-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
executable file
·185 lines (158 loc) · 7.26 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import cv2
import json
import argparse
import numpy as np
from prompt_toolkit import Application
from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.layout import Layout, HSplit, VSplit, Window
from prompt_toolkit.widgets import Frame, TextArea, RadioList, Button
from prompt_toolkit.filters import IsDone
from prompt_toolkit.styles import Style
from prompt_toolkit.layout.controls import FormattedTextControl
def draw_yolo_bboxes(image, bbox, color, label=None):
img_h, img_w, _ = image.shape
class_id, x_center, y_center, width, height = map(float, bbox)
x_min = int((x_center - width / 2) * img_w)
y_min = int((y_center - height / 2) * img_h)
x_max = int((x_center + width / 2) * img_w)
y_max = int((y_center + height / 2) * img_h)
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 8)
if label:
cv2.putText(image, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
def draw_coco_bboxes(image, bbox, color, label=None):
x, y, width, height = map(int, bbox)
cv2.rectangle(image, (x, y), (x + width, y + height), color, 8)
if label:
cv2.putText(image, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
def draw_mask(image, mask, color):
mask_overlay = np.zeros(image.shape, dtype=np.uint8)
mask_overlay[mask > 0] = color
cv2.addWeighted(image, 1, mask_overlay, 0.5, 0, image)
def resize_to_half_screen(image):
screen_width, screen_height = 1920, 1080
img_h, img_w = image.shape[:2]
scaling_factor = min(screen_width / 2 / img_w, screen_height / 2 / img_h, 1.0)
new_size = (int(img_w * scaling_factor), int(img_h * scaling_factor))
return cv2.resize(image, new_size) if scaling_factor < 1 else image
def visualize_yolo(image_path, label_path, class_names):
image = cv2.imread(image_path)
with open(label_path, 'r') as file:
labels = file.readlines()
for label in labels:
label = label.strip().split()
class_id = int(label[0])
bbox = label[1:]
color = (0, 255, 0) # Green for YOLO boxes
draw_yolo_bboxes(image, [class_id] + bbox, color, class_names[class_id])
return resize_to_half_screen(image)
def visualize_coco(image_path, annotation, class_names):
image = cv2.imread(image_path)
for obj in annotation:
bbox = obj['bbox']
class_id = obj['category_id']
color = (0, 0, 255) # Red for COCO boxes
if len(class_names) == 1 and class_id > 0:
class_id -= 1
draw_coco_bboxes(image, bbox, color, class_names[class_id])
return resize_to_half_screen(image)
def visualize_mask(image_path, mask_path):
image = cv2.imread(image_path)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if mask.shape[:2] != image.shape[:2]:
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
draw_mask(image, mask, (0, 255, 0)) # Green for mask overlay
return resize_to_half_screen(image)
def display_image(dataset_path, dataset_type, label_path, class_names, selected_file, mask_suffix='.jpg'):
if selected_file:
image_path = os.path.join(dataset_path, selected_file)
if dataset_type == 'yolo':
label_file = os.path.splitext(selected_file)[0] + ".txt"
label_full_path = os.path.join(label_path, label_file)
if not os.path.exists(label_full_path):
print(f"Label file {label_full_path} not found!")
return
image = visualize_yolo(image_path, label_full_path, class_names)
elif dataset_type == 'coco':
with open(label_path, 'r') as file:
annotations = json.load(file)
image_id = next((img['id'] for img in annotations['images'] if img['file_name'] == selected_file), None)
if image_id is None:
print(f"Image {selected_file} not found in COCO annotations!")
return
image_annotations = [ann for ann in annotations['annotations'] if ann['image_id'] == image_id]
image = visualize_coco(image_path, image_annotations, class_names)
elif dataset_type == 'mask':
mask_file = os.path.splitext(selected_file)[0] + mask_suffix
mask_path = os.path.join(label_path, mask_file)
if not os.path.exists(mask_path):
print(f"Mask file {mask_path} not found!")
return
image = visualize_mask(image_path, mask_path)
cv2.imshow('Visualization', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def interactive_file_browser(dataset_path, dataset_type, label_path, class_names):
image_files = sorted([f for f in os.listdir(dataset_path) if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
if not image_files:
print("No image files found in the dataset directory.")
return None
search_field = TextArea(height=1, prompt='Search: ', style='class:search-field')
radio_list = RadioList([(f, f) for f in image_files])
def show_image():
selected_file = radio_list.current_value
if selected_file:
display_image(dataset_path, dataset_type, label_path, class_names, selected_file)
def update_radio_list():
query = search_field.text.strip().lower()
filtered_files = [f for f in image_files if query in f.lower()]
radio_list.values = [(f, f) for f in filtered_files]
show_button = Button(text="Show", handler=show_image)
kb = KeyBindings()
@kb.add('tab')
def _(event):
if search_field.buffer == event.app.layout.current_buffer:
event.app.layout.focus(radio_list)
elif event.app.layout.has_focus(radio_list):
event.app.layout.focus(show_button)
else:
event.app.layout.focus(search_field.buffer)
@kb.add('enter', filter=~IsDone())
def _(event):
if event.app.layout.has_focus(radio_list):
show_image()
else:
update_radio_list()
@kb.add('c-c')
def _(event):
event.app.exit()
instructions = FormattedTextControl("Press Tab to switch focus, Enter to search/show image, Ctrl-C to exit")
root_container = HSplit([
Window(instructions, height=1),
Frame(radio_list, title="Image Files"),
VSplit([
Frame(search_field, width=40),
Frame(show_button)
])
])
layout = Layout(root_container)
style = Style.from_dict({
'frame.label': '#ffffff bold',
'frame.border': '#888888',
})
app = Application(
layout=layout,
key_bindings=kb,
style=style,
full_screen=True,
mouse_support=True
)
app.run()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Visualize bounding boxes or masks on images for YOLO, COCO, or mask datasets.')
parser.add_argument('-m', '--mode', choices=['yolo', 'coco', 'mask'], required=True, help="Dataset mode: 'yolo', 'coco', or 'mask'")
parser.add_argument('-d', '--dataset-path', type=str, required=True, help='Path to the folder containing images')
parser.add_argument('-l', '--label-path', type=str, required=True, help='Path to annotations folder or JSON file')
args = parser.parse_args()
class_names = ["mass"]
interactive_file_browser(args.dataset_path, args.mode, args.label_path, class_names)