forked from axon-research/c3d-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
executable file
·225 lines (204 loc) · 8.61 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
import matplotlib
matplotlib.use('Agg')
from keras.models import model_from_json
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
import c3d_model
import sys
import keras.backend as K
dim_ordering = K._image_dim_ordering
print "[Info] image_dim_order (from default ~/.keras/keras.json)={}".format(
dim_ordering)
backend = dim_ordering
def diagnose(data, verbose=True, label='input', plots=False, backend='tf'):
# Convolution3D?
if data.ndim > 2:
if backend == 'th':
data = np.transpose(data, (1, 2, 3, 0))
#else:
# data = np.transpose(data, (0, 2, 1, 3))
min_num_spatial_axes = 10
max_outputs_to_show = 3
ndim = data.ndim
print "[Info] {}.ndim={}".format(label, ndim)
print "[Info] {}.shape={}".format(label, data.shape)
for d in range(ndim):
num_this_dim = data.shape[d]
if num_this_dim >= min_num_spatial_axes: # check for spatial axes
# just first, center, last indices
range_this_dim = [0, num_this_dim/2, num_this_dim - 1]
else:
# sweep all indices for non-spatial axes
range_this_dim = range(num_this_dim)
for i in range_this_dim:
new_dim = tuple([d] + range(d) + range(d + 1, ndim))
sliced = np.transpose(data, new_dim)[i, ...]
print("[Info] {}, dim:{} {}-th slice: "
"(min, max, mean, std)=({}, {}, {}, {})".format(
label,
d, i,
np.min(sliced),
np.max(sliced),
np.mean(sliced),
np.std(sliced)))
if plots:
# assume (l, h, w, c)-shaped input
if data.ndim != 4:
print("[Error] data (shape={}) is not 4-dim. Check data".format(
data.shape))
return
l, h, w, c = data.shape
if l >= min_num_spatial_axes or \
h < min_num_spatial_axes or \
w < min_num_spatial_axes:
print("[Error] data (shape={}) does not look like in (l,h,w,c) "
"format. Do reshape/transpose.".format(data.shape))
return
nrows = int(np.ceil(np.sqrt(data.shape[0])))
# BGR
if c == 3:
for i in range(l):
mng = plt.get_current_fig_manager()
mng.resize(*mng.window.maxsize())
plt.subplot(nrows, nrows, i + 1) # doh, one-based!
im = np.squeeze(data[i, ...]).astype(np.float32)
im = im[:, :, ::-1] # BGR to RGB
# force it to range [0,1]
im_min, im_max = im.min(), im.max()
if im_max > im_min:
im_std = (im - im_min) / (im_max - im_min)
else:
print "[Warning] image is constant!"
im_std = np.zeros_like(im)
plt.imshow(im_std)
plt.axis('off')
plt.title("{}: t={}".format(label, i))
plt.show()
#plt.waitforbuttonpress()
else:
for j in range(min(c, max_outputs_to_show)):
for i in range(l):
mng = plt.get_current_fig_manager()
mng.resize(*mng.window.maxsize())
plt.subplot(nrows, nrows, i + 1) # doh, one-based!
im = np.squeeze(data[i, ...]).astype(np.float32)
im = im[:, :, j]
# force it to range [0,1]
im_min, im_max = im.min(), im.max()
if im_max > im_min:
im_std = (im - im_min) / (im_max - im_min)
else:
print "[Warning] image is constant!"
