘fpc’ package Add HDBSCAN learner ‘dbscan’ package Add OPTICS learner ‘dbscan’ package Compatibility upcoming ‘paradox’ release Move testthat3 Refactoring","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-018","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.8","title":"mlr3cluster 0.1.8","text":"CRAN release: 2023-03-12 Add new task based ruspini dataset","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-017","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.7","title":"mlr3cluster 0.1.7","text":"CRAN release: 2023-03-10 Replace ‘clusterCrit’ measures alternatives ‘cluster’ ‘fpc’ packages Remove broken unloading test","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-016","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.6","title":"mlr3cluster 0.1.6","text":"CRAN release: 2022-12-22 Add states row names usarrest task. Remove dictionary items unloading package.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-015","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.5","title":"mlr3cluster 0.1.5","text":"CRAN release: 2022-11-01 Added Mclust learner Fix error associated new dbscan release","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-014","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.4","title":"mlr3cluster 0.1.4","text":"CRAN release: 2022-08-14 code refactoring","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-013","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.3","title":"mlr3cluster 0.1.3","text":"CRAN release: 2022-04-06 code refactoring small fixes add filter PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-012","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.2","title":"mlr3cluster 0.1.2","text":"CRAN release: 2021-09-02 Add Hclust test doc hclust Add within sum squares measure add doc wss code factor adaptions","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-011","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.1","title":"mlr3cluster 0.1.1","text":"CRAN release: 2020-11-15 Eight new learners Added assignments save_assignments fields LearnerClust class","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-010","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.0","title":"mlr3cluster 0.1.0","text":"CRAN release: 2020-10-01 Initial upload CRAN","code":""}] +[{"path":"https://mlr3cluster.mlr-org.com/dev/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Maximilian Mücke. Author, maintainer. Damir Pulatov. Author. Michel Lang. Author. Marc Becker. Contributor.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Mücke M, Pulatov D, Lang M (2025). mlr3cluster: Cluster Extension 'mlr3'. R package version 0.1.10.9000, https://github.com/mlr-org/mlr3cluster, https://mlr3cluster.mlr-org.com.","code":"@Manual{, title = {mlr3cluster: Cluster Extension for 'mlr3'}, author = {Maximilian Mücke and Damir Pulatov and Michel Lang}, year = {2025}, note = {R package version 0.1.10.9000, https://github.com/mlr-org/mlr3cluster}, url = {https://mlr3cluster.mlr-org.com}, }"},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"mlr3cluster","dir":"","previous_headings":"","what":"Cluster Extension for mlr3","title":"Cluster Extension for mlr3","text":"Package website: release | dev Cluster analysis mlr3. mlr3cluster extension package cluster analysis within mlr3 ecosystem. successor clustering capabilities mlr2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Cluster Extension for mlr3","text":"Install last release CRAN: Install development version GitHub:","code":"install.packages(\"mlr3cluster\") # install.packages(\"pak\") pak::pak(\"mlr-org/mlr3cluster\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"feature-overview","dir":"","previous_headings":"","what":"Feature Overview","title":"Cluster Extension for mlr3","text":"current version mlr3cluster contains: selection 24 clustering learners represent wide variety clusterers: partitional, hierarchical, fuzzy, etc. selection 4 performance measures Two built-tasks get started clustering Also, package integrated mlr3viz enables create great visualizations just one line code!","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Cluster Extension for mlr3","text":"","code":"library(mlr3) library(mlr3cluster) task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") learner$train(task) prediction = learner$predict(task = task)"},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"more-resources","dir":"","previous_headings":"","what":"More Resources","title":"Cluster Extension for mlr3","text":"Check blogpost detailed introduction package. Also, mlr3book section clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/index.html","id":"future-plans","dir":"","previous_headings":"","what":"Future Plans","title":"Cluster Extension for mlr3","text":"Add learners measures Integrate package mlr3pipelines (work progress) questions, feedback ideas, feel free open issue .","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Learner — LearnerClust","title":"Cluster Learner — LearnerClust","text":"Learner specializes mlr3::Learner cluster problems: task_type set \"clust\". Creates mlr3::Predictions class PredictionClust. Possible values predict_types : \"partition\": Integer indicating cluster membership. \"prob\": Probability belonging cluster. Predefined learners can found mlr3misc::Dictionary mlr3::mlr_learners.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner -> LearnerClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"Cluster Learner — LearnerClust","text":"assignments (NULL | vector()) Cluster assignments learned model. save_assignments (logical()) assignments 'train' data saved learner? Default TRUE.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Learner — LearnerClust","text":"LearnerClust$new() LearnerClust$reset() LearnerClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Learner — LearnerClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$new( id, param_set = ps(), predict_types = \"partition\", feature_types = character(), properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"id (character(1)) Identifier new instance. param_set (paradox::ParamSet) Set hyperparameters. predict_types (character()) Supported predict types. Must subset mlr_reflections$learner_predict_types. feature_types (character()) Feature types learner operates . Must subset mlr_reflections$task_feature_types. properties (character()) Set properties mlr3::Learner. Must subset mlr_reflections$learner_properties. following properties currently standardized understood learners mlr3: \"missings\": learner can handle missing values data. \"weights\": learner supports observation weights. \"importance\": learner supports extraction importance scores, .e. comes $importance() extractor function (see section optional extractors mlr3::Learner). \"selected_features\": learner supports extraction set