-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
753 lines (698 loc) · 31.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
from __future__ import print_function
import os
import sys
import math
import pickle
import pdb
import argparse
import random
from tqdm import tqdm
from shutil import copy
import torch
from torch import nn, optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
import numpy as np
import scipy.io
from scipy.linalg import qr
import igraph
from random import shuffle
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from util import *
from models import *
from bayesian_optimization.evaluate_BN import Eval_BN
parser = argparse.ArgumentParser(description='Train Variational Autoencoders for DAGs')
# general settings
parser.add_argument('--data-type', default='ENAS',
help='ENAS: ENAS-format CNN structures; BN: Bayesian networks')
parser.add_argument('--data-name', default='final_structures6', help='graph dataset name')
parser.add_argument('--nvt', type=int, default=6, help='number of different node types, \
6 for final_structures6, 8 for asia_200k')
parser.add_argument('--save-appendix', default='',
help='what to append to data-name as save-name for results')
parser.add_argument('--save-interval', type=int, default=100, metavar='N',
help='how many epochs to wait each time to save model states')
parser.add_argument('--sample-number', type=int, default=20, metavar='N',
help='how many samples to generate each time')
parser.add_argument('--no-test', action='store_true', default=False,
help='if True, merge test with train, i.e., no held-out set')
parser.add_argument('--reprocess', action='store_true', default=False,
help='if True, reprocess data instead of using prestored .pkl data')
parser.add_argument('--keep-old', action='store_true', default=False,
help='if True, do not remove any old data in the result folder')
parser.add_argument('--only-test', action='store_true', default=False,
help='if True, perform some experiments without training the model')
parser.add_argument('--small-train', action='store_true', default=False,
help='if True, use a smaller version of train set')
# model settings
parser.add_argument('--model', default='DVAE', help='model to use: DVAE, SVAE, \
DVAE_fast, DVAE_BN, SVAE_oneshot, DVAE_GCN')
parser.add_argument('--load-latest-model', action='store_true', default=False,
help='whether to load latest_model.pth')
parser.add_argument('--continue-from', type=int, default=None,
help="from which epoch's checkpoint to continue training")
parser.add_argument('--hs', type=int, default=501, metavar='N',
help='hidden size of GRUs')
parser.add_argument('--nz', type=int, default=56, metavar='N',
help='number of dimensions of latent vectors z')
parser.add_argument('--bidirectional', action='store_true', default=False,
help='whether to use bidirectional encoding')
parser.add_argument('--predictor', action='store_true', default=False,
help='whether to train a performance predictor from latent\
encodings and a VAE at the same time')
# optimization settings
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: 1e-4)')
parser.add_argument('--epochs', type=int, default=100000, metavar='N',
help='number of epochs to train')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='batch size during training')
parser.add_argument('--infer-batch-size', type=int, default=128, metavar='N',
help='batch size during inference')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--all-gpus', action='store_true', default=False,
help='use all available GPUs')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
np.random.seed(args.seed)
random.seed(args.seed)
print(args)
'''Prepare data'''
args.file_dir = os.path.dirname(os.path.realpath('__file__'))
args.res_dir = os.path.join(args.file_dir, 'results/{}{}'.format(args.data_name,
args.save_appendix))
if not os.path.exists(args.res_dir):
os.makedirs(args.res_dir)
pkl_name = os.path.join(args.res_dir, args.data_name + '.pkl')
# check whether to load pre-stored pickle data
if os.path.isfile(pkl_name) and not args.reprocess:
with open(pkl_name, 'rb') as f:
train_data, test_data, graph_args = pickle.load(f)
# otherwise process the raw data and save to .pkl
else:
# determine data formats according to models, DVAE: igraph, SVAE: string (as tensors)
if args.model.startswith('DVAE'):
input_fmt = 'igraph'
elif args.model.startswith('SVAE'):
input_fmt = 'string'
if args.data_type == 'ENAS':
train_data, test_data, graph_args = load_ENAS_graphs(args.data_name, n_types=args.nvt,
fmt=input_fmt)
elif args.data_type == 'BN':
train_data, test_data, graph_args = load_BN_graphs(args.data_name, n_types=args.nvt,
fmt=input_fmt)
with open(pkl_name, 'wb') as f:
pickle.dump((train_data, test_data, graph_args), f)
# delete old files in the result directory
remove_list = [f for f in os.listdir(args.res_dir) if not f.endswith(".pkl") and
not f.startswith('train_graph') and not f.startswith('test_graph') and
not f.endswith('.pth')]
for f in remove_list:
tmp = os.path.join(args.res_dir, f)
if not os.path.isdir(tmp) and not args.keep_old:
os.remove(tmp)
if not args.keep_old:
# backup current .py files
copy('train.py', args.res_dir)
copy('models.py', args.res_dir)
copy('util.py', args.res_dir)
# save command line input
cmd_input = 'python ' + ' '.join(sys.argv) + '\n'
with open(os.path.join(args.res_dir, 'cmd_input.txt'), 'a') as f:
f.write(cmd_input)
print('Command line input: ' + cmd_input + ' is saved.')
