-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathizi.py
384 lines (324 loc) · 15.8 KB
/
izi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#IZI Gas-Phase Metallicity Estimator -version Python
#---------------------------------------------------
import numpy as np
import math
import matplotlib.pyplot as plt
#import PyQt4
import os
from astropy.table import Table
import pandas as pd
import scipy
import scipy.interpolate
# Setting System Path
import sys
#sys.path.append('/afs/cas.unc.edu/users/m/u/mugpol/github/izi/izi_utils/')
sys.path.append('C:\Users\mugdhapolimera\github\izi\izi_utils')
#Importing Custom Utility Files
#from izi_utils.tabulate import idl_tabulate
from tabulate import idl_tabulate
from interpolate import grid_interpolate
import izi_plots
#---------------------------------------------------
def uprior(xaxis):
return 1./(xaxis[1]-xaxis[0])
def userprior (x, xarr, yarr):
# interpolates a user provided prior (xarr, yarr) to x
# returns 0 if x is outside range of xarr
if (x <= min(xarr) or x >= max(xarr)):
return 0
interpfunc = scipy.interpolate.interp1d(xarr, yarr)
return interpfunc(x)
def izi(fluxin, errorin, idin, name, gridfile = 'C:\Users\mugdhapolimera\Desktop\UNC\Courses\Research\Codes\l09_high_csf_n1e2_6.0Myr.fits',
#def izi(fluxin, errorin, idin, name, gridfile = '/afs/cas.unc.edu/users/m/u/mugpol/Documents/IZI/izi/grids/l09_high_csf_n1e2_6.0Myr.fits',
plot_flag = 1, print_flag = True, epsilon = 0.15, nz1 = 50, nq1 = 50, interpolate_flag = True, outgridfile = True, nonorm = False,
method = 'scipy', **kwargs ):
#kwargs = logOHsun, intergridfile, logzlimits, logqlimits ,logzprior, logqprior (logz/q prior have no application in the original code)
# RENAME INPUT ARRAYS
flux = fluxin
error = errorin
idno = idin
#TODO Make IZI a function
#CHECK INPUT FOR CONSISTENCY
nlines=len(flux)
if (len(error) != nlines | len(idno) != nlines):
print 'ERROR: Flux, Error, and ID arrays do not have the same number of elements'
#DEFAULT GRID:
#Levesque 2010, HIGH MASS LOSS, CSF 6Myr, n=100 cm^-3
#READ GRID
if 'intergridfile' in kwargs.keys():
gridfile = kwargs['intergridfile']
else:
gridfile = gridfile
grid0 = Table.read(gridfile, format='fits')
id0=grid0['ID'][0]
nlines0 = len(id0)
for i in range (nlines0-1):
'in'+id0[i]+"=where(id0 eq '"+id0[i]+"')"
grid0['ID'] = [np.char.strip(x) for x in grid0['ID']]
ngrid=len(grid0['LOGZ'])
if 'logOHsun' in kwargs.keys():
logOHsun = kwargs['logOHsun']
else:
logOHsun = grid0['LOGOHSUN'][0]
if 'logzprior' in kwargs.keys():
logzprior = kwargs['logzprior']
if 'logqprior' in kwargs.keys():
logqprior = kwargs['logqprior']
#CUT GRID TO LOGZLIMITS AND LOGQLIMITS
try:
logzlimits
except NameError:
logzlimits = [min(grid0['LOGZ']+logOHsun), max(grid0['LOGZ']+logOHsun)]
try:
logqlimits
except NameError:
logqlimits = [min(grid0['LOGQ']), max(grid0['LOGQ'])]
grid0=grid0[np.where((grid0['LOGZ']+logOHsun >= logzlimits[0]) & (grid0['LOGZ']+logOHsun <= logzlimits[1]) &
(grid0['LOGQ'] >= logqlimits[0]) & (grid0['LOGQ'] <= logqlimits[1]))]
#CHANGE LOGZPRIOR TO SOLAR UNITS
#TODO: Why is this a comment?