selected features, .e. comes $selected_features() extractor function (see section optional extractors mlr3::Learner). \"oob_error\": learner supports extraction estimated bag error, .e. comes oob_error() extractor function (see section optional extractors mlr3::Learner). packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"method-reset-","dir":"Reference","previous_headings":"","what":"Method reset()","title":"Cluster Learner — LearnerClust","text":"Reset assignments field calling parent's reset().","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$reset()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Learner — LearnerClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/LearnerClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Learner — LearnerClust","text":"","code":"library(mlr3) library(mlr3cluster) ids = mlr_learners$keys(\"^clust\") ids #> [1] \"clust.MBatchKMeans\" \"clust.SimpleKMeans\" \"clust.agnes\" #> [4] \"clust.ap\" \"clust.bico\" \"clust.birch\" #> [7] \"clust.cmeans\" \"clust.cobweb\" \"clust.dbscan\" #> [10] \"clust.dbscan_fpc\" \"clust.diana\" \"clust.em\" #> [13] \"clust.fanny\" \"clust.featureless\" \"clust.ff\" #> [16] \"clust.hclust\" \"clust.hdbscan\" \"clust.kkmeans\" #> [19] \"clust.kmeans\" \"clust.mclust\" \"clust.meanshift\" #> [22] \"clust.optics\" \"clust.pam\" \"clust.xmeans\" # get a specific learner from mlr_learners: learner = lrn(\"clust.kmeans\") print(learner) #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Measure — MeasureClust","title":"Cluster Measure — MeasureClust","text":"measure specializes mlr3::Measure cluster analysis: task_type set \"clust\". Possible values predict_type \"partition\" \"prob\". Predefined measures can found mlr3misc::Dictionary mlr3::mlr_measures.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure -> MeasureClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure$aggregate() mlr3::Measure$format() mlr3::Measure$help() mlr3::Measure$print() mlr3::Measure$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Measure — MeasureClust","text":"MeasureClust$new()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Measure — MeasureClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Measure — MeasureClust","text":"","code":"MeasureClust$new( id, range, minimize = NA, aggregator = NULL, properties = character(), predict_type = \"partition\", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/MeasureClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Measure — MeasureClust","text":"id (character(1)) Identifier new instance. range (numeric(2)) Feasible range measure c(lower_bound, upper_bound). bounds may infinite. minimize (logical(1)) Set TRUE good predictions correspond small values, FALSE good predictions correspond large values. set NA (default), tuning measure possible. aggregator (function(x)) Function aggregate individual performance scores x x numeric vector. NULL, defaults mean(). properties (character()) Properties measure. Must subset mlr_reflections$measure_properties. Supported mlr3: \"requires_task\" (requires complete mlr3::Task), \"requires_learner\" (requires trained mlr3::Learner), \"requires_train_set\" (requires training indices mlr3::Resampling), \"na_score\" (measure expected occasionally return NA NaN). predict_type (character(1)) Required predict type mlr3::Learner. Possible values stored mlr_reflections$learner_predict_types. task_properties (character()) Required task properties, see mlr3::Task. packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Object for Cluster Analysis — PredictionClust","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"object wraps predictions returned learner class LearnerClust, .e. predicted partition cluster probability.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction -> PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"active-bindings","dir":"Reference","previous_headings":"","what":"Active bindings","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"partition (integer()) Access stored partition. prob (matrix()) Access stored probabilities.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction$filter() mlr3::Prediction$format() mlr3::Prediction$help() mlr3::Prediction$obs_loss() mlr3::Prediction$print() mlr3::Prediction$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"PredictionClust$new() PredictionClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$new( task = NULL, row_ids = task$row_ids, partition = NULL, prob = NULL, check = TRUE )"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"task (TaskClust) Task, used extract defaults row_ids. row_ids (integer()) Row ids predicted observations, .e. row ids test set. partition (integer()) Vector cluster partitions. prob (matrix()) Numeric matrix cluster membership probabilities one column cluster one row observation. Columns must named cluster numbers, row names automatically removed. prob provided, partition , cluster memberships calculated probabilities using max.col() ties.method set \"first\". check (logical(1)) TRUE, performs argument checks predict type conversions.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/PredictionClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"library(mlr3) library(mlr3cluster) task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") p = learner$train(task)$predict(task) p$predict_types #> [1] \"partition\" head(as.data.table(p)) #> row_ids partition #> #> 1: 1 2 #> 2: 2 2 #> 3: 3 2 #> 4: 4 2 #> 5: 5 2 #> 6: 6 2"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Task — TaskClust","title":"Cluster Task — TaskClust","text":"task specializes mlr3::Task cluster problems. unsupervised task, task target column. task_type set \"clust\". Predefined tasks stored dictionary mlr3::mlr_tasks.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cluster Task — TaskClust","text":"mlr3::Task -> mlr3::TaskUnsupervised -> TaskClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Task — TaskClust","text":"mlr3::Task$add_strata() mlr3::Task$cbind() mlr3::Task$data() mlr3::Task$divide() mlr3::Task$droplevels() mlr3::Task$filter() mlr3::Task$format() mlr3::Task$formula() mlr3::Task$head() mlr3::Task$help() mlr3::Task$levels() mlr3::Task$missings() mlr3::Task$print() mlr3::Task$rbind() mlr3::Task$rename() mlr3::Task$select() mlr3::Task$set_col_roles() mlr3::Task$set_levels() mlr3::Task$set_row_roles()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Task — TaskClust","text":"TaskClust$new() TaskClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Task — TaskClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$new(id, backend, label = NA_character_)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"id (character(1)) Identifier new instance. backend (mlr3::DataBackend) Either mlr3::DataBackend, object convertible mlr3::DataBackend as_data_backend(). E.g., data.frame() converted mlr3::DataBackendDataTable. label (character(1)) Label new instance.