# construct train data
if args.no_test:
train_data = train_data + test_data
if args.small_train:
train_data = train_data[:100]
'''Prepare the model'''
# model
model = eval(args.model)(
graph_args.max_n,
graph_args.num_vertex_type,
graph_args.START_TYPE,
graph_args.END_TYPE,
hs=args.hs,
nz=args.nz,
bidirectional=args.bidirectional
)
if args.predictor:
predictor = nn.Sequential(
nn.Linear(args.nz, args.hs),
nn.Tanh(),
nn.Linear(args.hs, 1)
)
model.predictor = predictor
model.mseloss = nn.MSELoss(reduction='sum')
# optimizer and scheduler
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.1, patience=10, verbose=True)
model.to(device)
if args.all_gpus:
net = custom_DataParallel(model, device_ids=range(torch.cuda.device_count()))
if args.load_latest_model:
load_module_state(model, os.path.join(args.res_dir, 'latest_model.pth'))
else:
if args.continue_from is not None:
epoch = args.continue_from
load_module_state(model, os.path.join(args.res_dir,
'model_checkpoint{}.pth'.format(epoch)))
load_module_state(optimizer, os.path.join(args.res_dir,
'optimizer_checkpoint{}.pth'.format(epoch)))
load_module_state(scheduler, os.path.join(args.res_dir,
'scheduler_checkpoint{}.pth'.format(epoch)))
# plot sample train/test graphs
if not os.path.exists(os.path.join(args.res_dir, 'train_graph_id0.pdf')) or args.reprocess:
if not args.keep_old:
for data in ['train_data', 'test_data']:
G = [g for g, y in eval(data)[:10]]
if args.model.startswith('SVAE'):
G = [g.to(device) for g in G]
G = model._collate_fn(G)
G = model.construct_igraph(G[:, :, :model.nvt], G[:, :, model.nvt:], False)
for i, g in enumerate(G):
name = '{}_graph_id{}'.format(data[:-5], i)
plot_DAG(g, args.res_dir, name, data_type=args.data_type)
'''Define some train/test functions'''
def train(epoch):
model.train()
train_loss = 0
recon_loss = 0
kld_loss = 0
pred_loss = 0
shuffle(train_data)
pbar = tqdm(train_data)
g_batch = []
y_batch = []
for i, (g, y) in enumerate(pbar):
if args.model.startswith('SVAE'): # for SVAE, g is tensor
g = g.to(device)
g_batch.append(g)
y_batch.append(y)
if len(g_batch) == args.batch_size or i == len(train_data) - 1:
optimizer.zero_grad()
g_batch = model._collate_fn(g_batch)
if args.all_gpus: # does not support predictor yet
loss = net(g_batch).sum()
pbar.set_description('Epoch: %d, loss: %0.4f' % (epoch, loss.item()/len(g_batch)))
recon, kld = 0, 0
else:
mu, logvar = model.encode(g_batch)
loss, recon, kld = model.loss(mu, logvar, g_batch)
if args.predictor:
y_batch = torch.FloatTensor(y_batch).unsqueeze(1).to(device)
y_pred = model.predictor(mu)
pred = model.mseloss(y_pred, y_batch)
loss += pred
pbar.set_description('Epoch: %d, loss: %0.4f, recon: %0.4f, kld: %0.4f, pred: %0.4f'\
% (epoch, loss.item()/len(g_batch), recon.item()/len(g_batch),
kld.item()/len(g_batch), pred/len(g_batch)))
else:
pbar.set_description('Epoch: %d, loss: %0.4f, recon: %0.4f, kld: %0.4f' % (
epoch, loss.item()/len(g_batch), recon.item()/len(g_batch),
