-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.go
100 lines (77 loc) · 2.81 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
package main
import (
"fmt"
"log"
"math/rand"
"time"
"gorgonia.org/gorgonia"
)
func main() {
rand.Seed(time.Now().UnixNano())
// Create a computation graph
g := gorgonia.NewGraph()
// Define input and target data
inputData := gorgonia.NewMatrix(g, gorgonia.Float64, gorgonia.WithShape(1, 2), gorgonia.WithValue(gorgonia.NewMatrixValue(gorgonia.Float64, gorgonia.WithShape(1, 2), gorgonia.WithValue([]float64{0.1, 0.2}))))
targetData := gorgonia.NewMatrix(g, gorgonia.Float64, gorgonia.WithShape(1, 1), gorgonia.WithValue(gorgonia.NewMatrixValue(gorgonia.Float64, gorgonia.WithShape(1, 1), gorgonia.WithValue([]float64{0.8}))))
// Define parameters (weights and bias)
w := gorgonia.NewMatrix(g, gorgonia.Float64, gorgonia.WithShape(2, 1), gorgonia.WithInit(gorgonia.GlorotU(1)))
b := gorgonia.NewMatrix(g, gorgonia.Float64, gorgonia.WithShape(1), gorgonia.WithInit(gorgonia.Zeroes()))
// Define the neural network model
// Activation function: Sigmoid
// Output = sigmoid(input * weights + bias)
output := gorgonia.Must(gorgonia.Add(gorgonia.Must(gorgonia.Mul(inputData, w)), b))
output = gorgonia.Must(gorgonia.Sigmoid(output))
// Define the loss function (Mean Squared Error)
loss := gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Square(gorgonia.Must(gorgonia.Sub(output, targetData))))))
// Define the optimization operation (Gradient Descent)
grads, err := gorgonia.Gradient(loss, w, b)
if err != nil {
log.Fatal(err)
}
// Create a VM to run the computations
machine := gorgonia.NewTapeMachine(g, gorgonia.BindDualValues(w, b))
// Training loop (Gradient Descent)
learningRate := 0.01
epochs := 1000
for epoch := 0; epoch < epochs; epoch++ {
if err := machine.RunAll(); err != nil {
log.Fatal(err)
}
// Update weights and bias using gradient descent
gorgonia.WithLearnRate(grads, -learningRate)
if _, err := gorgonia.ApplyUpdates(w, grads[0], gorgonia.UseScale(true)); err != nil {
log.Fatal(err)
}
if _, err := gorgonia.ApplyUpdates(b, grads[1], gorgonia.UseScale(true)); err != nil {
log.Fatal(err)
}
// Reset the VM for the next iteration
machine.Reset()
}
// Run the final trained model
if err := machine.RunAll(); err != nil {
log.Fatal(err)
}
// Display the final results
fmt.Println("Trained Weights:")
fmt.Println(w.Value())
fmt.Println("Trained Bias:")
fmt.Println(b.Value())
fmt.Println("Predicted Output:")
fmt.Println(output.Value())
}
func generateTrainingData() ([][]float64, []float64) {
numSamples := 1000
inputSize := 2
trainingData := make([][]float64, numSamples)
target := make([]float64, numSamples)
for i := 0; i < numSamples; i++ {
sample := make([]float64, inputSize)
for j := 0; j < inputSize; j++ {
sample[j] = mathrand.Float64()
}
trainingData[i] = sample
target[i] = sample[0] + sample[1]
}
return trainingData, target
}