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Task — TaskClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/TaskClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Task — TaskClust","text":"","code":"library(mlr3) library(mlr3cluster) task = TaskClust$new(\"usarrests\", backend = USArrests) task$task_type #> [1] \"clust\" # possible properties: mlr_reflections$task_properties$clust #> [1] \"strata\" \"groups\" \"weights\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Prediction — as_prediction_clust","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"Convert object PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"as_prediction_clust(x, ...) # S3 method for class 'PredictionClust' as_prediction_clust(x, ...) # S3 method for class 'data.frame' as_prediction_clust(x, ...)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"x () Object convert. ... () Additional arguments.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_prediction_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"if (requireNamespace(\"e1071\")) { # create a prediction object task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") learner = lrn(\"clust.cmeans\", predict_type = \"prob\") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_clust(tab) # split data.table into a 3 data.tables based on UrbanPop f = cut(task$data(rows = tab$row_ids)$UrbanPop, 3) tabs = split(tab, f) # convert back to list of predictions preds = lapply(tabs, as_prediction_clust) # calculate performance in each group sapply(preds, function(p) p$score(task = task)) } #> Loading required namespace: e1071 #> Superclass MeasureClust has cloneable=FALSE, but subclass MeasureClustFPC has cloneable=TRUE. A subclass cannot be cloneable when its superclass is not cloneable, so cloning will be disabled for MeasureClustFPC. #> Superclass MeasureClust has cloneable=FALSE, but subclass MeasureClustFPC has cloneable=TRUE. A subclass cannot be cloneable when its superclass is not cloneable, so cloning will be disabled for MeasureClustFPC. #> Superclass MeasureClust has cloneable=FALSE, but subclass MeasureClustFPC has cloneable=TRUE. A subclass cannot be cloneable when its superclass is not cloneable, so cloning will be disabled for MeasureClustFPC. #> (31.9,51.7].clust.dunn (51.7,71.3].clust.dunn (71.3,91.1].clust.dunn #> 0.7096902 0.1226172 0.2538652"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Task — as_task_clust","title":"Convert to a Cluster Task — as_task_clust","text":"Convert object TaskClust. S3 generic, specialized least following objects: TaskClust: ensure identity. data.frame() mlr3::DataBackend: provides alternative calling constructor TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(x, ...) # S3 method for class 'TaskClust' as_task_clust(x, clone = FALSE, ...) # S3 method for class 'data.frame' as_task_clust(x, id = deparse1(substitute(x)), ...) # S3 method for class 'DataBackend' as_task_clust(x, id = deparse1(substitute(x)), ...) # S3 method for class 'formula' as_task_clust(x, data, id = deparse1(substitute(data)), ...)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Task — as_task_clust","text":"x () Object convert. ... () Additional arguments. clone (logical(1)) TRUE, ensures returned object input x. id (character(1)) Id new task. Defaults (deparsed substituted) name data argument. data (data.frame()) Data frame containing columns specified formula x.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Task — as_task_clust","text":"TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/as_task_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(datasets::USArrests) #> (50 x 4) #> * Target: - #> * Properties: - #> * Features (4): #> - int (2): Assault, UrbanPop #> - dbl (2): Murder, Rape"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr3cluster-package.html","id":null,"dir":"Reference","previous_headings":"","what":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Extends 'mlr3' package cluster analysis.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr3cluster-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Maintainer: Maximilian Mücke muecke.maximilian@gmail.com (ORCID) Authors: Damir Pulatov damirpolat@protonmail.com Michel Lang michellang@gmail.com (ORCID) contributors: Marc Becker marcbecker@posteo.de (ORCID) [contributor]","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClust mini batch k-means clustering implemented ClusterR::MiniBatchKmeans(). ClusterR::MiniBatchKmeans() default value number clusters. Therefore, clusters parameter set 2 default. predict method uses ClusterR::predict_MBatchKMeans() compute cluster memberships new data. learner supports partitional fuzzy clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.MBatchKMeans\") lrn(\"clust.MBatchKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, ClusterR","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Sculley, David (2010). “Web-scale k-means clustering.” Proceedings 19th international conference World wide web, 1177–1178.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMiniBatchKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClustMiniBatchKMeans$new() LearnerClustMiniBatchKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.MBatchKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"if (requireNamespace(\"ClusterR\")) { learner = mlr3::lrn(\"clust.MBatchKMeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Mini Batch K-Means #> * Model: - #> * Parameters: clusters=2 #> * Packages: mlr3, mlr3cluster, ClusterR #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, fuzzy, partitional #> [1] \"clusters\" \"batch_size\" \"num_init\" \"max_iters\" #> [5] \"init_fraction\" \"initializer\" \"early_stop_iter\" \"verbose\" #> [9] \"CENTROIDS\" \"tol\" \"tol_optimal_init\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClust Simple K Means clustering implemented RWeka::SimpleKMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.SimpleKMeans\") lrn(\"clust.SimpleKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Forgy, W E (1965). “Cluster analysis multivariate data: efficiency versus interpretability classifications.” Biometrics, 21, 768–769. Lloyd, P S (1982). “Least squares quantization PCM.” IEEE Transactions Information Theory, 28(2), 129–137. MacQueen, James (1967). “methods classification analysis multivariate observations.” Proceedings Fifth Berkeley Symposium Mathematical Statistics Probability, volume 1, 281–297.