im_std = np.zeros_like(im)
plt.imshow(im_std)
plt.axis('off')
plt.title("{}: o={}, t={}".format(label, j, i))
plt.show()
#plt.waitforbuttonpress()
elif data.ndim == 1:
print("[Info] {} (min, max, mean, std)=({}, {}, {}, {})".format(
label,
np.min(data),
np.max(data),
np.mean(data),
np.std(data)))
print("[Info] data[:10]={}".format(data[:10]))
return
def main():
show_images = False
diagnose_plots = False
model_dir = './models'
global backend
# override backend if provided as an input arg
if len(sys.argv) > 1:
if 'tf' in sys.argv[1].lower():
backend = 'tf'
else:
backend = 'th'
print "[Info] Using backend={}".format(backend)
if backend == 'th':
model_weight_filename = os.path.join(model_dir, 'sports1M_weights_th.h5')
model_json_filename = os.path.join(model_dir, 'sports1M_weights_th.json')
else:
model_weight_filename = os.path.join(model_dir, 'sports1M_weights_tf.h5')
model_json_filename = os.path.join(model_dir, 'sports1M_weights_tf.json')
print("[Info] Reading model architecture...")
model = model_from_json(open(model_json_filename, 'r').read())
#model = c3d_model.get_model(backend=backend)
# visualize model
model_img_filename = os.path.join(model_dir, 'c3d_model.png')
if not os.path.exists(model_img_filename):
from keras.utils.visualize_util import plot
plot(model, to_file=model_img_filename)
print("[Info] Loading model weights...")
model.load_weights(model_weight_filename)
print("[Info] Loading model weights -- DONE!")
model.compile(loss='mean_squared_error', optimizer='sgd')
print("[Info] Loading labels...")
with open('sports1m/labels.txt', 'r') as f:
labels = [line.strip() for line in f.readlines()]
print('Total labels: {}'.format(len(labels)))
print("[Info] Loading a sample video...")
cap = cv2.VideoCapture('dM06AMFLsrc.mp4')
vid = []
while True:
ret, img = cap.read()
if not ret:
break
vid.append(cv2.resize(img, (171, 128)))
vid = np.array(vid, dtype=np.float32)
#plt.imshow(vid[2000]/256)
#plt.show()
# sample 16-frame clip
#start_frame = 100
start_frame = 2000
X = vid[start_frame:(start_frame + 16), :, :, :]
#diagnose(X, verbose=True, label='X (16-frame clip)', plots=show_images)
# subtract mean
mean_cube = np.load('models/train01_16_128_171_mean.npy')
mean_cube = np.transpose(mean_cube, (1, 2, 3, 0))
#diagnose(mean_cube, verbose=True, label='Mean cube', plots=show_images)
X -= mean_cube
#diagnose(X, verbose=True, label='Mean-subtracted X', plots=show_images)
# center crop
X = X[:, 8:120, 30:142, :] # (l, h, w, c)
#diagnose(X, verbose=True, label='Center-cropped X', plots=show_images)
if backend == 'th':
X = np.transpose(X, (3, 0, 1, 2)) # input_shape = (3,16,112,112)
else:
pass # input_shape = (16,112,112,3)
# get activations for intermediate layers if needed
inspect_layers = [
# 'fc6',
# 'fc7',
]
for layer in inspect_layers:
int_model = c3d_model.get_int_model(model=model, layer=layer, backend=backend)
int_output = int_model.predict_on_batch(np.array([X]))
int_output = int_output[0, ...]
print "[Debug] at layer={}: output.shape={}".format(layer, int_output.shape)
diagnose(int_output,
verbose=True,
label='{} activation'.format(layer),
plots=diagnose_plots,
backend=backend)
# inference
output = model.predict_on_batch(np.array([X]))
# show results
print('Saving class probabilitities in probabilities.png')
plt.plot(output[0])
plt.title('Probability')
plt.savefig("probabilities.png")
print('Position of maximum probability: {}'.format(output[0].argmax()))
print('Maximum probability: {:.5f}'.format(max(output[0])))
print('Corresponding label: {}'.format(labels[output[0].argmax()]))
# sort top five predictions from softmax output
top_inds = output[0].argsort()[::-1][:5] # reverse sort and take five largest items
print('\nTop 5 probabilities and labels:')
for i in top_inds:
print('{1}: {0:.5f}'.format(output[0][i], labels[i]))
if __name__ == '__main__':
main()