-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGPT.py
175 lines (137 loc) · 6.36 KB
/
GPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class FeedForward(nn.Module):
'''
Initializes the FeedForward layer
Args:
d_model :int -> Embedding size of the model
dropout :float -> Dropout value
Input:
Tensor of shape (*)
Output:
Tensor of shape (*)
'''
def __init__(self,d_model,dropout):
super().__init__()
self.d_model = d_model
self.dropout = dropout
self.ffn = nn.Sequential(
nn.Linear(in_features=self.d_model, out_features=self.d_model * 4),
nn.ReLU(),
nn.Linear(in_features=self.d_model * 4, out_features=self.d_model),
nn.Dropout(dropout),
)
def forward(self, x):
return self.ffn(x)
class GPTBlock(nn.Module):
'''
Initializes the transformer block of the model
Args:
d_model :int -> Embedding size of the model
context_length :int -> Context length of the model
num_heads :int -> Number of heads in Multihead attention
dropout :float -> Dropout value
Input:
Tensor of the shape [Batch size,Sequence Length,Embedding dimension]
Components:
multi_head_attention_layer: Performs scaled_dot_product_attention() for num_heads in parallel
att_mask: Adds a causal attention mask
feed_forward_layer: Performs operations of the feed forward layer
layer_norm_1: Performs layer normalization
Output:
Tensor of the shape [Batch size,Sequence Length,Embedding dimension]
'''
def __init__(self,d_model,context_length,num_heads,dropout):
super().__init__()
self.device='cuda' if torch.cuda.is_available() else 'cpu'
self.d_model = d_model
self.context_length = context_length
self.head_size = d_model // num_heads
self.num_heads = num_heads
self.dropout = dropout
self.multi_head_attention_layer = nn.MultiheadAttention(d_model, num_heads,batch_first=True)
self.att_mask=torch.ones((self.context_length,self.context_length),dtype=torch.bool).to(self.device)
self.feed_forward_layer = FeedForward(self.d_model,self.dropout)
self.layer_norm_1 = nn.LayerNorm(normalized_shape=self.d_model)
def forward(self, x):
B,T,E=x.shape
self.attn_mask=torch.triu(self.att_mask[:T,:T],diagonal=1)
x = x + self.multi_head_attention_layer(x,x,x,attn_mask=self.attn_mask,need_weights=False,is_causal=True)[0]
x = x + self.feed_forward_layer(self.layer_norm_1(x))
return x
class GPT(nn.Module):
def __init__(self,d_model: int,context_length: int,num_heads: int,num_blocks: int,embedding_table,dropout=0.0):
'''
Instantiates the GPT model
Input Arguments:
d_model :int -> Embedding size of the model
context_length :int -> Context length of the model
num_heads :int -> Number of heads in Multihead attention
num_blocks :int -> Number of transformer blocks
embedding_table :nn.Embedding -> Embedding table
dropout :float -> Dropout value (default value 0.0)
Output:
Tensor of the shape [Batch size,Context length,Number of embeddings]
'''
super().__init__()
assert isinstance(embedding_table,nn.Embedding)
assert embedding_table.weight.shape[1]==d_model
self.device='cuda' if torch.cuda.is_available() else 'cpu'
self.d_model = d_model
self.context_length = context_length
self.num_heads = num_heads
self.num_blocks = num_blocks
self.dropout = dropout
self.token_embedding_lookup_table=embedding_table
self.max_token_value=self.token_embedding_lookup_table.weight.shape[0]-1
self.transformer_blocks = nn.Sequential(*(
[GPTBlock(self.d_model,self.context_length,self.num_heads,self.dropout) for _ in range(self.num_blocks)] +
[nn.LayerNorm(self.d_model)] #LayerNorm added for stability
))
self.language_model_out_linear_layer = nn.Linear(in_features=self.d_model, out_features=self.max_token_value)
def forward(self, idx, targets=None):
'''
Applies positional encoding and forwards the weights.
'''
B, T = idx.shape
position_encoding_lookup_table = torch.zeros(self.context_length, self.d_model)
position = torch.arange(0, self.context_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.d_model, 2).float() * (-math.log(10000.0) / self.d_model))
position_encoding_lookup_table[:, 0::2] = torch.sin(position * div_term)
position_encoding_lookup_table[:, 1::2] = torch.cos(position * div_term)
position_embedding = position_encoding_lookup_table[:T, :].to(self.device)
x = self.token_embedding_lookup_table(idx) + position_embedding
x = self.transformer_blocks(x)
logits = self.language_model_out_linear_layer(x)
if targets is not None:
B, T, C = logits.shape
logits_reshaped = logits.view(B * T, C)
targets_reshaped = targets.view(B * T)
loss = F.cross_entropy(input=logits_reshaped, target=targets_reshaped)
else:
loss = None
return logits, loss
def generate(self, idx, max_new_tokens :int):
'''
Generates the output for range(max_new_tokens)
Args:
max_new_token :int -> Number of tokens to be generated
Returns -> Tensor of token values
'''
# idx is (B,T) array of indices in the current context
for _ in range(max_new_tokens):
# Crop idx to the max size of our positional embeddings table
idx_crop = idx[:, -self.context_length:]
# Get predictions
logits, loss = self(idx_crop)
# Get the last time step from logits where the dimensions of the logits are (B,T,C)
logits_last_timestep = logits[:, -1, :]
# Apply softmax to get probabilities
probs = F.softmax(input=logits_last_timestep, dim=-1)
# Sample from the probabilities' distribution.
idx_next = torch.multinomial(input=probs, num_samples=1)
# Append the sampled indexes idx_next to idx
idx = torch.cat((idx, idx_next), dim=1)
return idx