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClustSimpleKMeans$new() LearnerClustSimpleKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.SimpleKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.SimpleKMeans\") print(learner) # available parameters: learner$param_set$ids() } #> : K-Means (Weka) #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"A\" \"C\" \"fast\" #> [4] \"I\" \"init\" \"M\" #> [7] \"max_candidates\" \"min_density\" \"N\" #> [10] \"num_slots\" \"O\" \"periodic_pruning\" #> [13] \"S\" \"t2\" \"t1\" #> [16] \"V\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClust agglomerative hierarchical clustering implemented cluster::agnes(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default number k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.agnes\") lrn(\"clust.agnes\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups data: introduction cluster analysis. John Wiley & Sons.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClustAgnes$new() LearnerClustAgnes$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.agnes.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.agnes\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"method\" \"trace.lev\" \"k\" #> [6] \"par.method\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":null,"dir":"Reference","previous_headings":"","what":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClust Affinity Propagation clustering implemented apcluster::apcluster(). apcluster::apcluster() set default similarity function. predict method computes closest cluster exemplar find cluster memberships new data. code taken StackOverflow answer apcluster package maintainer.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.ap\") lrn(\"clust.ap\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, apcluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Bodenhofer, Ulrich, Kothmeier, Andreas, Hochreiter, Sepp (2011). “APCluster: R package affinity propagation clustering.” Bioinformatics, 27(17), 2463–2464. Frey, J B, Dueck, Delbert (2007). “Clustering passing messages data points.” science, 315(5814), 972–976.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAP","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClustAP$new() LearnerClustAP$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"if (requireNamespace(\"apcluster\")) { learner = mlr3::lrn(\"clust.ap\") print(learner) # available parameters: learner$param_set$ids() } #> : Affinity Propagation Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, apcluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"s\" \"p\" \"q\" \"maxits\" \"convits\" #> [6] \"lam\" \"includeSim\" \"details\" \"nonoise\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":null,"dir":"Reference","previous_headings":"","what":"BICO Clustering Learner — mlr_learners_clust.bico","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"BICO (Fast computation k-means coresets data stream) clustering. Calls stream::DSC_BICO() stream.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.bico\") lrn(\"clust.bico\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"Task type: “clust” Predict Types: “partition” Feature Types: “integer”, “numeric” Required Packages: mlr3, mlr3cluster, stream","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"Fichtenberger, Hendrik, Gille, Marc, Schmidt, Melanie, Schwiegelshohn, Chris, Sohler, Christian (2013). “BICO: BIRCH Meets Coresets k-Means Clustering.” Algorithms–ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings 21, 481–492. Springer. Hahsler M, Bolaños M, Forrest J (2017). “Introduction stream: Extensible Framework Data Stream Clustering Research R.” Journal Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBICO","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"LearnerClustBICO$new() LearnerClustBICO$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"","code":"LearnerClustBICO$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"","code":"LearnerClustBICO$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.bico.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BICO Clustering Learner — mlr_learners_clust.bico","text":"","code":"if (requireNamespace(\"stream\")) { learner = mlr3::lrn(\"clust.bico\") print(learner) # available parameters: learner$param_set$ids() } #> : BICO Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, stream #> * Predict Types: [partition] #> * Feature Types: integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"k\" \"space\" \"p\" \"iterations\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":null,"dir":"Reference","previous_headings":"","what":"BIRCH Clustering Learner — mlr_learners_clust.birch","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) clustering. Calls stream::DSC_BIRCH() stream.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.birch\") lrn(\"clust.birch\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"Task type: “clust” Predict Types: “partition” Feature Types: “integer”, “numeric” Required Packages: mlr3, mlr3cluster, stream","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1996). “BIRCH: Efficient Data Clustering Method Large Databases.” ACM sigmod record, 25(2), 103–114. Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1997). “BIRCH: new data clustering algorithm applications.” Data Mining Knowledge Discovery, 1, 141–182. Hahsler M, Bolaños M, Forrest J (2017). “Introduction stream: Extensible Framework Data Stream Clustering Research R.” Journal Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14 .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBIRCH","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"LearnerClustBIRCH$new() LearnerClustBIRCH$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"","code":"LearnerClustBIRCH$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"","code":"LearnerClustBIRCH$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.birch.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BIRCH Clustering Learner — mlr_learners_clust.birch","text":"","code":"if (requireNamespace(\"stream\")) { learner = mlr3::lrn(\"clust.birch\") print(learner) # available parameters: learner$param_set$ids() } #> : BIRCH Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, stream #> * Predict Types: [partition] #> * Feature Types: integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"threshold\" \"branching\" \"maxLeaf\" \"maxMem\" #> [5] \"outlierThreshold\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClust fuzzy clustering implemented e1071::cmeans(). e1071::cmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.cmeans\") lrn(\"clust.cmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, e1071","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Dimitriadou, Evgenia, Hornik, Kurt, Leisch, Friedrich, Meyer, David, Weingessel, Andreas (2008). “Misc functions Department Statistics (e1071), TU Wien.” R package, 1, 5–24. Bezdek, C J (2013). Pattern recognition fuzzy objective function algorithms. Springer Science & Business Media.