kld.item()/len(g_batch)))
loss.backward()
train_loss += float(loss)
recon_loss += float(recon)
kld_loss += float(kld)
if args.predictor:
pred_loss += float(pred)
optimizer.step()
g_batch = []
y_batch = []
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_data)))
if args.predictor:
return train_loss, recon_loss, kld_loss, pred_loss
return train_loss, recon_loss, kld_loss
def visualize_recon(epoch):
model.eval()
# draw some reconstructed train/test graphs to visualize recon quality
for i, (g, y) in enumerate(test_data[:10]+train_data[:10]):
if args.model.startswith('SVAE'):
g = g.to(device)
g = model._collate_fn(g)
g_recon = model.encode_decode(g)[0]
g = model.construct_igraph(g[:, :, :model.nvt], g[:, :, model.nvt:], False)[0]
elif args.model.startswith('DVAE'):
g_recon = model.encode_decode(g)[0]
name0 = 'graph_epoch{}_id{}_original'.format(epoch, i)
plot_DAG(g, args.res_dir, name0, data_type=args.data_type)
name1 = 'graph_epoch{}_id{}_recon'.format(epoch, i)
plot_DAG(g_recon, args.res_dir, name1, data_type=args.data_type)
def test():
# test recon accuracy
model.eval()
encode_times = 10
decode_times = 10
Nll = 0
pred_loss = 0
n_perfect = 0
print('Testing begins...')
pbar = tqdm(test_data)
g_batch = []
y_batch = []
for i, (g, y) in enumerate(pbar):
if args.model.startswith('SVAE'):
g = g.to(device)
g_batch.append(g)
y_batch.append(y)
if len(g_batch) == args.infer_batch_size or i == len(test_data) - 1:
g = model._collate_fn(g_batch)
mu, logvar = model.encode(g)
_, nll, _ = model.loss(mu, logvar, g)
pbar.set_description('nll: {:.4f}'.format(nll.item()/len(g_batch)))
Nll += nll.item()
if args.predictor:
y_batch = torch.FloatTensor(y_batch).unsqueeze(1).to(device)
y_pred = model.predictor(mu)
pred = model.mseloss(y_pred, y_batch)
pred_loss += pred.item()
# construct igraph g from tensor g to check recon quality
if args.model.startswith('SVAE'):
g = model.construct_igraph(g[:, :, :model.nvt], g[:, :, model.nvt:], False)
for _ in range(encode_times):
z = model.reparameterize(mu, logvar)
for _ in range(decode_times):
g_recon = model.decode(z)
n_perfect += sum(is_same_DAG(g0, g1) for g0, g1 in zip(g, g_recon))
g_batch = []
y_batch = []
Nll /= len(test_data)
pred_loss /= len(test_data)
pred_rmse = math.sqrt(pred_loss)
acc = n_perfect / (len(test_data) * encode_times * decode_times)
if args.predictor:
print('Test average recon loss: {0}, recon accuracy: {1:.4f}, pred rmse: {2:.4f}'.format(
Nll, acc, pred_rmse))
return Nll, acc, pred_rmse
else:
print('Test average recon loss: {0}, recon accuracy: {1:.4f}'.format(Nll, acc))
return Nll, acc
def prior_validity(scale_to_train_range=False):
if scale_to_train_range:
Z_train, Y_train = extract_latent(train_data)
z_mean, z_std = Z_train.mean(0), Z_train.std(0)
z_mean, z_std = torch.FloatTensor(z_mean).to(device), torch.FloatTensor(z_std).to(device)
n_latent_points = 1000
decode_times = 10
n_valid = 0
print('Prior validity experiment begins...')
