Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update numpy to 2.2.3 #100

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open

Conversation

pyup-bot
Copy link
Collaborator

This PR updates numpy from 1.20.3 to 2.2.3.

Changelog

2.2.3

release. The majority of the changes are typing improvements and fixes
for free threaded Python. Both of those areas are still under
development, so if you discover new problems, please report them.

This release supports Python versions 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   !amotzop
-   Charles Harris
-   Chris Sidebottom
-   Joren Hammudoglu
-   Matthew Brett
-   Nathan Goldbaum
-   Raghuveer Devulapalli
-   Sebastian Berg
-   Yakov Danishevsky +

Pull requests merged

A total of 21 pull requests were merged for this release.

-   [28185](https://github.com/numpy/numpy/pull/28185): MAINT: Prepare 2.2.x for further development
-   [28201](https://github.com/numpy/numpy/pull/28201): BUG: fix data race in a more minimal way on stable branch
-   [28208](https://github.com/numpy/numpy/pull/28208): BUG: Fix `from_float_positional` errors for huge pads
-   [28209](https://github.com/numpy/numpy/pull/28209): BUG: fix data race in np.repeat
-   [28212](https://github.com/numpy/numpy/pull/28212): MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should\...
-   [28224](https://github.com/numpy/numpy/pull/28224): MAINT: update highway to latest
-   [28236](https://github.com/numpy/numpy/pull/28236): BUG: Add cpp atomic support (#28234)
-   [28237](https://github.com/numpy/numpy/pull/28237): BLD: Compile fix for clang-cl on WoA
-   [28243](https://github.com/numpy/numpy/pull/28243): TYP: Avoid upcasting `float64` in the set-ops
-   [28249](https://github.com/numpy/numpy/pull/28249): BLD: better fix for clang / ARM compiles
-   [28266](https://github.com/numpy/numpy/pull/28266): TYP: Fix `timedelta64.__divmod__` and `timedelta64.__mod__`\...
-   [28274](https://github.com/numpy/numpy/pull/28274): TYP: Fixed missing typing information of set_printoptions
-   [28278](https://github.com/numpy/numpy/pull/28278): BUG: backport resource cleanup bugfix from gh-28273
-   [28282](https://github.com/numpy/numpy/pull/28282): BUG: fix incorrect bytes to stringdtype coercion
-   [28283](https://github.com/numpy/numpy/pull/28283): TYP: Fix scalar constructors
-   [28284](https://github.com/numpy/numpy/pull/28284): TYP: stub `numpy.matlib`
-   [28285](https://github.com/numpy/numpy/pull/28285): TYP: stub the missing `numpy.testing` modules
-   [28286](https://github.com/numpy/numpy/pull/28286): CI: Fix the github label for `TYP:` PR\'s and issues
-   [28305](https://github.com/numpy/numpy/pull/28305): TYP: Backport typing updates from main
-   [28321](https://github.com/numpy/numpy/pull/28321): BUG: fix race initializing legacy dtype casts
-   [28324](https://github.com/numpy/numpy/pull/28324): CI: update test_moderately_small_alpha