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClustCMeans$new() LearnerClustCMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"if (requireNamespace(\"e1071\")) { learner = mlr3::lrn(\"clust.cmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy C-Means Clustering Learner #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, e1071 #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"centers\" \"iter.max\" \"verbose\" \"dist\" \"method\" \"m\" \"rate.par\" #> [8] \"weights\" \"control\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":null,"dir":"Reference","previous_headings":"","what":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClust Cobweb clustering implemented RWeka::Cobweb(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.cobweb\") lrn(\"clust.cobweb\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Fisher, H D (1987). “Knowledge acquisition via incremental conceptual clustering.” Machine learning, 2, 139–172. Gennari, H J, Langley, Pat, Fisher, Doug (1989). “Models incremental concept formation.” Artificial intelligence, 40(1-3), 11–61.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClustCobweb$new() LearnerClustCobweb$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.cobweb.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.cobweb\") print(learner) # available parameters: learner$param_set$ids() } #> : Cobweb Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"A\" \"C\" \"S\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"DBSCAN (Density-based spatial clustering applications noise) clustering. Calls dbscan::dbscan() dbscan.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.dbscan\") lrn(\"clust.dbscan\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering R.” Journal Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 . Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “density-based algorithm discovering clusters large spatial databases noise.” kdd, volume 96 number 34, 226–231.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"LearnerClustDBSCAN$new() LearnerClustDBSCAN$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.dbscan\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"eps\" \"minPts\" \"borderPoints\" \"weights\" \"search\" #> [6] \"bucketSize\" \"splitRule\" \"approx\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"DBSCAN (Density-based spatial clustering applications noise) clustering. Calls fpc::dbscan() fpc.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.dbscan_fpc\") lrn(\"clust.dbscan_fpc\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, fpc","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “density-based algorithm discovering clusters large spatial databases noise.” kdd, volume 96 number 34, 226–231.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCANfpc","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"LearnerClustDBSCANfpc$new() LearnerClustDBSCANfpc$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.dbscan_fpc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner — mlr_learners_clust.dbscan_fpc","text":"","code":"if (requireNamespace(\"fpc\")) { learner = mlr3::lrn(\"clust.dbscan_fpc\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering with fpc #> * Model: - #> * Parameters: MinPts=5, scale=FALSE, seeds=TRUE, showplot=FALSE #> * Packages: mlr3, mlr3cluster, fpc #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"eps\" \"MinPts\" \"scale\" \"method\" \"seeds\" \"showplot\" #> [7] \"countmode\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":null,"dir":"Reference","previous_headings":"","what":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClust divisive hierarchical clustering implemented cluster::diana(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default value k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.diana\") lrn(\"clust.diana\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups data: introduction cluster analysis. John Wiley & Sons.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDiana","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClustDiana$new() LearnerClustDiana$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.diana.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.diana\") print(learner) # available parameters: learner$param_set$ids() } #> : Divisive Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"trace.lev\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":null,"dir":"Reference","previous_headings":"","what":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClust Expectation-Maximization clustering implemented RWeka::list_Weka_interfaces(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.em\") lrn(\"clust.em\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Dempster, P , Laird, M N, Rubin, B D (1977). “Maximum likelihood incomplete data via EM algorithm.” Journal royal statistical society: series B (methodological), 39(1), 1–22.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustEM","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClustEM$new() LearnerClustEM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.em.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.em\") print(learner) # available parameters: learner$param_set$ids() } #> : Expectation-Maximization Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"I\" \"ll_cv\" \"ll_iter\" #> [4] \"M\" \"max\" \"N\" #> [7] \"num_slots\" \"S\" \"X\" #> [10] \"K\" \"V\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClust fuzzy clustering implemented cluster::fanny(). cluster::fanny() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method copies cluster assignments memberships generated train data. predict work new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.fanny\") lrn(\"clust.fanny\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups data: introduction cluster analysis. John Wiley & Sons.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClustFanny$new() LearnerClustFanny$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.fanny.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.fanny\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy Analysis Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"k\" \"memb.exp\" \"metric\" \"stand\" \"maxit\" \"tol\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":null,"dir":"Reference","previous_headings":"","what":"Featureless Clustering Learner — mlr_learners_clust.featureless","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"simple LearnerClust randomly (evenly) assigns observations num_clusters partitions (default: 1 partition).","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.featureless\") lrn(\"clust.featureless\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster","code":""},{"path":[]},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFeatureless","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"LearnerClustFeatureless$new() LearnerClustFeatureless$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.featureless.