-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathengine_blur_estimator.py
492 lines (354 loc) · 17.5 KB
/
engine_blur_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import math
from pickle import FALSE
import sys
import time
import torch
import os
import numpy as np
import cv2
import torchvision.models.detection.mask_rcnn
from coco_utils import get_coco_api_from_dataset
from coco_eval import CocoEvaluator
import utils
from torchvision import transforms
import transforms as ourTransforms
import models.warper
import models.net_transforms
import models.jpeg.DiffJPEG
def manual_blur(image_GPU, psf_GPU, resize_images = False):
image_GPU = image_GPU.unsqueeze(0)
image_width = image_GPU.shape[3]
image_height = image_GPU.shape[2]
if resize_images:
if image_height > image_width:
# transpose, old width and height swapped
image_GPU = image_GPU.permute(0,1,3,2)
new_height = 800
new_width = int(new_height * image_height/image_width)
else:
new_height = 800
new_width = int(new_height * image_width/image_height)
image_GPU = torch.nn.functional.interpolate(image_GPU, size = (new_height, new_width), mode = "bilinear")
width = 128
height = 128
p1d = (math.floor(width/2)-1, math.ceil(width/2), math.floor(height/2)-1, math.ceil(height/2))
if image_GPU.shape[2] < 64 or image_GPU.shape[3] < 64:
pad_mode = "constant"
else:
pad_mode = 'reflect'
image_GPU = torch.nn.functional.pad(image_GPU, p1d , mode=pad_mode)
output = torch.zeros_like(image_GPU)
non_zero_points = psf_GPU.nonzero(as_tuple=False)
for coord_index in range(non_zero_points.shape[0]):
output += torch.roll(image_GPU, shifts = (non_zero_points[coord_index, 0]-63, non_zero_points[coord_index, 1]-63), dims = (2,3)) * psf_GPU[non_zero_points[coord_index, 0], non_zero_points[coord_index, 1]]
output = output[:, :, 63: 63 + image_height, 63: 63 + image_width]
if resize_images:
if image_height > image_width:
# transpose, old width and height swapped
image_GPU = image_GPU.permute(0,1,3,2)
output = torch.nn.functional.interpolate(output, size = (image_height, image_width), mode = "bilinear")
return output.squeeze()
def blur_image_list(images_GPU, blur_dicts, psfs_GPU, resize_images = False):
for image_index, (image_GPU, blur_dict, psf_GPU) in enumerate(zip(images_GPU, blur_dicts, psfs_GPU)):
if not blur_dict["blurring"]:
continue
psf_GPU = psf_GPU/psf_GPU.sum()
images_GPU[image_index] = manual_blur(image_GPU, psf_GPU, resize_images)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_target_from_blur_dict(blur_dicts, target):
for index, blur_dict in enumerate(blur_dicts):
if blur_dict["blurring"]:
target[index] = torch.Tensor([(blur_dict["param_index"])*5 + blur_dict["fraction_index"] + 1]).long()
else:
target[index] = torch.Tensor([0]).long()
return target
def get_target_from_blur_dict_LEHE(blur_dicts, target):
for index, blur_dict in enumerate(blur_dicts):
if "blur_est_label" in blur_dict:
target[index] = torch.Tensor([blur_dict["blur_est_label"]]).long()
else:
if blur_dict["blurring"]:
if blur_dict["fraction_index"] < 3:
target[index] = torch.Tensor([0]).long()
continue
elif blur_dict["param_index"] == 0:
target[index] = torch.Tensor([1]).long()
elif blur_dict["param_index"] == 1:
target[index] = torch.Tensor([2]).long()
elif blur_dict["param_index"] == 2:
target[index] = torch.Tensor([3]).long()
else:
target[index] = torch.Tensor([0]).long()
return target
def train_one_epoch(model,
optimizer,
criterion,
data_loader,
device,
print_freq = 500,
epoch = 0,
distributed_mode = False,
writer = None,
gpu_blur = False,
LEHE_blur_seg = False,
resize_images = False,
quantize_image = False,
crop_images = False,
add_noise = False,
noise_level = 0.001,
add_block = False,
add_jpeg_artifact = False,
early_stop = None,
blur_train = False):
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
transform_and_batcher = models.net_transforms.GeneralizedRCNNTransform(800, 1333, image_mean, image_std, crop_images = crop_images)
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
if add_jpeg_artifact:
if distributed_mode:
jpeg_compressor = models.jpeg.DiffJPEG.DiffJPEG(height=100, width=100, differentiable=False, quality = 10).to(device)
else:
jpeg_compressor = models.jpeg.DiffJPEG.DiffJPEG(height=100, width=100, differentiable=False, quality = 10).cuda()
else:
jpeg_compressor = None
lr_scheduler = None
if epoch == 0:
warmup_factor = 1. / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = utils.warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor)