G = []
G_valid = []
G_train = [g for g, y in train_data]
if args.model.startswith('SVAE'):
G_train = [g.to(device) for g in G_train]
G_train = model._collate_fn(G_train)
G_train = model.construct_igraph(G_train[:, :, :model.nvt], G_train[:, :, model.nvt:], False)
pbar = tqdm(range(n_latent_points))
cnt = 0
for i in pbar:
cnt += 1
if cnt == args.infer_batch_size or i == n_latent_points - 1:
z = torch.randn(cnt, model.nz).to(model.get_device())
if scale_to_train_range:
z = z * z_std + z_mean # move to train's latent range
for j in range(decode_times):
g_batch = model.decode(z)
G.extend(g_batch)
if args.data_type == 'ENAS':
for g in g_batch:
if is_valid_ENAS(g, graph_args.START_TYPE, graph_args.END_TYPE):
n_valid += 1
G_valid.append(g)
elif args.data_type == 'BN':
for g in g_batch:
if is_valid_BN(g, graph_args.START_TYPE, graph_args.END_TYPE):
n_valid += 1
G_valid.append(g)
cnt = 0
r_valid = n_valid / (n_latent_points * decode_times)
print('Ratio of valid decodings from the prior: {:.4f}'.format(r_valid))
G_valid_str = [decode_igraph_to_ENAS(g) for g in G_valid]
r_unique = len(set(G_valid_str)) / len(G_valid_str) if len(G_valid_str)!=0 else 0.0
print('Ratio of unique decodings from the prior: {:.4f}'.format(r_unique))
r_novel = 1 - ratio_same_DAG(G_train, G_valid)
print('Ratio of novel graphs out of training data: {:.4f}'.format(r_novel))
return r_valid, r_unique, r_novel
def extract_latent(data):
model.eval()
Z = []
Y = []
g_batch = []
for i, (g, y) in enumerate(tqdm(data)):
if args.model.startswith('SVAE'):
g_ = g.to(device)
elif args.model.startswith('DVAE'):
# copy igraph
# otherwise original igraphs will save the H states and consume more GPU memory
g_ = g.copy()
g_batch.append(g_)
if len(g_batch) == args.infer_batch_size or i == len(data) - 1:
g_batch = model._collate_fn(g_batch)
mu, _ = model.encode(g_batch)
mu = mu.cpu().detach().numpy()
Z.append(mu)
g_batch = []
Y.append(y)
return np.concatenate(Z, 0), np.array(Y)
'''Extract latent representations Z'''
def save_latent_representations(epoch):
Z_train, Y_train = extract_latent(train_data)
Z_test, Y_test = extract_latent(test_data)
latent_pkl_name = os.path.join(args.res_dir, args.data_name +
'_latent_epoch{}.pkl'.format(epoch))
latent_mat_name = os.path.join(args.res_dir, args.data_name +
'_latent_epoch{}.mat'.format(epoch))
with open(latent_pkl_name, 'wb') as f:
pickle.dump((Z_train, Y_train, Z_test, Y_test), f)
print('Saved latent representations to ' + latent_pkl_name)
scipy.io.savemat(latent_mat_name,
mdict={
'Z_train': Z_train,
'Z_test': Z_test,
'Y_train': Y_train,
'Y_test': Y_test
}
)
def interpolation_exp(epoch, num=5):
print('Interpolation experiments between two random testing graphs')
interpolation_res_dir = os.path.join(args.res_dir, 'interpolation')
if not os.path.exists(interpolation_res_dir):
os.makedirs(interpolation_res_dir)
if args.data_type == 'BN':
eva = Eval_BN(interpolation_res_dir)
interpolate_number = 10
model.eval()
cnt = 0
for i in range(0, len(test_data), 2):
cnt += 1
(g0, _), (g1, _) = test_data[i], test_data[i+1]
if args.model.startswith('SVAE'):
g0 = g0.to(device)
g1 = g1.to(device)
g0 = model._collate_fn([g0])
g1 = model._collate_fn([g1])
z0, _ = model.encode(g0)
z1, _ = model.encode(g1)
print('norm of z0: {}, norm of z1: {}'.format(torch.norm(z0), torch.norm(z1)))
print('distance between z0 and z1: {}'.format(torch.norm(z0-z1)))
Z = [] # to store all the interpolation points
for j in range(0, interpolate_number + 1):
zj = z0 + (z1 - z0) / interpolate_number * j
Z.append(zj)
Z = torch.cat(Z, 0)
# decode many times and select the most common one
G, G_str = decode_from_latent_space(Z, model, return_igraph=True,