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"if (requireNamespace(\"mlr3\")) { learner = mlr3::lrn(\"clust.featureless\") print(learner) # available parameters: learner$param_set$ids() } #> : Featureless Clustering #> * Model: - #> * Parameters: num_clusters=1 #> * Packages: mlr3, mlr3cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, missings, partitional #> [1] \"num_clusters\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":null,"dir":"Reference","previous_headings":"","what":"Farthest First Clustering Learner — mlr_learners_clust.ff","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClust Farthest First clustering implemented RWeka::FarthestFirst(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.ff\") lrn(\"clust.ff\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Hochbaum, S D, Shmoys, B D (1985). “best possible heuristic k-center problem.” Mathematics operations research, 10(2), 180–184.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFF","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClustFarthestFirst$new() LearnerClustFarthestFirst$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.ff.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.ff\") print(learner) # available parameters: learner$param_set$ids() } #> : Farthest First Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"N\" \"S\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClust agglomerative hierarchical clustering implemented stats::hclust(). Difference Calculation done stats::dist()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.hclust\") lrn(\"clust.hclust\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats'","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Becker, R, Chambers, M J, Wilks, R (1988). New S Language. Wadsworth & Brooks/Cole. Everitt, S B (1974). Cluster Analysis. Heinemann Educational Books. Hartigan, J (1975). Clustering Algorithms. John Wiley & Sons. Sneath, HA P, Sokal, R R (1973). Numerical Taxonomy. Freeman. Anderberg, R M (1973). Cluster Analysis Applications. Academic Press. Gordon, David (1999). Classification, 2 edition. Chapman Hall / CRC. Murtagh, Fionn (1985). “Multidimensional Clustering Algorithms.” COMPSTAT Lectures 4. Physica-Verlag. McQuitty, L L (1966). “Similarity Analysis Reciprocal Pairs Discrete Continuous Data.” Educational Psychological Measurement, 26(4), 825–831. doi:10.1177/001316446602600402 . Legendre, Pierre, Legendre, Louis (2012). Numerical Ecology, 3 edition. Elsevier Science BV. Murtagh, Fionn, Legendre, Pierre (2014). “Ward's Hierarchical Agglomerative Clustering Method: Algorithms Implement Ward's Criterion?” Journal Classification, 31, 274–295. doi:10.1007/s00357-014-9161-z .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClustHclust$new() LearnerClustHclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"if (requireNamespace(\"stats\")) { learner = mlr3::lrn(\"clust.hclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: distmethod=euclidean, k=2 #> * Packages: mlr3, mlr3cluster, stats #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"method\" \"members\" \"distmethod\" \"diag\" \"upper\" #> [6] \"p\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":null,"dir":"Reference","previous_headings":"","what":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"HDBSCAN (Hierarchical DBSCAN) clustering. Calls dbscan::hdbscan() dbscan.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.hdbscan\") lrn(\"clust.hdbscan\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering R.” Journal Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 . Campello, JGB R, Moulavi, Davoud, Sander, Jörg (2013). “Density-based clustering based hierarchical density estimates.” Pacific-Asia conference knowledge discovery data mining, 160–172. Springer.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHDBSCAN","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"LearnerClustHDBSCAN$new() LearnerClustHDBSCAN$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"","code":"LearnerClustHDBSCAN$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"","code":"LearnerClustHDBSCAN$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.hdbscan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Hierarchical DBSCAN (HDBSCAN) Clustering Learner — mlr_learners_clust.hdbscan","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.hdbscan\") print(learner) # available parameters: learner$param_set$ids() } #> : HDBSCAN Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"minPts\" \"gen_hdbscan_tree\" \"gen_simplified_tree\" #> [4] \"verbose\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClust kernel k-means clustering implemented kernlab::kkmeans(). kernlab::kkmeans() default value number clusters. Therefore, centers parameter set 2 default. Kernel parameters passed directly using kpar list kkmeans. predict method finds nearest center kernel distance assign clusters new data points.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.kkmeans\") lrn(\"clust.kkmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, kernlab","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Karatzoglou, Alexandros, Smola, Alexandros, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-S4 package kernel methods R.” Journal statistical software, 11, 1–20. Dhillon, S , Guan, Yuqiang, Kulis, Brian (2004). unified view kernel k-means, spectral clustering graph cuts. Citeseer.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClustKKMeans$new() LearnerClustKKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kkmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"if (requireNamespace(\"kernlab\")) { learner = mlr3::lrn(\"clust.kkmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Kernel K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, kernlab #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"kernel\" \"sigma\" \"degree\" \"scale\" \"offset\" \"order\" #> [8] \"alg\" \"p\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner — mlr_learners_clust.kmeans","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClust k-means clustering implemented stats::kmeans(). stats::kmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.kmeans\") lrn(\"clust.kmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats', clue","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Forgy, W E (1965). “Cluster analysis multivariate data: efficiency versus interpretability classifications.” Biometrics, 21, 768–769. Hartigan, J, Wong, M (1979). “Algorithm 136: K-means clustering algorithm.” Journal Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108. doi:10.2307/2346830 . Lloyd, P S (1982). “Least squares quantization PCM.” IEEE Transactions Information Theory, 28(2), 129–137. MacQueen, James (1967). “methods classification analysis multivariate observations.” Proceedings Fifth Berkeley Symposium Mathematical Statistics Probability, volume 1, 281–297.