warper = None
iteration_count = 0
for images_CPU, targets, blur_dicts in metric_logger.log_every(data_loader, print_freq, header):
if distributed_mode:
images_GPU = list(image.half().to(device) for image in images_CPU)
targets_GPU = [{k: v.to(device) for k, v in t.items()} for t in targets]
if blur_train:
psfs_GPU = [torch.HalfTensor(blur_dict["psf"]).to(device) for blur_dict in blur_dicts]
else:
images_GPU = list(image.half().cuda() for image in images_CPU)
targets_GPU = [{k: v.cuda() for k, v in t.items()} for t in targets]
if blur_train:
psfs_GPU = [torch.HalfTensor(blur_dict["psf"]).cuda() for blur_dict in blur_dicts]
if gpu_blur and blur_train:
blur_image_list(images_GPU, blur_dicts, psfs_GPU, resize_images)
for image_GPU_index, image_GPU in enumerate(images_GPU):
if add_noise:
noise_var = np.random.uniform(0.0001, noise_level)
images_GPU[image_GPU_index] = torch.clamp(image_GPU + (torch.randn_like(image_GPU) * math.sqrt(noise_var)), 0, 1)
if add_block:
if np.random.uniform(0,1) > 0.3:
original_shape = image_GPU.shape
scale_factor = np.random.uniform(0.6, 1)
images_GPU[image_GPU_index] = torch.nn.functional.interpolate(images_GPU[image_GPU_index].unsqueeze(axis = 0), scale_factor = (scale_factor, scale_factor), mode='nearest').squeeze()
images_GPU[image_GPU_index] = torch.nn.functional.interpolate(images_GPU[image_GPU_index].unsqueeze(axis = 0), size = original_shape[1:], mode='nearest').squeeze()
if add_jpeg_artifact:
if np.random.uniform(0,1) > 0.35:
quality = np.random.uniform(20,90)
images_GPU[image_GPU_index] = ourTransforms.add_jpeg_artifact_to_image(images_GPU[image_GPU_index], jpeg_compressor, quality)
if quantize_image:
images_GPU[image_GPU_index] = (images_GPU[image_GPU_index] * 255).type(torch.uint8).type(torch.half)/255
if distributed_mode:
images_GPU = list(image.float().to(device) for image in images_GPU)
else:
images_GPU = list(image.float().cuda() for image in images_GPU)
images_batched = transform_and_batcher(images_GPU, targets_GPU)
if not LEHE_blur_seg:
if distributed_mode:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 15).long().to(device)
else:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 15).long().cuda()
target = get_target_from_blur_dict(blur_dicts, target)
else:
if distributed_mode:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 3).long().to(device)
else:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 3).long().cuda()
target = get_target_from_blur_dict_LEHE(blur_dicts, target)
output = model(images_batched[0].tensors)
torch.cuda.synchronize()
loss_dict = {}
loss_dict["loss"] = criterion(output, target)
torch.cuda.synchronize()
del images_CPU
del images_GPU
del targets
del targets_GPU
del blur_dicts
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
loss_value = losses_reduced.item()
if (not distributed_mode or (distributed_mode and torch.distributed.get_rank() == 0)) and iteration_count % print_freq == 0:
for key, item_loss_value in loss_dict_reduced.items():
writer.add_scalar('losses/' + key, item_loss_value, iteration_count + (epoch*len(data_loader)))
writer.add_scalar('losses/overallLoss', loss_value, iteration_count + (epoch*len(data_loader)))
writer.add_scalar('learningRate', optimizer.param_groups[0]["lr"], iteration_count + (epoch*len(data_loader)))
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
metric_logger.update(loss=losses_reduced)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
iteration_count += 1
if early_stop is not None:
if iteration_count > early_stop:
break
@torch.no_grad()
def evaluate(model,
data_loader,
device,
distributed_mode = False,
blurring_images = False,
gpu_blur = False,
LEHE_blur_seg = False,
send_back_preds_targets = False,
add_jpeg_artifact = False,
resize_images = False,
quantize_image = False,
add_noise = False,
noise_level = 0.001,
add_block = False,
early_stop = None):
n_threads = torch.get_num_threads()
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
transform_and_batcher = models.net_transforms.GeneralizedRCNNTransform(800, 1333, image_mean, image_std)
torch.set_num_threads(1)
cpu_device = torch.device("cpu")
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
if add_jpeg_artifact:
if distributed_mode:
jpeg_compressor = models.jpeg.DiffJPEG.DiffJPEG(height=100, width=100, differentiable=False, quality = 10).to(device)
else:
jpeg_compressor = models.jpeg.DiffJPEG.DiffJPEG(height=100, width=100, differentiable=False, quality = 10).cuda()
else:
jpeg_compressor = None
count = 0
total = 0
correct = 0
correctCounts = [0,0]
targetsAll = []
predsAll = []
for images_CPU, targetsCPU, blur_dicts in metric_logger.log_every(data_loader, 100, header):
torch.cuda.synchronize()
model_time = time.time()
if distributed_mode:
images_GPU = list(image.half().to(device) for image in images_CPU)
targets_GPU = [{k: v.to(device) for k, v in t.items()} for t in targetsCPU]
if blurring_images:
psfs_GPU = [torch.HalfTensor(blur_dict["psf"]).to(device) for blur_dict in blur_dicts]
else:
images_GPU = list(image.half().cuda() for image in images_CPU)
targets_GPU = [{k: v.cuda() for k, v in t.items()} for t in targetsCPU]
if blurring_images:
psfs_GPU = [torch.HalfTensor(blur_dict["psf"]).cuda() for blur_dict in blur_dicts]
if gpu_blur:
blur_image_list(images_GPU, blur_dicts, psfs_GPU, resize_images)
for image_GPU_index, image_GPU in enumerate(images_GPU):
if add_noise:
noise_var = np.random.uniform(0.0001, noise_level)
images_GPU[image_GPU_index] = torch.clamp(image_GPU + (torch.randn_like(image_GPU) * math.sqrt(noise_var)), 0, 1)
if add_block:
if np.random.uniform(0,1) > 0.3:
original_shape = image_GPU.shape
scale_factor = np.random.uniform(0.6, 1)
images_GPU[image_GPU_index] = torch.nn.functional.interpolate(images_GPU[image_GPU_index].unsqueeze(axis = 0), scale_factor = (scale_factor, scale_factor), mode='nearest').squeeze()
images_GPU[image_GPU_index] = torch.nn.functional.interpolate(images_GPU[image_GPU_index].unsqueeze(axis = 0), size = original_shape[1:], mode='nearest').squeeze()
if add_jpeg_artifact:
if np.random.uniform(0,1) > 0.35:
quality = np.random.uniform(20,90)
images_GPU[image_GPU_index] = transforms.add_jpeg_artifact_to_image(images_GPU[image_GPU_index], jpeg_compressor, quality)
if quantize_image:
images_GPU[image_GPU_index] = (images_GPU[image_GPU_index] * 255).type(torch.uint8).type(torch.half)/255
if distributed_mode:
images_GPU = list(image.float().to(device) for image in images_GPU)
else:
images_GPU = list(image.float().cuda() for image in images_GPU)
images_GPU = transform_and_batcher(images_GPU)
outputs = model(images_GPU[0].tensors)
model_time = time.time() - model_time
evaluator_time = time.time()
with torch.no_grad():
topk = (1,2)
if not LEHE_blur_seg:
if distributed_mode:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 15).long().to(device)
else:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 15).long().cuda()
target = get_target_from_blur_dict(blur_dicts, target)
else:
if distributed_mode:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 3).long().to(device)
else:
target = torch.zeros(len(blur_dicts), requires_grad = False).uniform_(0, 3).long().cuda()
target = get_target_from_blur_dict_LEHE(blur_dicts, target)
total += target.size(0)
maxk = max(topk)
_, pred = outputs.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
targetsAll.append(target[0])
predsAll.append(pred[0])
for kIndex, k in enumerate(topk):
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
correctCounts[kIndex] += correct_k
evaluator_time = time.time() - evaluator_time
metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
count += 1
del images_CPU
del images_GPU
del targetsCPU
del targets_GPU
del blur_dicts
if early_stop is not None:
if count > early_stop:
break
# gather the stats from all processes
metric_logger.synchronize_between_processes()
# accumulate predictions from all images
accuracies = [100*(correctCounts[0].item()/total), 100*(correctCounts[1].item()/total)]
print( 'Top 1 Accuracy: {0:.2f}%'.format(accuracies[0]) )
print( 'Top 2 Accuracy: {0:.2f}%'.format(accuracies[1]) )
mergedPreds = torch.stack(predsAll).squeeze()
mergedTargets = torch.stack(targetsAll).squeeze()
totalAcc = 0
classAccs = []
valid_class_count = 0
for classInd in range(4):
class_count = int((mergedTargets == classInd).sum())
if class_count == 0:
continue
valid_class_count += 1
classAcc = int(torch.logical_and(mergedTargets == classInd, mergedPreds == mergedTargets).sum())/int((mergedTargets == classInd).sum())
classAccs.append(classAcc)
totalAcc += classAcc
totalAcc = totalAcc/valid_class_count
print( 'Top 1 Mean Acc: {0:.2f}%'.format(totalAcc*100) )
torch.set_num_threads(n_threads)
if send_back_preds_targets:
return accuracies, targetsAll, predsAll
else:
return accuracies