Checksums

MD5

 9cd8b5e358f89016f403a6c1a27e7e87  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
 2818f5a9efcfc3bb6bf657137df26046  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
 6d65c6a336cfb69fe4ddd756cad73d55  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
 7f4cf33c634b33f633d4bf47f560a86d  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
 3c04024badd42bfcc68c14f106efa93f  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 07658df1de0e1d3721de0aacff4313cd  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 3e753fc4b7c879b29442ee9bab25eddd  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
 d1811f1988d88b00825bc6e943d8e22d  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
 b5fe91363c16001ea30cbd5befbb0555  numpy-2.2.3-cp310-cp310-win32.whl
 44dfe1df1640e4fe762bedad57cd7165  numpy-2.2.3-cp310-cp310-win_amd64.whl
 6156418f596620b00a3c221baef02476  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
 97b925bac245aad1297d22ad3cfaa74c  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
 3f05819fcb71df1d3093e5d1c041a4e9  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
 f6763893ba9a5739fefa0929fd152db2  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
 e93cf6ed4e1a3f9a8009ee7f2fcb0da8  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 851dcbcbe90212c385dcdac1614cca83  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 9b27cf1d6319f70370f4b0af10c03f5c  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
 28d20c95ff23d27ae639b4960df777ec  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
 559fefe30c0043a088adeca90231b382  numpy-2.2.3-cp311-cp311-win32.whl
 5e32a1cc3dcfe729f675784a53e4d553  numpy-2.2.3-cp311-cp311-win_amd64.whl
 12134dcf62b2bca2eeebb7bbc45c2a71  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
 c72318236531d3ca61d229eaf96f7d04  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
 1b807acc844c2ba5be7bc7586d4a3a6b  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
 810d4908371bb2f08b0c7b16d3f05970  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
 bb918cedd0931cb68af9e77096dedf54  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 92c6c6c5b22b207425b329f061bd18fa  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 10d48fb9d86280db1afe7224b15a51af  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
 a73da0434a971b21d8a9c0596015d629  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
 c5f1e734c7d872e2f9af71d32e62d59c  numpy-2.2.3-cp312-cp312-win32.whl
 884c1a89844f539ab15b7016a43d231c  numpy-2.2.3-cp312-cp312-win_amd64.whl
 3a2de7f886cb756cf8d0375a36721926  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
 c1fe5b6a9015c2877647419caa009be0  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
 bb3f3a69219bbcdb719bbe38e4e69f79  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
 8158c2e980a1cbfb4d98ff3a273bb2e9  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
 4d3d9b0c14db955e4b1aa1a1971d2def  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 6575308269513900c94803258b89ac83  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 945b91c2093fed2a1f34597fc66e5a35  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
 c5867508607f75ed23426315a7ad86d7  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
 5a1497c262d9aa52ce6859a12a54ebbc  numpy-2.2.3-cp313-cp313-win32.whl
 69c98e036d59eb74e4620c7649b5d7fc  numpy-2.2.3-cp313-cp313-win_amd64.whl
 2535d7c0f98ad848bcf1f48f7c358e41  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
 aea9afa69d510ce905b2b8dbf0e33a11  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
 cc5aceacd0a44a67cdd2cf8d5a446ca3  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
 32eb2ed1e734ea26c90f75b1f5616564  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
 f1d85f322c3e85ef748c3e5594b94226  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 7f24ce01ad5c352c76614a12fa5e2319  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 62841d4b49c5a0cef2c2ba26a16f6959  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
 d7b512f83999d05c47e55b931f2dcdfe  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
 1dca2f20e0accc1741e5fb233ecf7dff  numpy-2.2.3-cp313-cp313t-win32.whl
 347b71f0db5b49a25ef1ed677e47999b  numpy-2.2.3-cp313-cp313t-win_amd64.whl
 3615d13c8c14c323aeda1c07d5a7fd55  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 f7d2ba950c5aa11c100bb6bf202d5799  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 b4336174c843c4943084e17945cd1165  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 0d856a89e028c393f8125739c56591e0  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
 c6ee254bcdf1e2fdb13d87e0ee4166ba  numpy-2.2.3.tar.gz

SHA256

 cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
 cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
 e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
 95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
 d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
 1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
 5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094  numpy-2.2.3-cp310-cp310-win32.whl
 596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb  numpy-2.2.3-cp310-cp310-win_amd64.whl
 16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
 5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
 7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
 77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
 d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
 d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
 1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5  numpy-2.2.3-cp311-cp311-win32.whl
 9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f  numpy-2.2.3-cp311-cp311-win_amd64.whl
 12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
 87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
 712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
 a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
 5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
 4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
 4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe  numpy-2.2.3-cp312-cp312-win32.whl
 83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d  numpy-2.2.3-cp312-cp312-win_amd64.whl
 7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
 23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
 a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
 2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
 8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
 1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
 136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693  numpy-2.2.3-cp313-cp313-win32.whl
 5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b  numpy-2.2.3-cp313-cp313-win_amd64.whl
 435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
 7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
 2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
 c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
 f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
 daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
 cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef  numpy-2.2.3-cp313-cp313t-win32.whl
 aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082  numpy-2.2.3-cp313-cp313t-win_amd64.whl
 3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
 dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020  numpy-2.2.3.tar.gz

2.2.2

release. The number of typing fixes/updates is notable. This release
supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Alicia Boya García +
-   Charles Harris
-   Joren Hammudoglu
-   Kai Germaschewski +
-   Nathan Goldbaum
-   PTUsumit +
-   Rohit Goswami
-   Sebastian Berg

Pull requests merged

A total of 16 pull requests were merged for this release.

