Skip to content

Commit 3a84fac

Browse files
committed
Updates
Signed-off-by: Marcello Seri <marcello.seri@gmail.com>
1 parent 6e4e972 commit 3a84fac

File tree

2 files changed

+19
-19
lines changed

2 files changed

+19
-19
lines changed

5-tensors.tex

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ \section{Tensors}
7070
Let $V$ an $n$-dimensional vector space, $\tau_1\in T_s^r(V)$, $\tau_2\in T_{s'}^{r'}(V)$.
7171
We define the \emph{tensor product} $\tau_1\otimes\tau_2$ as the $(r+r', s+s')$-tensor defined by
7272
\begin{align}
73-
& \tau_1\otimes\tau_2(\omega^1,\ldots,\omega^{r+r'}, v_1,\ldots,v_{s+s'}) \\
73+
& \tau_1\otimes\tau_2(\omega^1,\ldots,\omega^{r+r'}, v_1,\ldots,v_{s+s'}) \\
7474
& = \tau_1(\omega^1,\ldots,\omega^{r}, v_1,\ldots,v_{s}) \cdot \tau_2(\omega^{r+1},\ldots,\omega^{r+r'}, v_{s+1},\ldots,v_{s+s'}).
7575
\end{align}
7676
\end{definition}
@@ -252,7 +252,7 @@ \section{Tensors}
252252
\cI = \cI_g : T_s^r (V) \to T_r^s(V) \\
253253
\cI : \tau \mapsto \tau \circ (\LaTeXunderbrace{{\cdot}^\flat, \ldots, {\cdot}^\flat}_{r\mbox{ times}}, \LaTeXoverbrace{{\cdot}^\sharp, \ldots, {\cdot}^\sharp}^{s\mbox{ times}}).
254254
\end{align}
255-
In general, one can use the metric tensor to raise or lower arbitrary indices, changing the tensor type from $(r,s)$ to $(r+1, s-1)$ or $(r-1, s+1)$.
255+
In general, one can use the metric tensor to raise or lower arbitrary indices, changing the tensor type from $(r,s)$ to $(r+1, s-1)$ or $(r-1, s+1)$.
256256

257257
A neat application of this is showing that a non-degenerate bilinear map $g\in T_2^0(V)$ can be lifted to a non-degenerate bilinear map on arbitrary tensors, that is
258258
\begin{equation}
@@ -270,13 +270,13 @@ \section{Tensors}
270270
\item Fix a basis for $V$. What does $I_g$ in the previous remark look like with respect to this basis?
271271
\item Write down $G$ with respect to the basis from the previous point.
272272
\end{enumerate}
273-
%In coordinates the one mapping $(r,s)$-tensors to $(r+s, 0)$-tensors is $I_g(\tau) = \tau_{i_1\ldots i_r}^{j_1\ldots j_s} g_{j_1 j_{r+1}} \ldots g_{j_s j_{r+s}}}$
274-
%If \((g_{ij})\) and \((g^{ij})\) are the matrix element of the matrices representing metric tensor and its inverse resp, then \[ G(\sigma, \tau) = \langle\sigma, \tau\rangle_g := g^{k_1 l_1}\cdots g^{k_rl_r} g_{i_1j_1} \cdots g_{i_sj_s} \sigma_{k_1,\ldots,k_r}^{i_1,\ldots,i_s} \tau_{l_1,\ldots,l_r}^{j_1,\ldots,j_s} \]
273+
%In coordinates the one mapping $(r,s)$-tensors to $(r+s, 0)$-tensors is $I_g(\tau) = \tau_{i_1\ldots i_r}^{j_1\ldots j_s} g_{j_1 j_{r+1}} \ldots g_{j_s j_{r+s}}}$
274+
%If \((g_{ij})\) and \((g^{ij})\) are the matrix element of the matrices representing metric tensor and its inverse resp, then \[ G(\sigma, \tau) = \langle\sigma, \tau\rangle_g := g^{k_1 l_1}\cdots g^{k_rl_r} g_{i_1j_1} \cdots g_{i_sj_s} \sigma_{k_1,\ldots,k_r}^{i_1,\ldots,i_s} \tau_{l_1,\ldots,l_r}^{j_1,\ldots,j_s} \]
275275
\end{exercise}
276276

