-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
77 lines (58 loc) · 2.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import Lasso
from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
le = LabelEncoder()
#impure factorize function
def factorize(data_frame, factorize_data_frame, column, fill_na = None ):
factorize_data_frame[column] = data_frame[column]
if fill_na is not None:
factorize_data_frame[column].fillna(fill_na,inplace=True)
le.fit(factorize_data_frame[column].unique())
factorize_data_frame[column] = le.transform(factorize_data_frame[column])
return factorize_data_frame
#impure converter categorical features
def refactor(refactored_data_frame,data_frame,column, fill_na):
refactored_data_frame[column] = data_frame[column]
if fill_na is not None:
refactored_data_frame.fillna(fill_na,inplace=True)
dummies = pd.get_dummies(refactored_data_frame[column],prefix="_" +column)
refactored_data_frame = refactored_data_frame.join(dummies)
refactored_data_frame = refactored_data_frame.drop([column], axis = 1)
return refactored_data_frame
def lasso(train ,test , label, alpha = 0.00099, max_iteration = 50000):
lasso = Lasso(alpha = alpha , max_iter = max_iteration)
lasso.fit(train,label)
#prediction on training data
y_predicton = lasso.predict(train)
y_test = label
print("Lasso score on training set: ", rmse(y_test, y_predicton))
y_predicton = lasso.predict(test)
y_predicton = np.exp(y_predicton)
return y_predicton
def gradient_boosting(train ,test ,label):
gb = GradientBoostingRegressor(n_estimators=300, learning_rate=0.05, max_depth=3, max_features='sqrt',
min_samples_leaf=15, min_samples_split=10, loss='huber')
gb.fit(train,label.as_matrix().ravel())
# prediction on training data
y_predicton = gb.predict(train)
y_test = label
print("Gradient Boosting score on training set: ", rmse(y_test, y_predicton))
y_prediction = gb.predict(test)
y_prediction = np.exp(y_prediction)
return y_prediction
def random_forest(train ,test ,label):
rf = RandomForestRegressor(n_estimators=150, n_jobs=4)
rf.fit(train,label.as_matrix().ravel())
# prediction on training data
y_predicton = rf.predict(train)
y_test = label
print("Random Forest score on training set: ", rmse(y_test, y_predicton))
y_predicton = rf.predict(test)
y_predicton = np.exp(y_predicton)
return y_predicton
def rmse(y,y_prediction):
return np.sqrt(mean_squared_error(y,y_prediction))