-   [28050](https://github.com/numpy/numpy/pull/28050): MAINT: Prepare 2.2.x for further development
-   [28055](https://github.com/numpy/numpy/pull/28055): TYP: fix `void` arrays not accepting `str` keys in `__setitem__`
-   [28066](https://github.com/numpy/numpy/pull/28066): TYP: fix unnecessarily broad `integer` binop return types (#28065)
-   [28112](https://github.com/numpy/numpy/pull/28112): TYP: Better `ndarray` binop return types for `float64` &\...
-   [28113](https://github.com/numpy/numpy/pull/28113): TYP: Return the correct `bool` from `issubdtype`
-   [28114](https://github.com/numpy/numpy/pull/28114): TYP: Always accept `date[time]` in the `datetime64` constructor
-   [28120](https://github.com/numpy/numpy/pull/28120): BUG: Fix auxdata initialization in ufunc slow path
-   [28131](https://github.com/numpy/numpy/pull/28131): BUG: move reduction initialization to ufunc initialization
-   [28132](https://github.com/numpy/numpy/pull/28132): TYP: Fix `interp` to accept and return scalars
-   [28137](https://github.com/numpy/numpy/pull/28137): BUG: call PyType_Ready in f2py to avoid data races
-   [28145](https://github.com/numpy/numpy/pull/28145): BUG: remove unnecessary call to PyArray_UpdateFlags
-   [28160](https://github.com/numpy/numpy/pull/28160): BUG: Avoid data race in PyArray_CheckFromAny_int
-   [28175](https://github.com/numpy/numpy/pull/28175): BUG: Fix f2py directives and \--lower casing
-   [28176](https://github.com/numpy/numpy/pull/28176): TYP: Fix overlapping overloads issue in 2-\>1 ufuncs
-   [28177](https://github.com/numpy/numpy/pull/28177): TYP: preserve shape-type in ndarray.astype()
-   [28178](https://github.com/numpy/numpy/pull/28178): TYP: Fix missing and spurious top-level exports

Checksums

MD5

 749cb2adf8043551aae22bbf0ed3130a  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
 bc79fa2e44316b7ce9bacb48a993ed91  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
 c6b2caa2bbb645b5950dccb77efb1dbb  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
 8c410efac169af880cacbbac8a731658  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
 21d165669635a9b680d03b0b4e7f5b98  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 a34ef5e7c967136fdc59c822e99f87d6  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 a81749effc5160ff8dde7eb2ebe868c4  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
 546612d82fae082697879aaf2b985b1b  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
 d874e626f58175ad603cb68fda2a4e28  numpy-2.2.2-cp310-cp310-win32.whl
 20564a5caeb621061267f9d80c1e7ed0  numpy-2.2.2-cp310-cp310-win_amd64.whl
 ef5336ddae73feef891844a205f89b15  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
 7a0c8804cb6ebca82b1cf3063b410687  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
 1682639d0420a532f8894c4a8685b23d  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
 d33d53efc5744b577cb8a6ac9971cfdb  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
 c85b92e2ed7ef0eaeb15909ad73aea22  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 efa1a587f607a37336c477bed977ea64  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 e0effe9902e262704a115c6f7095daf7  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
 425e0cebeb1c2c91bba42ae195836268  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
 57121319a2fbb76eed4b268282ed668e  numpy-2.2.2-cp311-cp311-win32.whl
 fdb54e7345ff657d208fbb52469a5861  numpy-2.2.2-cp311-cp311-win_amd64.whl
 bdf299e0abc45b5c5113a1cc5505636a  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
 30c25784c07965592cf88104b6c02508  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
 65e630a0de5403c41a0083198bc14442  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
 6d9f50717e7b40f1ebdf139f83cc7504  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
 6b092a9280ada70482d44f538752fc0b  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 9c273da8438391eab30f6c1c4898be5d  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 d619047dcaf041b806a7b59ff0a798d5  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
 fa5d0d979104456d7c43a183223c8587  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
 3b8689aedff5037cad85b018e2d5e43a  numpy-2.2.2-cp312-cp312-win32.whl
 a2340ff05cae7e09f63bfcfd4e75ea87  numpy-2.2.2-cp312-cp312-win_amd64.whl
 044e86bd65492af34a59e4109fbeed16  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
 7ca0f0e8c8d3d80ec473ec33929c2ae3  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
 4b866ad895e007005afe8a29837cf7d6  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
 2e6247faabf6d0ac0fafaca0bb405ff8  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
 773982551185ae327cdefe416e73acfc  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 1c0ecc958a555a8a95c92c1dd7dc2358  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 9f662eb58b8f711585550d6fdf8afa4f  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
 53471186fc990eb22e82a0512b310438  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
 6b4d65349c74dd91853a7cc6b5c5786e  numpy-2.2.2-cp313-cp313-win32.whl
 33dc5bab2d3f752ef00f81021d68cb5a  numpy-2.2.2-cp313-cp313-win_amd64.whl
 0acc5069c5ab4fe3ea7c35956636c462  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
 01e3f727594a12eee6d0677113525b96  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
 7b1ddabcb187b18caa52055bb2b2dc67  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
 a09f5c138ad8c87b9692eea99f344a98  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
 289ec3155aa21c5a161b2d61d2cf3c2d  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 6bb3eb03d400ad708942afbfebd07abc  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 62f8ef2a5c9e76b0e43851a7bb9c0379  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
 59b4b77118f958dd07484686e82b1e7a  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
 726b58ec542581c5e46adfd4c5c0fed0  numpy-2.2.2-cp313-cp313t-win32.whl
 f2b4eab55a963e8cd4c6c1e573c9a59f  numpy-2.2.2-cp313-cp313t-win_amd64.whl
 f6a93eaebee6f9890a4922571141ecb5  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 fb457bbe2d231e836d2230b06d4706ca  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 df4c07a48a24621167c12704ba5ac0de  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 0d1108b9060469eb28bb4a4cffa7b98f  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
 ac108586d3aeab9e2d0134b744763eb9  numpy-2.2.2.tar.gz

