This repository has been archived by the owner on Oct 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 239
/
Copy pathto_pb.py
89 lines (79 loc) · 3.33 KB
/
to_pb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
Minimal demonstration of tf1 compatibility
"""
import os
from PIL import Image
try:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except (ImportError, AttributeError):
import tensorflow as tf
from generator import Generator
from logger import get_logger
# NOTE: TF warnings are too noisy without this
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.logging.set_verbosity(tf.logging.ERROR)
def makedirs(path):
if not os.path.isdir(path):
os.makedirs(path)
def main(m_path, out_dir, light=False, test_out=True):
logger = get_logger("tf1_export", debug=test_out)
g = Generator(light=light)
t = tf.placeholder(tf.string, [])
x = tf.expand_dims(tf.image.decode_jpeg(tf.read_file(t), channels=3), 0)
x = (tf.cast(x, tf.float32) / 127.5) - 1
x = g(x, training=False)
out = tf.cast((tf.squeeze(x, 0) + 1) * 127.5, tf.uint8)
in_name, out_name = t.op.name, out.op.name
try:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
g.load_weights(tf.train.latest_checkpoint(m_path))
in_graph_def = tf.get_default_graph().as_graph_def()
out_graph_def = tf.graph_util.convert_variables_to_constants(
sess, in_graph_def, [out_name])
tf.reset_default_graph()
tf.import_graph_def(out_graph_def, name='')
except ValueError:
logger.error("Failed to load specified weight.")
logger.error("If you trained your model with --light, "
"consider adding --light when executing this script; otherwise, "
"do not add --light when executing this script.")
exit(1)
makedirs(out_dir)
m_cnt = 0
bpath = 'optimized_graph_light' if light else 'optimized_graph'
out_path = os.path.join(out_dir, f'{bpath}_{m_cnt:04d}.pb')
while os.path.exists(out_path):
m_cnt += 1
out_path = os.path.join(out_dir, f'{bpath}_{m_cnt:04d}.pb')
with tf.gfile.GFile(out_path, 'wb') as f:
f.write(out_graph_def.SerializeToString())
if test_out:
with tf.Graph().as_default():
gd = tf.GraphDef()
with tf.gfile.GFile(out_path, 'rb') as f:
gd.ParseFromString(f.read())
tf.import_graph_def(gd, name='')
tf.get_default_graph().finalize()
t = tf.get_default_graph().get_tensor_by_name(f"{in_name}:0")
out = tf.get_default_graph().get_tensor_by_name(f"{out_name}:0")
from time import time
start = time()
with tf.Session() as sess:
img = Image.fromarray(sess.run(out, {t: "input_images/temple.jpg"}))
img.show()
elapsed = time() - start
logger.debug(f"{elapsed} sec per img")
logger.info(f"successfully exported ckpt to {out_path}")
logger.info(f"input var name: {in_name}:0")
logger.info(f"output var name: {out_name}:0")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--m_path", type=str, default="models")
parser.add_argument("--out_dir", type=str, default='optimized_pbs')
parser.add_argument("--light", action='store_true')
parser.add_argument("--not_test_out", action='store_true')
args = parser.parse_args()
main(args.m_path, args.out_dir, args.light, not args.not_test_out)