Skip to content
Patrick Schratz edited this page Mar 28, 2020 · 60 revisions

Additional learners for mlr3

The following learners are shipped in their own packages to keep the {mlr3learners} package small.
Not all of them have necessarily been developed by the mlr-org team.
Also, learners might possibly be maintained by external persons.

See the section in the {mlr3learners} README on how to add/request a new learner.

Fully implemented

CI mlr3 Pkg / Alg. / Maintainer mlr3 Learner
R CMD Check via {tic} mlr3learners.C50
C50::C5.0()
@henrifnk
classif.C5.0
R CMD Check via {tic} mlr3learners.extratrees
extraTrees::extraTrees()
@be-marc
classif.extraTrees
regr.extraTrees
R CMD Check via {tic} mlr3learners.fnn
FNN::knn()
@be-marc
classif.fnn
regr.fnn
R CMD Check via {tic} mlr3learners.gbm
gbm::gbm()
@be-marc
classif.gbm
regr.gbm
R CMD Check via {tic} mlr3learners.ksvm
kernlab::ksvm()
@be-marc
classif.ksvm
regr.ksvm
R CMD Check via {tic} mlr3learners.liblinear
LiblineaR::LiblineaR()
@be-marc
classif.liblinearl1l2svc
classif.liblinearl1logreg
classif.liblinearl2l1svc
classif.liblinearl2l2svc
classif.liblinearl2logreg
classif.liblinearmulticlasssvc
regr.liblinearl2l1svr
regr.liblinearl2l2svr
R CMD Check via {tic} mlr3learners.mboost
mboost::gamboost()
mboost::glmboost()
@be-marc
classif.gamboost
classif.glmboost
regr.gamboost
regr.glmboost
R CMD Check via {tic} mlr3learners.partytkit
partykit::ctree()
@be-marc
classif.ctree
regr.ctree

In progress

CI mlr3 Pkg / Alg. / Maintainer mlr3 Learner
R CMD Check via {tic} mlr3learners.h2o
h2o:glm()
h2o:glmr()
h2o:gbm()
h2o:randomForest()
h2o:deeplearning()
@be-marc
classif.h2o.glm
classif.h2o.glmr
classif.h2o.gbm
classif.h2o.randomForest
classif.h2o.deeplearning
regr.h2o.glm
regr.h2o.glmr
regr.h2o.gbm
regr.h2o.randomForest
regr.h2o.deeplearning
R CMD Check via {tic} mlr3learners.countglm
stats::glm()
@pkopper
classif.countglm
regr.countglm
R CMD Check via {tic} mlr3learners.Rborist
Rborist::Rborist()
@pkopper
classif.Rborist
regr.Rborist
R CMD Check via {tic} mlr3learners.RWeka
RWeka::JRip()
@henrifnk
classif.JRip

Installation

It is possible to have a CRAN-like installation via install.packages() by installing the learners from mlr3learners.drat.

Wishlist

  • cforest, should be with ctree in one "partykit" package
  • classif.nnet (in progress, @henrifnk)
  • all algos from klaR (that mlr2 had)
  • regr.cubits
  • regr.earth
  • classif | regr.catboost (+ install_catboost() function)
  • every MODERN COOL gaussian process you can find in R

Clone this wiki locally