SHA256

 7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
 2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
 40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
 995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
 b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
 09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
 159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160  numpy-2.2.2-cp310-cp310-win32.whl
 64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014  numpy-2.2.2-cp310-cp310-win_amd64.whl
 642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
 6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
 c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
 451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
 bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
 d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
 860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50  numpy-2.2.2-cp311-cp311-win32.whl
 da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2  numpy-2.2.2-cp311-cp311-win_amd64.whl
 ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
 23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
 3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
 8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
 2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
 9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
 4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283  numpy-2.2.2-cp312-cp312-win32.whl
 5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb  numpy-2.2.2-cp312-cp312-win_amd64.whl
 b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
 d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
 22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
 128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
 250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
 57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
 4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9  numpy-2.2.2-cp313-cp313-win32.whl
 5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369  numpy-2.2.2-cp313-cp313-win_amd64.whl
 b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
 9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
 41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
 7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
 0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
 106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
 0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4  numpy-2.2.2-cp313-cp313t-win32.whl
 97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576  numpy-2.2.2-cp313-cp313t-win_amd64.whl
 b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
 ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f  numpy-2.2.2.tar.gz

2.2.1

after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Charles Harris
-   Joren Hammudoglu
-   Matti Picus
-   Nathan Goldbaum
-   Peter Hawkins
-   Simon Altrogge
-   Thomas A Caswell
-   Warren Weckesser
-   Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

-   [27935](https://github.com/numpy/numpy/pull/27935): MAINT: Prepare 2.2.x for further development
-   [27950](https://github.com/numpy/numpy/pull/27950): TEST: cleanups
-   [27958](https://github.com/numpy/numpy/pull/27958): BUG: fix use-after-free error in npy_hashtable.cpp (#27955)
-   [27959](https://github.com/numpy/numpy/pull/27959): BLD: add missing include
-   [27982](https://github.com/numpy/numpy/pull/27982): BUG:fix compile error libatomic link test to meson.build
-   [27990](https://github.com/numpy/numpy/pull/27990): TYP: Fix falsely rejected value types in `ndarray.__setitem__`
-   [27991](https://github.com/numpy/numpy/pull/27991): MAINT: Don\'t wrap `#include <Python.h>` with `extern "C"`
-   [27993](https://github.com/numpy/numpy/pull/27993): BUG: Fix segfault in stringdtype lexsort
-   [28006](https://github.com/numpy/numpy/pull/28006): MAINT: random: Tweak module code in mtrand.pyx to fix a Cython\...
-   [28007](https://github.com/numpy/numpy/pull/28007): BUG: Cython API was missing NPY_UINTP.
-   [28021](https://github.com/numpy/numpy/pull/28021): CI: pin scipy-doctest to 1.5.1
-   [28044](https://github.com/numpy/numpy/pull/28044): TYP: allow `None` in operand sequence of nditer

