-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.py
172 lines (151 loc) · 6.31 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from copy import deepcopy
class matrix(object):
def __init__(self,a): #defining matrix
for i in range(len(a)):
if len(a[i])!=len(a[0]):
raise ValueError("Number of elements not uniform")
self.a=list(a)
self.__reduce__()
def setvalue(self,b,x,y): # b: value,x=row position,y:column postition
self.a[x][y]=b
def mat_getlist(self): #get the list form for matrix
return self.a
def lenrow(self,):
return len(self.a[0])
def lencolumn(self,):
return len(self.a)
def add_row(self,e,x): # to add a new row in matrix
if len(e)!=len(self.a[0]):
raise ValueError("Number of elements not uniform")
self.a.insert(x,e)
def add_column(self,e,y): #to add new column
if len(self.a)!=len(e):
raise ValueError("Number of elements not unifrom")
for i in range(len(self.a)):
self.a[i].insert(y,e[i])
def is_square(self):
if len(self.a)==len(self.a[0]):
return True
else:
return False
def transpose(self):
res=matrix([[0 for j in range(len(self.a))] for i in range(len(self.a[0]))])
#print(res)
for i in range(len(self.a)):
for j in range(len(self.a[i])):
#print(i,j)
res.a[j][i]=self.a[i][j]
return res
def __add__(self,rmat): #special function for defining addition
c=rmat.mat_getlist()
b=self.mat_getlist()
res= [[0 for j in range(len(c[i]))] for i in range(len(c))]
for i in range(len(b)):
for j in range(len(b[i])) :
res[i][j]=c[i][j]+b[i][j]
t=matrix(res)
return t
def __sub__(self,rmat): #special function for defining addition
c=rmat.mat_getlist()
b=self.mat_getlist()
for i in range(len(b)):
for j in range(len(b[i])) :
b[i][j]-=c[i][j]
t=matrix(b)
return t
def __mul__(self,rmat):
c=rmat.mat_getlist()
b=self.mat_getlist()
if len(c[0])==len(b):
res=([[0 for j in range(len(b)) ]for i in range(len(c[0]))])
#print(res)
d=rmat.transpose().mat_getlist()
for row_self in range(len(b)):
for row_transpose in range(len(d)):
new_element=0
for column_self in range(len(b[0])):
new_element+=(b[row_self][column_self]*d[row_transpose][column_self])
#print(row_self,row_transpose)
res[row_self][row_transpose]=new_element
return matrix(res)
else:
raise ValueError("no of columns in first matrix must be equal to no of rows in second matrix")
def scalar_product(self, number):
newMatrix =[[0 for j in range(len(self.a[0]))] for i in range(len(self.a))]
for row in range(len(self.a)):
for column in range(len(self.a[0])):
newMatrix[row][column] = self.a[row][column] * number
return matrix(newMatrix)
def trace(self):
if self.is_square():
res=0
for i in range(len(self.a)):
res+=self.a[i][i]
return res
else:
raise ValueError("Matrix needs to be square.")
def complement_matrix(self, rowToDelete, columnToDelete):
newMatrix = deepcopy(self).mat_getlist()
del(newMatrix[rowToDelete])
for row in range(len(newMatrix)):
del(newMatrix[row][columnToDelete])
#newMatrix.columns -= 1
return matrix(newMatrix)
def algebric_complement(self, row, column):
#Co Factor of matrix
complementMatrix = self.complement_matrix(row, column)
algebricComplement = (-1)**(row+column) * complementMatrix.determinant()
return (algebricComplement)
def determinant(self):
'''
Return the determinant.
This function uses Laplace's theorem to calculate the determinant.
It is a very rough implementation, which means it becomes slower and
slower as the size of the matrix grows.
'''
b=self.mat_getlist()
if self.is_square():
if len(b) == 1:
# If it's a square matrix with only 1 row, it has only 1 element
det = b[0][0] # The determinant is equal to the element
elif len(b) == 2:
det = (b[0][0] * b[1][1]) - (b[0][1] * b[1][0])
else:
# We calculate the determinant using Laplace's theorem
det = 0
for element in range(len(b[0])):
det += b[0][element] * (self.algebric_complement(0, element))
return det
else:
raise TypeError("Can only calculate the determinant of a square matrix")
def algebric_complements_matrix(self):
'''Return the matrix of all algebric complements.'''
if self.is_square():
newMatrix = [[0 for j in range(len(self.a[0]))] for i in range(len(self.a))]
for row in range(len(self.a)):
for column in range(len(self.a[0])):
newMatrix[row][column] = self.algebric_complement(row, column)
return matrix(newMatrix)
else:
raise TypeError("Algebric complements can only be calculated on a square matrix")
def adjoint(self):
return self.algebric_complements_matrix().transpose()
def inverse_matrix(self):
'''Return the inverse matrix.'''
det = self.determinant()
if det == 0:
raise Exception("Matrix not invertible")
else:
algebricComplementsMatrix = self.algebric_complements_matrix()
inverseMatrix = algebricComplementsMatrix.transpose().scalar_product(1/det)
return inverseMatrix
def __str__(self): #for printing matrix
def s(q):
x=''
for i in q:
for j in i:
x+=str(j)
x+=' '
x+="\n"
return x
return s(self.a)