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClustKMeans$new() LearnerClustKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"if (requireNamespace(\"stats\") && requireNamespace(\"clue\")) { learner = mlr3::lrn(\"clust.kmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"iter.max\" \"algorithm\" \"nstart\" \"trace\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClust model-based clustering implemented mclust::Mclust(). predict method uses mclust::predict.Mclust() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.mclust\") lrn(\"clust.mclust\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, mclust","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Scrucca, Luca, Fop, Michael, Murphy, Brendan T, Raftery, E (2016). “mclust 5: clustering, classification density estimation using Gaussian finite mixture models.” R journal, 8(1), 289. Fraley, Chris, Raftery, E (2002). “Model-based clustering, discriminant analysis, density estimation.” Journal American statistical Association, 97(458), 611–631.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClustMclust$new() LearnerClustMclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.mclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"if (requireNamespace(\"mclust\")) { learner = mlr3::lrn(\"clust.mclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Gaussian Mixture Models Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, mclust #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"G\" \"modelNames\" \"prior\" \"control\" #> [5] \"initialization\" \"x\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClust Mean Shift clustering implemented LPCM::ms(). predict method LPCM::ms(), method returns cluster labels 'training' data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.meanshift\") lrn(\"clust.meanshift\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, LPCM","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Cheng, Yizong (1995). “Mean shift, mode seeking, clustering.” IEEE transactions pattern analysis machine intelligence, 17(8), 790–799.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClustMeanShift$new() LearnerClustMeanShift$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.meanshift.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"if (requireNamespace(\"LPCM\")) { learner = mlr3::lrn(\"clust.meanshift\") print(learner) # available parameters: learner$param_set$ids() } #> : Mean Shift Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, LPCM #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"h\" \"subset\" \"scaled\" \"iter\" \"thr\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":null,"dir":"Reference","previous_headings":"","what":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"OPTICS (Ordering points identify clustering structure) point ordering clustering. Calls dbscan::optics() dbscan.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.optics\") lrn(\"clust.optics\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering R.” Journal Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01 . Ankerst, Mihael, Breunig, M M, Kriegel, Hans-Peter, Sander, Jörg (1999). “OPTICS: Ordering points identify clustering structure.” ACM Sigmod record, 28(2), 49–60.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustOPTICS","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"LearnerClustOPTICS$new() LearnerClustOPTICS$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"","code":"LearnerClustOPTICS$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"","code":"LearnerClustOPTICS$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.optics.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner — mlr_learners_clust.optics","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.optics\") print(learner) # available parameters: learner$param_set$ids() } #> : OPTICS Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, density, exclusive #> [1] \"eps\" \"minPts\" \"search\" \"bucketSize\" \"splitRule\" #> [6] \"approx\" \"eps_cl\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":null,"dir":"Reference","previous_headings":"","what":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClust PAM clustering implemented cluster::pam(). cluster::pam() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.pam\") lrn(\"clust.pam\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Reynolds, P , Richards, Graeme, de la Iglesia, Beatriz, Rayward-Smith, J V (2006). “Clustering rules: comparison partitioning hierarchical clustering algorithms.” Journal Mathematical Modelling Algorithms, 5, 475–504. Schubert, Erich, Rousseeuw, J P (2019). “Faster k-medoids clustering: improving PAM, CLARA, CLARANS algorithms.” Similarity Search Applications: 12th International Conference, SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings 12, 171–187. Springer.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustPAM","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClustPAM$new() LearnerClustPAM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.pam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.pam\") print(learner) # available parameters: learner$param_set$ids() } #> : Partitioning Around Medoids #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"k\" \"metric\" \"medoids\" \"stand\" \"do.swap\" \"pamonce\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"X-means Clustering Learner — mlr_learners_clust.xmeans","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClust X-means clustering implemented RWeka::XMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner can instantiated via dictionary mlr3::mlr_learners associated sugar function mlr3::lrn():","code":"mlr_learners$get(\"clust.xmeans\") lrn(\"clust.xmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Witten, H , Frank, Eibe (2002). “Data mining: practical machine learning tools techniques Java implementations.” Acm Sigmod Record, 31(1), 76–77. Pelleg, Dan, Moore, W , others (2000). “X-means: Extending k-means efficient estimation number clusters.” Icml, volume 1, 727–734.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$encapsulate() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClustXMeans$new() LearnerClustXMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_learners_clust.xmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.xmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : X-means #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"B\" \"C\" \"D\" #> [4] \"H\" \"I\" \"J\" #> [7] \"K\" \"L\" \"M\" #> [10] \"S\" \"U\" \"use_kdtree\" #> [13] \"N\" \"O\" \"Y\" #> [16] \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":null,"dir":"Reference","previous_headings":"","what":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"score function calls fpc::cluster.stats() package fpc. \"ch\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.ch\") msr(\"clust.ch\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.ch.