#logZprior[:,0]=logZprior-logOHsun
#INCLUDE SYSTEMATIC UNCERTAINTY IN THE PHOTO-IONIZATION MODELS
# default is 0.15 dex systematic uncertainty
epsilon2 = epsilon*math.log(10) # convert to scaling factor
#Default number of interpolation steps
nz1 = 50
nq1 = 50
zarr=np.linspace(min(grid0['LOGZ']), max(grid0['LOGZ']), nz1)
qarr=np.linspace(min(grid0['LOGQ']), max(grid0['LOGQ']), nq1)
if (interpolate_flag):
grid, ngrid, zarr, qarr, dlogz, dlogq = grid_interpolate(grid0, method = method, nz1 = nz1, nq1 = nq1)
else:
grid = grid0
ngrid = len(grid['LOGZ'])
zarr = np.unique(grid0['LOGZ'])
qarr = np.unique(grid0['LOGQ'])
nz1 = len(zarr)
nq1 = len(qarr)
dlogz = (zarr[nz1-1]-zarr[0])/(nz1-1)
dlogq = (qarr[nq1-1]-qarr[0])/(nq1-1)
#CREATE DATA STRUCTURE CONTAINING LINE FLUXES AND ESTIMATED PARAMETERS
d = pd.Series({ 'name' : str(name),
'id' : id0,
'flux' : np.zeros(nlines0) -666,
'error' : np.zeros(nlines0) -666,
'chi2' : 0.,
'Zgrid' : 0.,
'eupZgrid' : 0.,
'edownZgrid' : 0.,
'qgrid' : 0.,
'eupqgrid' : 0.,
'edownqgrid' : 0.,
'Zgridmarmod' : 0.,
'eupZgridmarmod' : 0.,
'edownZgridmarmod' : 0.,
'qgridmarmod' : 0.,
'eupqgridmarmod' : 0.,
'edownqgridmarmod' : 0.,
'Zgridmarmean' : 0.,
'eupZgridmarmean' : 0.,
'edownZgridmarmean': 0.,
'qgridmarmean' : 0.,
'eupqgridmarmean' : 0.,
'edownqgridmarmean': 0.,
'zarr' : np.zeros(nz1),
'zpdfmar' : np.zeros(nz1),
'qarr' : np.zeros(nq1),
'qpdfmar' : np.zeros(nq1),
'flag' : [0,0,1,1],
'pdfjoint' : np.zeros([nz1,nq1])
})
grid['ID'] = [np.char.strip(x) for x in grid['ID']]
#FILL STRUCTURE WITH LINE FLUXES
for i in range(nlines):
#auxind=np.where(d.id == idno[i])[0]
auxind = [x for x,item in enumerate(d.id) if idno[i] in item]
if (auxind == 0):
print 'ERROR: ===== Line ID '+idno[i]+'not recognized ====='
d.flux[auxind]=flux[i]
d.error[auxind]=error[i]
# INDEX OF LINES WITH MEASUREMENTS
good = np.where(d.error != -666)[0]
ngood = len(good)
measured = np.where(d.flux != -666)[0]
nmeasured = len(measured)
upperlim = np.where((d.error != -666) & (d.flux == -666))[0]
flag0=np.zeros(nlines0, dtype = float)
if (measured != []):
flag0[measured] = 1 #measured flux
if (upperlim == []):
flag0[upperlim] = 2 #upper limit on flux
flag=flag0[good]
# NORMALIZE LINE FLUXES TO H-BETA OR
# IF ABSENT NORMALIZE TO BRIGHTEST LINE
if not (nonorm):
if print_flag:
print 'Normalizing Fluxes'
idnorm = 'hbeta'
if (d.flux[[x for x,item in enumerate(d.id) if idnorm in item][0]] == -666):
idnorm = (d.id[measured])[np.argsort(d.flux[measured])][::-1][0]
#normalize data
norm = d.flux[[x for x,item in enumerate(d.id) if idnorm in item][0]]
d.flux[measured] = d.flux[measured]/norm