277-
\begin{remark}
277+
\begin{remark}\label{rem:gradedtensoralgebra}
278278
Interestingly, even though none of the tensor spaces $T_s^r(V)$ are algebras, the map $\otimes$ makes the collection of all tensor spaces
279-
\marginnote{This is a so-called \emph{graded algebra} since $\otimes : T_s^r(V)\times T_{s'}^{r'}(V) \to T_{s+s'}^{r+r'}(V)$ in some sense moves along the structure of the indices.}
279+
\marginnote{This is a so-called \emph{graded algebra} since $\otimes : T_s^r(V)\times T_{s'}^{r'}(V) \to T_{s+s'}^{r+r'}(V)$ in some sense moves along the structure of the indices. Technically, an algebra is graded if its additive group can be decomposed into a direct sum of subgroups. Any element has a degree defined by the subgroup it belongs to.}
280280
\begin{equation}
281281
T(V) := \bigoplus_{r,s\geq 0} T_s^r(V), \qquad T_0^0(V):= \R,
282282
\end{equation}
@@ -290,12 +290,12 @@ \section{Tensors}
290290
Let $V$ be a vector space and fix $r,s\geq0$.
291291
For $h\leq r$ and $k\leq s$, we define the \emph{$(h,k)$-contraction} of a tensor as the linear mapping $T_s^r(V)\to T_{s-1}^{r-1}(V)$ defined through
292292
\begin{align}
293-
v_1 & \otimes\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^s \\
293+
v_1 & \otimes\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^s \\
294294
& \mapsto \omega^k(v_h)\, v_1\otimes\cdots\otimes v_{h-1}\otimes v_{h+1}\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^{k-1}\otimes\omega^{k+1}\cdots\otimes\omega^s,
295295
\end{align}
296296
and then extended by linearity, thus mapping $\tau \mapsto \widetilde\tau$ where
297297
\begin{align}
298-
\widetilde\tau & (\nu^1,\ldots,\nu^{r-1}, v_1,\ldots,v_{s-1}) \\
298+
\widetilde\tau & (\nu^1,\ldots,\nu^{r-1}, v_1,\ldots,v_{s-1}) \\
299299
& = \tau(\nu^1,\ldots,\LaTeXunderbrace{e^i}_{h\mbox{th index}},\ldots,\nu^{r-1},w_1,\ldots,\LaTeXunderbrace{e_i}_{k\mbox{th index}},\ldots,w_{s-1}).
300300
\end{align}
301301
\end{definition}
@@ -304,9 +304,9 @@ \section{Tensors}
304304
It is common to use an hat to denote elements that have been removed from the tensor product.
305305
For instance, the contraction above would look like
306306
\begin{align}
307-
v_1 & \otimes\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^s \\
308-
& \mapsto \omega^k(v_h)\, v_1\otimes\cdots\otimes v_{h-1}\otimes v_{h+1}\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^{k-1}\otimes\omega^{k+1}\cdots\otimes\omega^s \\
309-
&\qquad =: \omega^k(v_h)\, v_1\otimes\cdots\otimes \widehat{v}_{h} \otimes \cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\widehat{\omega}^{k}\otimes\cdots\otimes\omega^s.
307+
v_1 & \otimes\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^s \\
308+
& \mapsto \omega^k(v_h)\, v_1\otimes\cdots\otimes v_{h-1}\otimes v_{h+1}\cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\omega^{k-1}\otimes\omega^{k+1}\cdots\otimes\omega^s \\
309+
& \qquad =: \omega^k(v_h)\, v_1\otimes\cdots\otimes \widehat{v}_{h} \otimes \cdots\otimes v_r\otimes\omega^1\otimes\cdots\otimes\widehat{\omega}^{k}\otimes\cdots\otimes\omega^s.
310310
\end{align}
311311
\end{notation}
312312