data_type=args.data_type)
names = []
scores = []
for j in range(0, interpolate_number + 1):
namej = 'graph_interpolate_{}_{}_of_{}'.format(i, j, interpolate_number)
namej = plot_DAG(G[j], interpolation_res_dir, namej, backbone=True,
data_type=args.data_type)
names.append(namej)
if args.data_type == 'BN':
scorej = eva.eval(G_str[j])
scores.append(scorej)
fig = plt.figure(figsize=(120, 20))
for j, namej in enumerate(names):
imgj = mpimg.imread(namej)
fig.add_subplot(1, interpolate_number + 1, j + 1)
plt.imshow(imgj)
if args.data_type == 'BN':
plt.title('{}'.format(scores[j]), fontsize=40)
plt.axis('off')
plt.savefig(os.path.join(args.res_dir,
args.data_name + '_{}_interpolate_exp_ensemble_epoch{}_{}.pdf'.format(
args.model, epoch, i)), bbox_inches='tight')
'''
# draw figures with the same height
new_name = os.path.join(args.res_dir, args.data_name +
'_{}_interpolate_exp_ensemble_{}.pdf'.format(args.model, i))
combine_figs_horizontally(names, new_name)
'''
if cnt == num:
break
def interpolation_exp2(epoch):
if args.data_type != 'ENAS':
return
print('Interpolation experiments between flat-net and dense-net')
interpolation_res_dir = os.path.join(args.res_dir, 'interpolation2')
if not os.path.exists(interpolation_res_dir):
os.makedirs(interpolation_res_dir)
interpolate_number = 10
model.eval()
n = graph_args.max_n
g0 = [[1]+[0]*(i-1) for i in range(1, n-1)] # this is flat-net
g1 = [[1]+[1]*(i-1) for i in range(1, n-1)] # this is dense-net
if args.model.startswith('SVAE'):
g0, _ = decode_ENAS_to_tensor(str(g0), n_types=6)
g1, _ = decode_ENAS_to_tensor(str(g1), n_types=6)
g0 = g0.to(device)
g1 = g1.to(device)
g0 = model._collate_fn([g0])
g1 = model._collate_fn([g1])
elif args.model.startswith('DVAE'):
g0, _ = decode_ENAS_to_igraph(str(g0))
g1, _ = decode_ENAS_to_igraph(str(g1))
z0, _ = model.encode(g0)
z1, _ = model.encode(g1)
print('norm of z0: {}, norm of z1: {}'.format(torch.norm(z0), torch.norm(z1)))
print('distance between z0 and z1: {}'.format(torch.norm(z0-z1)))
Z = [] # to store all the interpolation points
for j in range(0, interpolate_number + 1):
zj = z0 + (z1 - z0) / interpolate_number * j
Z.append(zj)
Z = torch.cat(Z, 0)
# decode many times and select the most common one
G, _ = decode_from_latent_space(Z, model, return_igraph=True, data_type=args.data_type)
names = []
for j in range(0, interpolate_number + 1):
namej = 'graph_interpolate_{}_of_{}'.format(j, interpolate_number)
namej = plot_DAG(G[j], interpolation_res_dir, namej, backbone=True,
data_type=args.data_type)
names.append(namej)
fig = plt.figure(figsize=(120, 20))
for j, namej in enumerate(names):
imgj = mpimg.imread(namej)
fig.add_subplot(1, interpolate_number + 1, j + 1)
plt.imshow(imgj)
plt.axis('off')
plt.savefig(os.path.join(args.res_dir,
args.data_name + '_{}_interpolate_exp2_ensemble_epoch{}.pdf'.format(
args.model, epoch)), bbox_inches='tight')
def interpolation_exp3(epoch):
if args.data_type != 'ENAS':
return
print('Interpolation experiments around a great circle')
interpolation_res_dir = os.path.join(args.res_dir, 'interpolation3')
if not os.path.exists(interpolation_res_dir):
os.makedirs(interpolation_res_dir)
interpolate_number = 36
model.eval()
n = graph_args.max_n
g0 = [[1]+[0]*(i-1) for i in range(1, n-1)] # this is flat-net
if args.model.startswith('SVAE'):
g0, _ = decode_ENAS_to_tensor(str(g0), n_types=6)
g0 = g0.to(device)
g0 = model._collate_fn([g0])
elif args.model.startswith('DVAE'):
g0, _ = decode_ENAS_to_igraph(str(g0))
z0, _ = model.encode(g0)
norm0 = torch.norm(z0)
z1 = torch.ones_like(z0)