d.error[good] = d.error[good]/norm
#normalize grid
for i in range(ngrid):
norm = grid[i]['FLUX'][[x for x,item in enumerate(grid[i]['ID']) if idnorm in item][0]]
grid[i]['FLUX'] = grid[i]['FLUX']/norm
like=np.ones(ngrid)
post=np.ones(ngrid)
zrange=[min(grid['LOGZ']), max(grid['LOGZ'])]
qrange=[min(grid['LOGQ']), max(grid['LOGQ'])]
for i in range(ngrid):
for j in range(ngood):
#CALCULATE LIKELIHOOD
if (flag[j] == 1): # If measured
normalization = np.sqrt(d.error[good][j]**2+(epsilon2*grid[i]['FLUX'][good][j])**2)
flux_diff = (d.flux[good][j] - grid[i]['FLUX'][good][j])**2
error_quad = (d.error[good][j]**2 + (epsilon2*grid[i]['FLUX'][good][j])**2)
exponent = np.exp(-1.0*flux_diff/(2.0*error_quad))
like[i] = like[i]*1.0/np.sqrt(2.0*3.14)*exponent/normalization
if (flag[j] == 2): # if upper limit
like[i] = like[i]*0.5*( 1 + scipy.special.erf((d.error[good][j] - grid[i]['FLUX'][good][j])/(np.sqrt(d.error[good][j]**2+(epsilon2*grid[i]['FLUX'][good][j])**2)*np.sqrt(2))))
#CALCULATE POSTERIOR BY INCLUDING PRIORS AND NORMALIZING
if (('logzprior' in locals()) == 0) & (('logqprior' in locals()) == 0):
post[i] = uprior(zrange)*uprior(qrange)*like[i]
if (('logzprior' in locals()) == 1) & (('logqprior' in locals()) == 0):
post[i] = userprior(grid['LOGZ'][i], logzprior[:,0], logzprior[:,1])*uprior(qrange)*like[i]
if (('logzprior' in locals()) == 0) & (('logqprior' in locals()) == 1):
post[i] = uprior(zrange)*userprior(grid[i].logq, logqprior[:,0], logqprior[:,1])*like[i]
if (('logzprior' in locals()) == 1) & (('logqprior' in locals()) == 1):
post[i] = userprior(grid[i].logz, logzprior[:,0], logzprior[:,1])*userprior(grid['LOGQ'][i], logqprior[:,0], logqprior[:,1])*like[i]
like[np.where(np.isfinite(like) == 0)]=0
post[np.where(np.isfinite(post) == 0)]=0
goodlike = np.where(np.isfinite(like))[0]
sortlike = like[goodlike][np.argsort(like[goodlike])[::-1]]
sortz = grid['LOGZ'][goodlike][np.argsort(like[goodlike])[::-1]]
sortq = grid['LOGQ'][goodlike][np.argsort(like[goodlike])[::-1]]
sumlike=np.zeros(len(sortlike))
for i in range (len(sortlike)):
sumlike[i]=np.sum(sortlike[:i])/np.sum(sortlike)
goodpost = np.where(np.isfinite(post))[0]
sortpost = (post[goodpost])[np.argsort(post[goodpost])[::-1]]
sortz = np.array(grid['LOGZ'][goodpost][np.argsort(post[goodpost])[::-1]])
sortq = np.array(grid['LOGQ'][goodpost][np.argsort(post[goodpost])[::-1]])
sumpost = np.zeros(len(sortpost))
for i in range(len(sortpost)):
sumpost[i] = np.sum(sortpost[0:i])/np.sum(sortpost)
# CALCULATE BEST FIT METALLICITY, IONIZATION PARAMETER AND ERRORS
post1sig=(sortpost[np.where(sumpost >= 0.683)])#[0]
