Attention Temporal Graph Convolutional Network for Cyber Physical Attacks Detection
Supervised Model: Attention Temporal Graph Convolutional Networks.
1. Attacks Detection Scheme
- tensorflow == 1.14 (conda install - c conda - forge tensorflow = 1.14 )
- python == 3.7
- scipy (conda install - c anaconda scipy )
- numpy (conda install - c anaconda numpy )
- matplotlib (conda install - c conda - forge matplotlib )
- pandas (conda install - c anaconda pandas )
- math
- sklearn (conda install - c anaconda scikit - learn )
Author
Number of Attacks Detected
S
S_TTD
S_CM
TPR
TNR
Housh and Ohar
7
0.97
0.965
0.975
0.953
0.997
Abokifa et al
7
0.949
0.958
0.944
0.921
0.959
HCAE
7
0.933
0.947
0.918
0.865
0.972
Tsiami et al
7
0.931
0.934
0.928
0.885
0.971
Giacomoni et al
7
0.927
0.936
0.917
0.838
0.997
Brentan et al
6
0.894
0.857
0.931
0.889
0.973
A3T-GCN
7
0.845
0.839
0.851
0.774
0.927
Chandy et al
7
0.802
0.835
0.768
0.857
0.678
Pasha et al
7
0.773
0.885
0.66
0.329
0.992
Aghashahi et al
3
0.534
0.429
0.64
0.396
0.884
Forecasting Performance on Normal Dataset
Baseline Model
Robust Mahalanobis Distance, Attention
Minimum RMSE
6.858166163
5.960369429
Minimum MAE
3.3477044
2.7673762
Maximum Accuracy
0.8372700512
0.8585200906
R2
-0.6772449017
-0.6805173159
Variance
0.9530872479
0.9646917097
Baseline Model
Robust Mahalanobis Distance, Attention
Precision
0.6355932203
0.7208237986
Recall / True Positive Rate
0.5528255528
0.773955774
F1 Score
0.5913272011
0.7464454976
Accuracy
0.8496131528
0.8965183752
Specificity / True Negative
0.9223359422
0.9265502709
Attacks Labels
Attacks Description
Feature Localization of A3T-GCN
Attack 8
Alteration of L_T3 thresholds leading to underflow
P_J256 = 11, L_T3 = 3
, P_J289 = 2, L_T2 = 2
Attack 9
Alteration of L_T2
P_J289 = 13, P_J422 = 13, P_J300 = 5, L_T7 = 2
Attack 10
Activation of PU3
F_PU3 = 38
, P_J280 = 28, L_T7 = 23, L_T4 = 6, P_J269 = 6, F_PU1 = 8, F_PU9 = 2
Attack 11
Activation of PU3
F_PU3 = 36
, P_J280 = 31, L_T7 = 23, F_PU1 = 22, L_T4 = 12, L_T6 = 11, P_J307 = 7, P_J415 = 3, F_PU6 = 2, P_J289 = 2
Attack 12
Alteration of L_T2 readings leading to overflow
P_J289 = 7, P_J300 = 6, L_T2 = 2
Attack 13
Change the L_T7 thresholds
L_T6 = 2
Attacls 17
Alteration of T4 signal
L_T4 = 8
, L_T7 = 5, P_J415 = 4, L_T6 = 2