forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
141 lines (130 loc) · 5.07 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import logging
from importlib.machinery import SourceFileLoader
from setuptools import setup, find_packages
_MLFLOW_SKINNY_ENV_VAR = "MLFLOW_SKINNY"
version = (
SourceFileLoader("mlflow.version", os.path.join("mlflow", "version.py")).load_module().VERSION
)
# Get a list of all files in the JS directory to include in our module
def package_files(directory):
paths = []
for (path, _, filenames) in os.walk(directory):
for filename in filenames:
paths.append(os.path.join("..", path, filename))
return paths
# Prints out a set of paths (relative to the mlflow/ directory) of files in mlflow/server/js/build
# to include in the wheel, e.g. "../mlflow/server/js/build/index.html"
js_files = package_files("mlflow/server/js/build")
models_container_server_files = package_files("mlflow/models/container")
alembic_files = [
"../mlflow/store/db_migrations/alembic.ini",
"../mlflow/temporary_db_migrations_for_pre_1_users/alembic.ini",
]
extra_files = [
"ml-package-versions.yml",
"pypi_package_index.json",
"pyspark/ml/log_model_allowlist.txt",
]
"""
Minimal requirements for the skinny MLflow client which provides a limited
subset of functionality such as: RESTful client functionality for Tracking and
Model Registry, as well as support for Project execution against local backends
and Databricks.
"""
SKINNY_REQUIREMENTS = [
"click>=7.0",
"cloudpickle",
"databricks-cli>=0.8.7",
"entrypoints",
"gitpython>=2.1.0",
"pyyaml>=5.1",
"protobuf>=3.7.0",
"pytz",
"requests>=2.17.3",
"packaging",
# Automated dependency detection in MLflow Models relies on
# `importlib_metadata.packages_distributions` to resolve a module name to its package name
# (e.g. 'sklearn' -> 'scikit-learn'). importlib_metadata 3.7.0 or newer supports this function:
# https://github.com/python/importlib_metadata/blob/main/CHANGES.rst#v370
"importlib_metadata>=3.7.0,!=4.7.0",
]
"""
These are the core requirements for the complete MLflow platform, which augments
the skinny client functionality with support for running the MLflow Tracking
Server & UI. It also adds project backends such as Docker and Kubernetes among
other capabilities.
"""
CORE_REQUIREMENTS = SKINNY_REQUIREMENTS + [
"alembic",
# Required
"docker>=4.0.0",
"Flask",
"gunicorn; platform_system != 'Windows'",
"numpy",
"scipy",
"pandas",
"prometheus-flask-exporter",
"querystring_parser",
# Pin sqlparse for: https://github.com/mlflow/mlflow/issues/3433
"sqlparse>=0.3.1",
# Required to run the MLflow server against SQL-backed storage
"sqlalchemy",
"waitress; platform_system == 'Windows'",
]
_is_mlflow_skinny = bool(os.environ.get(_MLFLOW_SKINNY_ENV_VAR))
logging.debug("{} env var is set: {}".format(_MLFLOW_SKINNY_ENV_VAR, _is_mlflow_skinny))
setup(
name="mlflow" if not _is_mlflow_skinny else "mlflow-skinny",
version=version,
packages=find_packages(exclude=["tests", "tests.*"]),
package_data={"mlflow": js_files + models_container_server_files + alembic_files + extra_files}
if not _is_mlflow_skinny
# include alembic files to enable usage of the skinny client with SQL databases
# if users install sqlalchemy, alembic, and sqlparse independently
else {"mlflow": alembic_files + extra_files},
install_requires=CORE_REQUIREMENTS if not _is_mlflow_skinny else SKINNY_REQUIREMENTS,
extras_require={
"extras": [
"scikit-learn",
# Required to log artifacts and models to HDFS artifact locations
"pyarrow",
# Required to log artifacts and models to AWS S3 artifact locations
"boto3",
# Required to log artifacts and models to GCS artifact locations
"google-cloud-storage",
"azureml-core>=1.2.0",
# Required to log artifacts to SFTP artifact locations
"pysftp",
# Required by the mlflow.projects module, when running projects against
# a remote Kubernetes cluster
"kubernetes",
# Required to serve models through MLServer
"mlserver>=0.5.3",
"mlserver-mlflow>=0.5.3",
],
"sqlserver": ["mlflow-dbstore"],
"aliyun-oss": ["aliyunstoreplugin"],
},
entry_points="""
[console_scripts]
mlflow=mlflow.cli:cli
""",
zip_safe=False,
author="Databricks",
description="MLflow: A Platform for ML Development and Productionization",
long_description=open("README.rst").read()
if not _is_mlflow_skinny
else open("README_SKINNY.rst").read() + open("README.rst").read(),
long_description_content_type="text/x-rst",
license="Apache License 2.0",
classifiers=["Intended Audience :: Developers", "Programming Language :: Python :: 3.7"],
keywords="ml ai databricks",
url="https://mlflow.org/",
python_requires=">=3.7",
project_urls={
"Bug Tracker": "https://github.com/mlflow/mlflow/issues",
"Documentation": "https://mlflow.org/docs/latest/index.html",
"Source Code": "https://github.com/mlflow/mlflow",
},
)