forked from roxanneluo/Federated-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
client_old.py
100 lines (82 loc) · 3.78 KB
/
client_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
'''Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
class Client:
# train/test_indices sample indices of train and test samples in this client
def __init__(self, train_indices, test_indices):
(self.x_train, self.y_train), (self.x_test, self.y_test) = \
self.prepare_dataset(train_indices, test_indices)
self.model = self.build_model()
def prepare_dataset(dataset_size, IID):
pass
# return dataset size, final weights
def train(self, weights, epochs, batch_size):
self.model.set_weights(weights)
self.model.fit(self.x_train, self.y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(self.x_test, self.y_test))
return self.x_train.shape[0], self.model.get_weights()
def evaluate(self):
score = self.model.evaluate(self.x_test, self.y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
return score
class MnistClient(Client):
img_rows, img_cols = 28, 28
input_shape = (1, img_rows, img_cols) if K.image_data_format() == 'channels_first' \
else (img_rows, img_cols, 1)
num_classes = 10
def prepare_dataset(self, train_indices, test_indices):
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
img_rows, img_cols = MnistClient.img_rows, MnistClient.img_cols
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
# get samples of this client
x_train, y_train = x_train[train_indices, :,:,:], y_train[train_indices]
x_test, y_test = x_test[test_indices], y_test[test_indices]
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, MnistClient.num_classes)
y_test = keras.utils.to_categorical(y_test, MnistClient.num_classes)
return (x_train, y_train), (x_test, y_test)
def build_model(self):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=MnistClient.input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(MnistClient.num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
return model
if __name__ == "__main__":
client = MnistClient(range(1000), range(1000))
weights = client.train(client.model.get_weights(), 1, 128)
client.evaluate()