post2sig=(sortpost[np.where(sumpost >= 0.955)])#[0]
post3sig=(sortpost[np.where(sumpost >= 0.997)])#[0]
like1sig=(sortlike[np.where(sumlike >= 0.683)])#[0]
like2sig=(sortlike[np.where(sumlike >= 0.955)])#[0]
like3sig=(sortlike[np.where(sumlike >= 0.997)])#[0]
d.Zgrid = sortz[0]+logOHsun
d.edownZgrid = sortz[0]-min( list(sortz[np.where(sumpost <= 0.683)]) or [0])
d.eupZgrid = max(list(sortz[np.where(sumpost <= 0.683)]) or [0])-sortz[0]
d.qgrid = sortq[0]
d.edownqgrid = sortq[0]-min(list(sortq[np.where(sumpost <= 0.683)]) or [0])
d.eupqgrid = max(list(sortq[np.where(sumpost <= 0.683)]) or [0])-sortq[0]
# COMPUTE chi2
bestgrid = np.where((grid['LOGZ'] == sortz[0]) & (grid['LOGQ'] == sortq[0]))[0][0]
fobs = d.flux[np.where(d.flux != -666)[0]]
eobs = d.error[np.where(d.flux != -666)[0]]
fmod = grid['FLUX'][bestgrid][np.where(d.flux != -666)[0]]
emod = epsilon2*fmod
d.chi2 = np.sum((fobs-fmod)**2/(eobs**2+emod**2))/len(fobs)
# posterior for Z, marginalizing over q
postz = np.zeros(nz1, dtype = np.float64)
for j in range(nz1):
postz[j] = idl_tabulate(sortq[np.where(sortz==zarr[j])[0]],sortpost[np.where(sortz==zarr[j])[0]])
postz = postz/np.sum(postz)
sumpostz = np.zeros(len(postz))
sumpz = 0
for i in range(nz1):
sumpz += postz[i]
sumpostz[i] += sumpz
d.Zgridmarmod = zarr[np.where(postz == max(postz))[0]] + logOHsun # max of PDF
d.Zgridmarmean = np.sum(zarr*postz)/np.sum(postz) + logOHsun # first moment of PDF
if len(np.where(sumpostz >= (1.0-0.683)/2.0)[0]) != 0:
d.edownZgridmarmod = d.Zgrid - logOHsun - zarr[np.where(sumpostz >= (1.0-0.683)/2.0)[0][0]]
d.eupZgridmarmod = zarr[np.where(sumpostz >= (1.0-(1.0-0.683)/2.0))[0][0]] - d.Zgrid + logOHsun
d.edownZgridmarmean = d.Zgrid - logOHsun - zarr[np.where(sumpostz >= (1.0-0.683)/2.0)[0][0]]
d.eupZgridmarmean = zarr[np.where(sumpostz >= (1.0-(1.0-0.683)/2.0))[0][0]] - d.Zgrid + logOHsun
else:
d.edownZgridmarmod = d.eupZgridmarmod = d.edownZgridmarmean = d.eupZgridmarmean = 0
#posterior for q, marginalizing over Z
postq = np.zeros(nq1)
for j in range(nq1):
postq[j] = idl_tabulate(sortz[np.where(sortq == qarr[j])[0]], sortpost[np.where(sortq == qarr[j])[0]])
postq = postq/np.sum(postq)
sumpostq = np.zeros(len(postq))
sumpq = 0
for i in range(nq1):
sumpq += postq[i]
sumpostq[i] = sumpq
d.qgridmarmod = qarr[np.where(postq == max(postq))[0]] #MAx of PDF
d.qgridmarmean = np.sum(qarr*postq)/np.sum(postq) # first moment of PDF
if len(np.where(sumpostz >= (1.0-0.683)/2.0)[0]) != 0:
d.edownqgridmarmod = d.qgrid - qarr[np.where(sumpostq >= ((1.0-0.683)/2.0))[0][0]]
d.eupqgridmarmod = qarr[np.where(sumpostq >= (1.0-(1.0-0.683)/2.0))[0][0]] - d.qgrid
