-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpol_psy_02_eda_vis.R
138 lines (121 loc) · 5.08 KB
/
pol_psy_02_eda_vis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
load("data/nw_df.RData")
library(tidyverse)
library(tidygraph)
library(ggraph)
set.seed(666)
nw_w_cm_comm <- nw_df %>% as_tbl_graph(directed = FALSE) %>%
mutate(closeness = suppressWarnings(tidygraph::centrality_closeness()),
betweenness = suppressWarnings(tidygraph::centrality_betweenness()),
degree = suppressWarnings(tidygraph::centrality_degree()),
eigen = suppressWarnings(tidygraph::centrality_eigen()),
community = as.factor(group_louvain())) %>%
filter(name != "")
cm <- as_tibble(nw_w_cm_comm) # 6259
cm %>% arrange(desc(eigen))
cm %>% arrange(eigen)
cm %>% arrange(desc(degree))
cm %>% arrange(degree)
cm %>% arrange(desc(betweenness))
cm %>% arrange(betweenness)
cm4eda <- cm %>% select(closeness:community)
cm4eda %>% ggplot(aes(x = fct_rev(fct_infreq(community)))) +
geom_bar() + labs(x = "Detected communities labeled as numbers", y = "Size of detected communities",
title = "Co-authorship network of political psychology scholars",
subtitle = "N = 6259 authors/nodes in the network") +
coord_flip() + theme_bw()
bp_btw <- cm4eda %>% ggplot(aes(y = betweenness, x = community)) +
geom_boxplot() + coord_flip() + theme_bw()
bp_cls <- cm4eda %>% ggplot(aes(y = closeness, x = community)) +
geom_boxplot() + labs(x = "") +
coord_flip() + theme_bw()
bp_deg <- cm4eda %>% ggplot(aes(y = degree, x = community)) +
geom_boxplot() + labs(x = "") +
coord_flip() + theme_bw()
bp_evc <- cm4eda %>% ggplot(aes(y = eigen, x = community)) +
geom_boxplot() + labs(x = "") +
coord_flip() + theme_bw()
library(patchwork)
pw1 <- bp_btw | bp_cls | bp_deg | bp_evc
pw1 + plot_annotation(title = "Co-authorship network of political psychology scholars",
subtitle = "Boxplots of network centrality measures by detected community",
caption = "Chosen communities for further investigation are 1, 4, 5, 6, 11, 12, 15")
nw_comm_ds <- cm %>% group_by(community) %>%
summarise(mean_bw = mean(betweenness),
med_bw = median(betweenness),
min_bw = min(betweenness),
max_bw = max(betweenness),
mean_de = mean(degree),
med_de = median(degree),
min_de = min(degree),
max_de = max(degree),
mean_ec = mean(eigen),
med_ec = median(eigen),
min_ec = min(eigen),
max_ec = max(eigen)) %>%
mutate_at(2:13, round, 2)
round(mean(nw_comm_ds$mean_de), 3) # 2.933
round(median(nw_comm_ds$mean_de), 3) # 2.935
round(mean(cm$degree), 3) # 3.165
round(median(cm$degree), 3) # 1
n_distinct(cm$degree) # 42
cm %>% janitor::tabyl(degree)
cm %>% ggplot(aes(degree)) + geom_histogram(bins = 200) + theme_bw()
cm %>% ggplot(aes(degree)) + geom_density() + theme_bw()
cm %>% ggplot(aes(betweenness)) + geom_histogram(bins = 200) + theme_bw()
cm %>% ggplot(aes(betweenness)) + geom_density() + theme_bw()
psych::describe(cm[,2:5])
skimr::skim(cm[,2:5])
library(EnvStats)
options(max.print = 5000)
rosnerTest(cm$degree, k = 600)$all.stats # 9 degrees are clearly outliers
options(max.print = 10000)
rosnerTest(cm$degree, k = 750)$all.stats # 5 degrees are outliers
rosnerTest(cm$degree, k = 1000)$all.stats # even 3 degrees are outliers
rosnerTest(cm$degree, k = 1500)$all.stats # 2 degrees are no outliers
cm %>% filter(community %in% c(1, 4, 5, 6, 11, 12, 15)) %>%
select(community, degree, betweenness) %>%
ggplot(aes(x = community, y = degree)) +
ggdist::stat_halfeye(
adjust = .5,
width = .6,
justification = -.2,
.width = 0,
point_colour = NA
) +
geom_boxplot(
width = .15,
outlier.color = NA
) +
ggdist::stat_dots(
side = "left",
justification = 1.1,
binwidth = .25
) +
coord_cartesian(xlim = c(1.2, NA)) + theme_bw()
set.seed(666)
nw_w_cm_comm %>%
ggraph(layout = "fr") +
geom_edge_link(aes(alpha = ..index..), show.legend = FALSE) +
geom_node_point(aes(colour = community), size = .5) +
theme_graph() +
labs(title = "Co-authorship network of political psychology scholars",
subtitle = "N = 6259 authors/nodes in the network",
caption = "Community detection with Louvain algorithm")
plot_nw_comm <- function(comm_num) {
set.seed(666)
cmm1 <- nw_w_cm_comm %>% filter(community == comm_num) %>%
ggraph(layout = 'fr') +
geom_edge_link(aes(alpha = ..index..), show.legend = FALSE) +
geom_node_point(aes(colour = community), size = .5) +
theme_graph() + theme(legend.position = "none")
}
cmm1 <- plot_nw_comm(1) + labs(subtitle = "Community 1")
cmm4 <- plot_nw_comm(4) + labs(subtitle = "Community 4")
cmm5 <- plot_nw_comm(5) + labs(subtitle = "Community 5")
cmm6 <- plot_nw_comm(6) + labs(subtitle = "Community 6")
cmm11 <- plot_nw_comm(11) + labs(subtitle = "Community 11")
cmm12 <- plot_nw_comm(12) + labs(subtitle = "Community 12")
cmm15 <- plot_nw_comm(15) + labs(subtitle = "Community 15")
pw2 <- (cmm1 | cmm4 | cmm5 | cmm6) / (cmm11 | cmm12 | cmm15)
pw2 + plot_annotation(title = "Co-authorship network of political psychology scholars",
subtitle = "broken down by 7 selected communities")