Checksums

MD5

 d3032be00b974d44aae687fd78a897b4  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
 49863a39471cf191402da96512e52cb6  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
 31c912e2fa723b877f2d710c26332927  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
 95af4f6b620c76f9ccb8c5693c99737d  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
 c1b113ad487a3bece6d7a70e0cf70f17  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 e93369ddbb637d9d5a820b2bb79588c4  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 b3de0a2c345541d2c9a322df360ca497  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
 e3e62b93245d9e37cc03ec3cfaf68118  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
 004063642d3c3792a3f5ff0241a3fa0f  numpy-2.2.1-cp310-cp310-win32.whl
 462b0704ebfd79120edfe6431adc57f4  numpy-2.2.1-cp310-cp310-win_amd64.whl
 a739a2dfbceaa1140e564424b2a57540  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
 91731d46f4ce4b04db512400f4e76ccb  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
 93f50db664a6986c2ebed3ceb588f7cc  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
 8cc0d82b938d71f45a67c74e07ddc7fd  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
 fc7b253096fc566bbcbadfdf6b034f1b  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 b88238965c708578f2c198d1c6e2cf70  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 df20d649bb023f98e487b229f01e9708  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
 e23d2bfbdb1bd1b2872c9e6e15f64dca  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
 cce4ebb9afc1470db243c2ab4cc6639b  numpy-2.2.1-cp311-cp311-win32.whl
 c96783ee8ad6ce1efee94821929a12f5  numpy-2.2.1-cp311-cp311-win_amd64.whl
 0b2024655573f96a595c7f5072205e84  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
 22483d8935f5dc128393ad671fde7d8e  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
 61d38533acaa90fb24657f089d177a6c  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
 ecd4289c703356f5b4fd7e440bf94ce8  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
 a05208461ea09079ae569414d82a606c  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 4c66f10580fa26d1d17b2bdda96a5fc5  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 60a01c86b1fc55e4ba8f2b41f690703b  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
 4bcac2b7f8510b0a6582b7d8661257be  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
 7c24a6a3b5c5b2c53c6807bf06c595c5  numpy-2.2.1-cp312-cp312-win32.whl
 dc9f3c1eaade4da63e5f87e878e5805e  numpy-2.2.1-cp312-cp312-win_amd64.whl
 9aacdedcb2cb3d6a45dfb823148e01cf  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
 8a2598b081c8af4ea6f6bbccc8965882  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
 e58b8db1a97599ed02a630eb86616bb9  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
 be6871a4edd2cd92b147421b9290e047  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
 6d3f141f3a8ecd04e1a1f7c1f89a8ca2  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 eba9d71e631521bd1d9882f8bfbc01d2  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 07f7ea0a7f9f6ce0ba5e016dff2a91e8  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
 a015f42afa15be8b87fc64120c245f18  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
 881b9b20e68b317850ad7b6306ac1c51  numpy-2.2.1-cp313-cp313-win32.whl
 35bd751636dcea0ca0534ad9dee8057a  numpy-2.2.1-cp313-cp313-win_amd64.whl
 7057313b668a4a26b5386203ebc040d9  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
 02031b405d028714126c26ffc5772f0e  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
 73eb35111b027d6771d9a91eb21ad7ef  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
 01f9a5eb7ec872d9682bb6a174897b35  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
 9bc363d2782931efa2648b42ce358a4c  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 b6492f49b50e892a7134baf2dba9f88d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 a1c458a98cd9c7ad63f9c301398f4d63  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
 38d2bf31247d9005c7a0197aa992cf1d  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
 30e6acf4391728d0a3a5e3494bd4a2c8  numpy-2.2.1-cp313-cp313t-win32.whl
 2100b60306e75288799fca60bd00b84f  numpy-2.2.1-cp313-cp313t-win_amd64.whl
 f975551321147c307bbdff4889061b47  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 cefbc2de3aa5ef518ce652fdaab00c96  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 7e379c1d0a5be8e548e35fa7abe1d2c0  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 3cba151351656a83e4c84c942cf490e7  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
 57c5757508a50d1daefa4b689e9701cb  numpy-2.2.1.tar.gz

