-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtrain.py
executable file
·211 lines (195 loc) · 5.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import logging
import os
from argparse import ArgumentParser
from average_checkpoints import ensemble
from datamodule.data_module import DataModule
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.loggers import WandbLogger
# Set environment variables and logger level
# logging.basicConfig(level=logging.WARNING)
def get_trainer(args):
seed_everything(42, workers=True)
checkpoint = ModelCheckpoint(
dirpath=os.path.join(args.exp_dir, args.exp_name) if args.exp_dir else None,
monitor="monitoring_step",
mode="max",
save_last=True,
filename="{epoch}",
save_top_k=10,
)
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks = [checkpoint, lr_monitor]
return Trainer(
sync_batchnorm=True,
default_root_dir=args.exp_dir,
max_epochs=args.max_epochs,
num_nodes=args.num_nodes,
devices=args.gpus,
accelerator="gpu",
strategy=DDPStrategy(find_unused_parameters=False),
callbacks=callbacks,
reload_dataloaders_every_n_epochs=1,
logger=WandbLogger(name=args.exp_name, project="auto_avsr_lipreader", group=args.group_name),
gradient_clip_val=10.0,
)
def get_lightning_module(args):
# Set modules and trainer
from lightning import ModelModule
modelmodule = ModelModule(args)
return modelmodule
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--exp-dir",
default="./exp",
type=str,
help="Directory to save checkpoints and logs to. (Default: './exp')",
required=True,
)
parser.add_argument(
"--exp-name",
type=str,
help="Experiment name",
required=True,
)
parser.add_argument(
"--group-name",
type=str,
help="Group name of the task (wandb API)",
)
parser.add_argument(
"--modality",
type=str,
help="Type of input modality",
required=True,
choices=["audio", "video"],
)
parser.add_argument(
"--root-dir",
type=str,
help="Root directory of preprocessed dataset",
required=True,
)
parser.add_argument(
"--train-file",
type=str,
help="Filename of training label list",
required=True,
)
parser.add_argument(
"--val-file",
default="lrs3_test_transcript_lengths_seg16s.csv",
type=str,
help="Filename of validation label list. (Default: lrs3_test_transcript_lengths_seg16s.csv)",
)
parser.add_argument(
"--test-file",
default="lrs3_test_transcript_lengths_seg16s.csv",
type=str,
help="Filename of testing label list. (Default: lrs3_test_transcript_lengths_seg16s.csv)",
)
parser.add_argument(
"--num-nodes",
default=4,
type=int,
help="Number of machines used. (Default: 4)",
required=True,
)
parser.add_argument(
"--gpus",
default=8,
type=int,
help="Number of gpus in each machine. (Default: 8)",
)
parser.add_argument(
"--pretrained-model-path",
type=str,
help="Path to the pre-trained model",
)
parser.add_argument(
"--transfer-frontend",
action="store_true",
help="Flag to load the front-end only, works with `pretrained-model`",
)
parser.add_argument(
"--transfer-encoder",
action="store_true",
help="Flag to load the weights of encoder, works with `pretrained-model`",
)
parser.add_argument(
"--warmup-epochs",
type=int,
default=5,
help="Number of epochs for warmup. (Default: 5)",
)
parser.add_argument(
"--max-epochs",
default=75,
type=int,
help="Number of epochs. (Default: 75)",
)
parser.add_argument(
"--max-frames",
type=int,
default=1600,
help="Maximal number of frames in a batch. (Default: 1600)",
)
parser.add_argument(
"--lr",
type=float,
default=1e-3,
help="Learning rate. (Default: 1e-3)",
)
parser.add_argument(
"--weight-decay",
type=float,
default=0.03,
help="Weight decay",
)
parser.add_argument(
"--ctc-weight",
type=float,
default=0.1,
help="CTC weight",
)
parser.add_argument(
"--train-num-buckets",
type=int,
default=400,
help="Bucket size for the training set",
)
parser.add_argument(
"--ckpt-path",
type=str,
default=None,
help="Path of the checkpoint from which training is resumed.",
)
parser.add_argument(
"--slurm-job-id",
type=float,
default=0,
help="Slurm job id",
)
parser.add_argument(
"--debug",
action="store_true",
help="Flag to use debug level for logging",
)
return parser.parse_args()
def init_logger(debug):
fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
level = logging.DEBUG if debug else logging.INFO
logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")
def cli_main():
args = parse_args()
#init_logger(args.debug)
args.slurm_job_id = os.environ["SLURM_JOB_ID"]
modelmodule = get_lightning_module(args)
datamodule = DataModule(args, train_num_buckets=args.train_num_buckets)
trainer = get_trainer(args)
trainer.fit(model=modelmodule, datamodule=datamodule, ckpt_path=args.ckpt_path)
ensemble(args)
if __name__ == "__main__":
cli_main()