@@ -319,8 +319,8 @@ \section{Tensors}
319319
\end{equation}
320320
By definition, the $(1,2)$-contraction is
321321
\begin{align}
322-
\widetilde\tau(\nu^1,w_1,w_2) & = \tau(e^i,\nu^1,w_1,e_i,w_2) \\
323-
& = e^i(v_1)\;\nu^1(v_2)\omega^1(w_1)\omega^2(e_i)\omega^3(w_2) \\
322+
\widetilde\tau(\nu^1,w_1,w_2) & = \tau(e^i,\nu^1,w_1,e_i,w_2) \\
323+
& = e^i(v_1)\;\nu^1(v_2)\omega^1(w_1)\omega^2(e_i)\omega^3(w_2) \\
324324
& = \LaTeXunderbrace{e^i(v_1)\omega^2(e_i)}_{=\omega^2_i e^i (v_1) =\omega^2(v_1)}\nu^1(v_2)\omega^1(w_1)\omega^3(w_2) \\
325325
& = \omega^2(v_1)\; v_2\otimes\omega^1\otimes\omega^3 (\nu^1,w_1,w_2).
326326
\end{align}
@@ -427,10 +427,10 @@ \section{Tensor bundles}
427427
\end{equation}
428428
This immediately exposes the transformation laws for the change of coordinates: let $(U, \psi)$ be another chart on $U$ with local coordinates $(y^i)$, then $dy^i = \psi^* de^i$ and $\frac{\partial}{\partial y^i} = (\psi^{-1})_* e_i$. If we denote $\sigma = \psi\circ\varphi^{-1}$ the transition map in $\R^n$, we get
429429
\begin{align}
430-
\frac{\partial}{\partial x^i} & = (\varphi^{-1})_* e_i \\
430+
\frac{\partial}{\partial x^i} & = (\varphi^{-1})_* e_i \\
431431
& = (\varphi^{-1})_* \LaTeXunderbrace{(\sigma^{-1})_*\sigma_*}_{\id} e_i \\
432432
& = (\varphi^{-1}\circ \sigma^{-1})_* (\sigma_* e_i) \\
433-
& = (\psi^{-1})_* ((D\sigma)_i^j e_j) \\
433+
& = (\psi^{-1})_* ((D\sigma)_i^j e_j) \\
434434
& = (D\sigma)_i^j \frac{\partial}{\partial y^j},
435435
\end{align}
436436
which may be easier to think about in terms of the following diagram
@@ -590,9 +590,9 @@ \section{Tensor bundles}
590590
g := \sum_{i\in I} \rho_i \hat{g}_i,
591591
\quad\mbox{where}\quad
592592
\hat{g}_i := \begin{cases}
593-
\varphi_i^* g_{\R^m} & \mbox{on } U_i, \\
594-
0 & \mbox{otherwise}
595-
\end{cases},
593+
\varphi_i^* g_{\R^m} & \mbox{on } U_i, \\
594+
0 & \mbox{otherwise}
595+
\end{cases},
596596
\end{align}
597597
concluding the proof.
598598
\end{proof}

6-differentiaforms.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -286,7 +286,7 @@ \section{Differential forms on manifolds}
286286
\begin{equation}
287287
\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M),
288288
\end{equation}
289-
then the wedge product turns $\Omega^*(M)$ into an associative, anticommutative graded algebra.
289+
then the wedge product turns $\Omega^*(M)$ into an associative, anticommutative graded algebra\footnote{Recall Remark~\ref{rem:gradedtensoralgebra}}.
290290
\end{remark}
291291

292292
The following theorem gives a computational rule for pullbacks of differential forms similar to the ones we developed for covector fields and arbitrary tensor fields earlier.

0 commit comments

Comments
 (0)