# there are infinite possible directions that are orthogonal to z0,
# we just randomly pick one from a finite set
dim_to_change = random.randint(0, z0.shape[1]-1) # this to get different great circles
print(dim_to_change)
z1[0, dim_to_change] = -(z0[0, :].sum() - z0[0, dim_to_change]) / z0[0, dim_to_change]
z1 = z1 / torch.norm(z1) * norm0
print('z0: ', z0, 'z1: ', z1, 'dot product: ', (z0 * z1).sum().item())
print('norm of z0: {}, norm of z1: {}'.format(norm0, torch.norm(z1)))
print('distance between z0 and z1: {}'.format(torch.norm(z0-z1)))
omega = torch.acos(torch.dot(z0.flatten(), z1.flatten()))
print('angle between z0 and z1: {}'.format(omega))
Z = [] # to store all the interpolation points
for j in range(0, interpolate_number + 1):
theta = 2*math.pi / interpolate_number * j
zj = z0 * np.cos(theta) + z1 * np.sin(theta)
Z.append(zj)
Z = torch.cat(Z, 0)
# decode many times and select the most common one
G, _ = decode_from_latent_space(Z, model, return_igraph=True, data_type=args.data_type)
names = []
for j in range(0, interpolate_number + 1):
namej = 'graph_interpolate_{}_of_{}'.format(j, interpolate_number)
namej = plot_DAG(G[j], interpolation_res_dir, namej, backbone=True,
data_type=args.data_type)
names.append(namej)
# draw figures with the same height
new_name = os.path.join(args.res_dir, args.data_name +
'_{}_interpolate_exp3_ensemble_epoch{}.pdf'.format(args.model, epoch))
combine_figs_horizontally(names, new_name)
def smoothness_exp(epoch, gap=0.05):
print('Smoothness experiments around a latent vector')
smoothness_res_dir = os.path.join(args.res_dir, 'smoothness')
if not os.path.exists(smoothness_res_dir):
os.makedirs(smoothness_res_dir)
#z0 = torch.zeros(1, model.nz).to(device) # use all-zero vector as center
if args.data_type == 'ENAS':
g_str = '4 4 0 3 0 0 5 0 0 1 2 0 0 0 0 5 0 0 0 1 0' # a 6-layer network
row = [int(x) for x in g_str.split()]
row = flat_ENAS_to_nested(row, model.max_n-2)
if args.model.startswith('SVAE'):
g0, _ = decode_ENAS_to_tensor(row, n_types=model.max_n-2)
g0 = g0.to(device)
g0 = model._collate_fn([g0])
elif args.model.startswith('DVAE'):
g0, _ = decode_ENAS_to_igraph(row)
elif args.data_type == 'BN':
g0 = train_data[20][0]
if args.model.startswith('SVAE'):
g0 = g0.to(device)
g0 = model._collate_fn([g0])
z0, _ = model.encode(g0)
# select two orthogonal directions in latent space
tmp = np.random.randn(z0.shape[1], z0.shape[1])
Q, R = qr(tmp)
dir1 = torch.FloatTensor(tmp[0:1, :]).to(device)
dir2 = torch.FloatTensor(tmp[1:2, :]).to(device)
# generate architectures along two orthogonal directions
grid_size = 13
grid_size = 9
mid = grid_size // 2
Z = []
pbar = tqdm(range(grid_size ** 2))
for idx in pbar:
i, j = divmod(idx, grid_size)
zij = z0 + dir1 * (i - mid) * gap + dir2 * (j - mid) * gap
Z.append(zij)
Z = torch.cat(Z, 0)
if True:
G, _ = decode_from_latent_space(Z, model, return_igraph=True, data_type=args.data_type)
else: # decode by 3 batches in case of GPU out of memory
Z0, Z1, Z2 = Z[:len(Z)//3, :], Z[len(Z)//3:len(Z)//3*2, :], Z[len(Z)//3*2:, :]
G = []
G += decode_from_latent_space(Z0, model, return_igraph=True, data_type=args.data_type)[0]
G += decode_from_latent_space(Z1, model, return_igraph=True, data_type=args.data_type)[0]
G += decode_from_latent_space(Z2, model, return_igraph=True, data_type=args.data_type)[0]
names = []
for idx in pbar:
i, j = divmod(idx, grid_size)
pbar.set_description('Drawing row {}/{}, col {}/{}...'.format(i+1,
grid_size, j+1, grid_size))
nameij = 'graph_smoothness{}_{}'.format(i, j)
nameij = plot_DAG(G[idx], smoothness_res_dir, nameij, data_type=args.data_type)
