-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplayer.py
89 lines (75 loc) · 2.7 KB
/
player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pickle
import numpy as np
from const import BOARD_COLS, BOARD_ROWS
class Player:
def __init__(self, name, symbol, exp_rate=0.15):
self.name = name
self.symbol = symbol
self.score = 0
self.states = [] # record all positions taken
self.lr = 0.1
self.exp_rate = exp_rate
self.decay_rate = 0.9
self.states_value = {} # state -> value
def get_hash(self, board):
boardHash = str(board.reshape(BOARD_COLS * BOARD_ROWS))
return boardHash
def make_move(self, positions, current_board):
if np.random.random() <= self.exp_rate:
# make a random decision
idx = np.random.choice(len(positions))
action = positions[idx]
else:
# calculate the best move
value_max = -100
for p in positions:
# check all available moves
next_board = current_board.copy()
next_board[p] = self.symbol
next_board_hash = self.get_hash(next_board)
temp = self.states_value.get(next_board_hash)
value = 0
if temp is not None: value = temp
if value >= value_max:
value_max = value
action = p
return action
# append a hash state
def add_state(self, state):
self.states.append(state)
def feed_reward(self, reward):
for state in reversed(self.states):
if self.states_value.get(state) is None:
self.states_value[state] = 0
self.states_value[state] += self.lr * (self.decay_rate * reward - self.states_value[state])
reward = self.states_value[state]
def reset(self):
self.states = []
def save_policy(self):
fw = open('policy/policy_' + str(self.name), 'wb')
pickle.dump(self.states_value, fw)
fw.close()
def load_policy(self, file):
fr = open(file, 'rb')
self.states_value = pickle.load(fr)
fr.close()
class HumanPlayer:
def __init__(self, name, symbol):
self.name = name
self.symbol = symbol
self.score = 0
self.ready = False
self.action = None
def make_move(self, positions):
while True:
if self.ready:
if self.action in positions:
self.ready = False
return self.action
else:
self.ready = False
def click(self, index: int):
a = int(index / 3)
b = a * (-3) + index
self.action = a, b
self.ready = True