d.edownqgridmarmean = d.qgrid - qarr[np.where(sumpostq >= ((1.0-0.683)/2.0))[0][0]]
d.eupqgridmarmean = qarr[np.where(sumpostq >= (1.0-(1.0-0.683)/2.0))[0][0]] - d.qgrid
else:
d.edownqgridmarmod = d.eupqgridmarmod = d.edownqgridmarmean = d.eupqgridmarmean = 0
# WRITE MARGINALIZED PDFS
d.zarr=zarr+logOHsun
d.zpdfmar=postz
d.qarr=qarr
d.qpdfmar=postq
# Set FLAGS to warn bout multiple peaks and lower/upper limits
dzpdf=np.gradient(postz)
ddzpdf=np.gradient(dzpdf)
auxpeak = np.zeros(nz1, dtype=np.int)
for i in range (nz1-1):
if ((dzpdf[i] > 0) & (dzpdf[i+1] < 0) & (ddzpdf[i] < 0)):
auxpeak[i] = 1
zpeaks=np.where(auxpeak == 1)[0]
d.flag[0]=len(zpeaks)
dqpdf=np.gradient(postq)
ddqpdf=np.gradient(dqpdf)
auxpeak = np.zeros(nq1, dtype=np.int)
for i in range (nq1-1):
if ((dqpdf[i] > 0) & (dqpdf[i+1] < 0) & (ddqpdf[i] < 0)):
auxpeak[i] = 1
qpeaks=np.where(auxpeak == 1)[0]
d.flag[1]=len(qpeaks)
if (max(postz[0:1]) > 0.5*max(postz)):
d.flag[2]=2
if (max(postz[nz1-2:nz1-1]) > 0.5*max(postz)):
d.flag[2]=3
if ((max(postz[0:1]) > 0.5*max(postz)) & (max(postz[nz1-2:nz1-1]) > 0.5*max(postz))):
d.flag[2]=0
if (max(postq[0:1]) > 0.5*max(postq)):
d.flag[3]=2
if (max(postq[nq1-2:nq1-1]) > 0.5*max(postq)):
d.flag[3]=3
if ((max(postq[0:1]) > 0.5*max(postq)) & (max(postq[nq1-2:nq1-1]) > 0.5*max(postq))):
d.flag[3]=0
if print_flag:
print '===== BEST FIT FROM JOINT PDF MODE ====='
print '===== Z =====', d.Zgrid, d.edownZgrid, d.eupZgrid, d.Zgrid-d.edownZgrid, d.Zgrid+d.eupZgrid
print '===== q =====', d.qgrid, d.edownqgrid, d.eupqgrid, d.qgrid-d.edownqgrid, d.qgrid+d.eupqgrid
c=2.99792458e10 # cm/s
print '=== U=q/c ===', d.qgrid-np.log10(c), d.edownqgrid, d.eupqgrid, d.qgrid-np.log10(c)-d.edownqgrid, d.qgrid-np.log10(c)+d.eupqgrid
print '================ FLAGS ====================='
print d.flag
print '============================================'
# PLOT RESULTS
if sys.platform == 'linux2':
directory = '/afs/cas.unc.edu/users/m/u/mugpol/Documents/IZI/izi/izi_plots/'+str(d['name'])
else:
directory = 'C:/Users/mugdhapolimera/Desktop/UNC/Courses/Research/Codes/izi/izi_plots/'+str(d['name'])
if not os.path.exists(directory):
os.makedirs(directory)
os.chdir(directory)
if (np.sum(post) == 0. or np.sum(like) == 0.):
print 'stopped'
#return d
else:
izi_plots.izi_pdf(d = d, grid = grid, postz = postz, postq = postq, post = post, like = like, plot_flag = plot_flag)
izi_plots.zratios_plots(grid = grid, grid0 = grid0, d = d, flag0 = flag0, plot_flag = plot_flag)
izi_plots.qratios_plots(grid = grid, grid0 = grid0, d = d, flag0 = flag0, plot_flag = plot_flag)
return d