names.append(nameij)
#fig = plt.figure(figsize=(200, 200))
if args.data_type == 'ENAS':
fig = plt.figure(figsize=(50, 50))
elif args.data_type == 'BN':
fig = plt.figure(figsize=(30, 30))
nrow, ncol = grid_size, grid_size
for ij, nameij in enumerate(names):
imgij = mpimg.imread(nameij)
fig.add_subplot(nrow, ncol, ij + 1)
plt.imshow(imgij)
plt.axis('off')
plt.rcParams["axes.edgecolor"] = "black"
plt.rcParams["axes.linewidth"] = 1
plt.savefig(os.path.join(args.res_dir,
args.data_name + '_{}_smoothness_ensemble_epoch{}_gap={}_small.pdf'.format(
args.model, epoch, gap)), bbox_inches='tight')
'''Training begins here'''
min_loss = math.inf # >= python 3.5
min_loss_epoch = None
loss_name = os.path.join(args.res_dir, 'train_loss.txt')
loss_plot_name = os.path.join(args.res_dir, 'train_loss_plot.pdf')
test_results_name = os.path.join(args.res_dir, 'test_results.txt')
if os.path.exists(loss_name) and not args.keep_old:
os.remove(loss_name)
if args.only_test:
epoch = args.continue_from
#sampled = model.generate_sample(args.sample_number)
#save_latent_representations(epoch)
visualize_recon(300)
#interpolation_exp2(epoch)
#interpolation_exp3(epoch)
#prior_validity(True)
#test()
#smoothness_exp(epoch, 0.1)
#smoothness_exp(epoch, 0.05)
#interpolation_exp(epoch)
pdb.set_trace()
start_epoch = args.continue_from if args.continue_from is not None else 0
for epoch in range(start_epoch + 1, args.epochs + 1):
if args.predictor:
train_loss, recon_loss, kld_loss, pred_loss = train(epoch)
else:
train_loss, recon_loss, kld_loss = train(epoch)
pred_loss = 0.0
with open(loss_name, 'a') as loss_file:
loss_file.write("{:.2f} {:.2f} {:.2f} {:.2f}\n".format(
train_loss/len(train_data),
recon_loss/len(train_data),
kld_loss/len(train_data),
pred_loss/len(train_data),
))
scheduler.step(train_loss)
if epoch % args.save_interval == 0:
print("save current model...")
model_name = os.path.join(args.res_dir, 'model_checkpoint{}.pth'.format(epoch))
optimizer_name = os.path.join(args.res_dir, 'optimizer_checkpoint{}.pth'.format(epoch))
scheduler_name = os.path.join(args.res_dir, 'scheduler_checkpoint{}.pth'.format(epoch))
torch.save(model.state_dict(), model_name)
torch.save(optimizer.state_dict(), optimizer_name)
torch.save(scheduler.state_dict(), scheduler_name)
print("visualize reconstruction examples...")
visualize_recon(epoch)
print("extract latent representations...")
save_latent_representations(epoch)
print("sample from prior...")
sampled = model.generate_sample(args.sample_number)
for i, g in enumerate(sampled):
namei = 'graph_{}_sample{}'.format(epoch, i)
plot_DAG(g, args.res_dir, namei, data_type=args.data_type)
print("plot train loss...")
losses = np.loadtxt(loss_name)
if losses.ndim == 1:
continue
fig = plt.figure()
num_points = losses.shape[0]
plt.plot(range(1, num_points+1), losses[:, 0], label='Total')
plt.plot(range(1, num_points+1), losses[:, 1], label='Recon')
plt.plot(range(1, num_points+1), losses[:, 2], label='KLD')
plt.plot(range(1, num_points+1), losses[:, 3], label='Pred')
plt.xlabel('Epoch')
plt.ylabel('Train loss')
plt.legend()
plt.savefig(loss_plot_name)
'''Testing begins here'''
if args.predictor:
Nll, acc, pred_rmse = test()
else:
Nll, acc = test()
pred_rmse = 0
r_valid, r_unique, r_novel = prior_validity(True)
with open(test_results_name, 'a') as result_file:
result_file.write("Epoch {} Test recon loss: {} recon acc: {:.4f} r_valid: {:.4f}".format(
epoch, Nll, acc, r_valid) +
" r_unique: {:.4f} r_novel: {:.4f} pred_rmse: {:.4f}\n".format(
r_unique, r_novel, pred_rmse))
interpolation_exp2(epoch)
smoothness_exp(epoch)
interpolation_exp3(epoch)
pdb.set_trace()