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":null,"dir":"Reference","previous_headings":"","what":"Dunn Index — mlr_measures_clust.dunn","title":"Dunn Index — mlr_measures_clust.dunn","text":"score function calls fpc::cluster.stats() package fpc. \"dunn\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Dunn Index — mlr_measures_clust.dunn","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Dunn Index — mlr_measures_clust.dunn","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.dunn\") msr(\"clust.dunn\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.dunn.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Dunn Index — mlr_measures_clust.dunn","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":null,"dir":"Reference","previous_headings":"","what":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"score function calls cluster::silhouette() package cluster. \"sil_width\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.silhouette\") msr(\"clust.silhouette\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.silhouette.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":null,"dir":"Reference","previous_headings":"","what":"Within Sum of Squares — mlr_measures_clust.wss","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"score function calls fpc::cluster.stats() package fpc. \"within.cluster.ss\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"measures can retrieved dictionary mlr3::mlr_measures:","code":"mlr_measures$get(\"clust.wss\") msr(\"clust.wss\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_measures_clust.wss.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"Range: \\([0, \\infty)\\) Minimize: TRUE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":null,"dir":"Reference","previous_headings":"","what":"Ruspini Cluster Task — mlr_tasks_ruspini","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"cluster task cluster::ruspini data set.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"mlr3::Task can instantiated via dictionary mlr3::mlr_tasks associated sugar function mlr3::tsk():","code":"mlr_tasks$get(\"ruspini\") tsk(\"ruspini\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"Task type: “clust” Dimensions: 75x2 Properties: - Missings: FALSE Target: - Features: “x”, “y”","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_ruspini.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"Ruspini EH (1970). “Numerical methods fuzzy clustering.” Information Sciences, 2(3), 319-350. doi:10.1016/S0020-0255(70)80056-1 .","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":null,"dir":"Reference","previous_headings":"","what":"US Arrests Cluster Task — mlr_tasks_usarrests","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"cluster task datasets::USArrests data set. Rownames stored variable \"states\" column role \"name\".","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"mlr3::Task can instantiated via dictionary mlr3::mlr_tasks associated sugar function mlr3::tsk():","code":"mlr_tasks$get(\"usarrests\") tsk(\"usarrests\")"},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"Task type: “clust” Dimensions: 50x4 Properties: - Missings: FALSE Target: - Features: “Assault”, “Murder”, “Rape”, “UrbanPop”","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/reference/mlr_tasks_usarrests.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"Berry, Brian J (1979). “Interactive Data Analysis: Practical Primer.” Journal Royal Statistical Society: Series C (Applied Statistics), 28, 181.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-development-version","dir":"Changelog","previous_headings":"","what":"mlr3cluster (development version)","title":"mlr3cluster (development version)","text":"fix: Mclust learner longer sets control default function import stay compliant {paradox} conventions","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-0110","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.10","title":"mlr3cluster 0.1.10","text":"CRAN release: 2024-10-03 Add BIRCH learner ‘stream’ package Add BICO learner ‘stream’ package","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-019","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.9","title":"mlr3cluster 0.1.9","text":"CRAN release: 2024-03-18 Add DBSCAN learner ‘fpc’ package Add HDBSCAN learner ‘dbscan’ package Add OPTICS learner ‘dbscan’ package Compatibility upcoming ‘paradox’ release Move testthat3 Refactoring","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-018","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.8","title":"mlr3cluster 0.1.8","text":"CRAN release: 2023-03-12 Add new task based ruspini dataset","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-017","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.7","title":"mlr3cluster 0.1.7","text":"CRAN release: 2023-03-10 Replace ‘clusterCrit’ measures alternatives ‘cluster’ ‘fpc’ packages Remove broken unloading test","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-016","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.6","title":"mlr3cluster 0.1.6","text":"CRAN release: 2022-12-22 Add states row names usarrest task. Remove dictionary items unloading package.","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-015","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.5","title":"mlr3cluster 0.1.5","text":"CRAN release: 2022-11-01 Added Mclust learner Fix error associated new dbscan release","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-014","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.4","title":"mlr3cluster 0.1.4","text":"CRAN release: 2022-08-14 code refactoring","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-013","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.3","title":"mlr3cluster 0.1.3","text":"CRAN release: 2022-04-06 code refactoring small fixes add filter PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-012","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.2","title":"mlr3cluster 0.1.2","text":"CRAN release: 2021-09-02 Add Hclust test doc hclust Add within sum squares measure add doc wss code factor adaptions","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-011","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.1","title":"mlr3cluster 0.1.1","text":"CRAN release: 2020-11-15 Eight new learners Added assignments save_assignments fields LearnerClust class","code":""},{"path":"https://mlr3cluster.mlr-org.com/dev/news/index.html","id":"mlr3cluster-010","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.0","title":"mlr3cluster 0.1.0","text":"CRAN release: 2020-10-01 Initial upload CRAN","code":""}]