-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c.py
162 lines (134 loc) · 4.7 KB
/
a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Training algorithm
"""
import sys
import numpy as np
from itertools import count
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
from torch.autograd import Variable
POLICY_FACTOR = 1
ENTROPY_FACTOR = 0.001
LOG_FREQ = 1_000
EPS = np.finfo(np.float32).eps.item()
# if CUDA, use it
dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
def _compute_discounted_rewards(rewards, gamma):
"""Compute discounted rewards into the past
Parameters
----------
rewards : list
reward for each transition
gamma : float
discount factor
Returns
-------
Variable
discounted and normalized rewards
"""
R = 0
discounted_rewards = []
for r in rewards[::-1]:
R = r + gamma * R
discounted_rewards.insert(0, R)
discounted_rewards = torch.tensor(discounted_rewards)
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + EPS)
return Variable(discounted_rewards)
def _select_action(policy, obs, saved_log_probs):
"""Select action
Parameters
----------
policy : nn.Module
policy network
obs : ndarray
observation
saved_log_probs : list
log probability for action sampled from the policy
Returns
-------
int
action to take according to our policy
"""
obs = Variable(torch.from_numpy(obs).type(dtype).permute(2, 0, 1).unsqueeze(0))
output, _ = policy(obs)
action_probs = Categorical(output)
action = action_probs.sample()
# record log probability of action and values
saved_log_probs.append(action_probs.log_prob(action))
return action.item()
def a2c(env,
policy_network,
optimizer_spec,
num_episodes,
gamma,
update_freq,
grad_norm_clipping):
"""Run A2C training algorithm
Parameters
----------
env : gym.Env
OpenAI gym environment
policy_network : torch.nn.Module
policy network that computes a probability distribution over actions
optimizer_spec : OptimizerSpec
parameters for the optimizer
num_episodes : int
when to stop training: (env, num_timesteps) -> bool
gamma : float
discount factor
update_freq : int
Number of steps to update networks
grad_norm_clipping : float
value to clip gradient to
"""
# get input sizes and num actions
img_h, img_w, img_c = env.observation_space.shape
num_actions = env.action_space.n
# construct policy network
policy = policy_network(in_channels=img_c, num_actions=num_actions)
# construct optimizer
optimizer = optimizer_spec.constructor(policy.parameters(), **optimizer_spec.kwargs)
running_reward = None
# main training loop
for episode in range(num_episodes):
# reset cache
saved_rewards = []
saved_log_probs = []
saved_states = []
# start the environment
obs = env.reset()
for t in range(update_freq):
# select action
action = _select_action(policy, obs, saved_log_probs)
obs, reward, done, _ = env.step(action)
saved_rewards.append(reward)
saved_states.append(Variable(torch.from_numpy(obs).type(dtype).permute(2, 0, 1).unsqueeze(0)))
if done:
break
# episode is finished so compute loss
target_state_values = _compute_discounted_rewards(saved_rewards, gamma)
saved_log_probs = torch.cat(saved_log_probs)
# compute advantages using estimate values and current values
current_state_values = torch.cat([policy(state)[1] for state in saved_states]).squeeze(1)
advantages = target_state_values - current_state_values
policy_loss = (-saved_log_probs * advantages).mean()
value_loss = F.smooth_l1_loss(current_state_values, target_state_values).mean()
entropy = (saved_log_probs.exp() * saved_log_probs).sum()
loss = POLICY_FACTOR * value_loss - policy_loss - ENTROPY_FACTOR * entropy
# update parameters
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(policy.parameters(), grad_norm_clipping)
optimizer.step()
# compute running reward
reward_sum = sum(saved_rewards)
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + episode * 0.01
# print stats
print('-' * 64)
print('Episode {}'.format(episode + 1))
print('Running reward: {}'.format(running_reward))
print('Loss: {}'.format(loss))
print('\n')
sys.stdout.flush()