SHA256

 5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
 aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
 61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
 7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
 4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
 f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
 48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95  numpy-2.2.1-cp310-cp310-win32.whl
 b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf  numpy-2.2.1-cp310-cp310-win_amd64.whl
 40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
 f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
 bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
 9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
 51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
 4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
 b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd  numpy-2.2.1-cp311-cp311-win32.whl
 360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16  numpy-2.2.1-cp311-cp311-win_amd64.whl
 694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
 3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
 780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
 55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
 9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
 67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
 32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2  numpy-2.2.1-cp312-cp312-win32.whl
 ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8  numpy-2.2.1-cp312-cp312-win_amd64.whl
 f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
 3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
 f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
 5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
 526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
 f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
 9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e  numpy-2.2.1-cp313-cp313-win32.whl
 164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60  numpy-2.2.1-cp313-cp313-win_amd64.whl
 4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
 733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
 89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
 676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
 27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
 26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
 93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2  numpy-2.2.1-cp313-cp313t-win32.whl
 bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268  numpy-2.2.1-cp313-cp313t-win_amd64.whl
 7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
 45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918  numpy-2.2.1.tar.gz

2.2.0

The NumPy 2.2.0 release is a quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

-   New functions `matvec` and `vecmat`, see below.
-   Many improved annotations.
-   Improved support for the new StringDType.
-   Improved support for free threaded Python
-   Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

-   `_add_newdoc_ufunc` is now deprecated. `ufunc.__doc__ = newdoc`
 should be used instead.

 ([gh-27735](https://github.com/numpy/numpy/pull/27735))

Expired deprecations

-   `bool(np.array([]))` and other empty arrays will now raise an error.
 Use `arr.size > 0` instead to check whether an array has no
 elements.

 ([gh-27160](https://github.com/numpy/numpy/pull/27160))

Compatibility notes

-   `numpy.cov` now properly transposes single-row (2d array) design matrices
 when `rowvar=False`. Previously, single-row design matrices would return a
 scalar in this scenario, which is not correct, so this is a behavior change
 and an array of the appropriate shape will now be returned.

 ([gh-27661](https://github.com/numpy/numpy/pull/27661))

New Features

-   New functions for matrix-vector and vector-matrix products

 Two new generalized ufuncs were defined:

 -   `numpy.matvec` - matrix-vector product, treating the
     arguments as stacks of matrices and column vectors,
     respectively.
 -   `numpy.vecmat` - vector-matrix product, treating the
     arguments as stacks of column vectors and matrices,
     respectively. For complex vectors, the conjugate is taken.

 These add to the existing `numpy.matmul` as well as to
 `numpy.vecdot`, which was added in numpy 2.0.

 Note that `numpy.matmul` never takes a complex conjugate, also not when its
 left input is a vector, while both `numpy.vecdot` and `numpy.vecmat` do
 take the conjugate for complex vectors on the left-hand side (which are
 taken to be the ones that are transposed, following the physics
 convention).

 ([gh-25675](https://github.com/numpy/numpy/pull/25675))

-   `np.complexfloating[T, T]` can now also be written as
 `np.complexfloating[T]`

 ([gh-27420](https://github.com/numpy/numpy/pull/27420))

-   UFuncs now support `__dict__` attribute and allow overriding
 `__doc__` (either directly or via `ufunc.__dict__["__doc__"]`).
 `__dict__` can be used to also override other properties, such as
 `__module__` or `__qualname__`.

 ([gh-27735](https://github.com/numpy/numpy/pull/27735))

-   The \"nbit\" type parameter of `np.number` and its subtypes now
 defaults to `typing.Any`. This way, type-checkers will infer
 annotations such as `x: np.floating` as `x: np.floating[Any]`, even
 in strict mode.

 ([gh-27736](https://github.com/numpy/numpy/pull/27736))

Improvements

-   The `datetime64` and `timedelta64` hashes now correctly match the
 Pythons builtin `datetime` and `timedelta` ones. The hashes now
 evaluated equal even for equal values with different time units.

 ([gh-14622](https://github.com/numpy/numpy/pull/14622))

-   Fixed a number of issues around promotion for string ufuncs with
 StringDType arguments. Mixing StringDType and the fixed-width DTypes
 using the string ufuncs should now generate much more uniform
 results.

 ([gh-27636](https://github.com/numpy/numpy/pull/27636))

-   Improved support for empty `memmap`. Previously an empty `memmap` would
 fail unless a non-zero `offset` was set.  Now a zero-size `memmap` is
 supported even if `offset=0`. To achieve this, if a `memmap` is mapped to
 an empty file that file is padded with a single byte.

 ([gh-27723](https://github.com/numpy/numpy/pull/27723))

-   `f2py` handles multiple modules and exposes variables again.  A regression
 has been fixed which allows F2PY users to expose variables to Python in
 modules with only assignments, and also fixes situations where multiple
 modules are present within a single source file.

 ([gh-27695](https://github.com/numpy/numpy/pull/27695))

Performance improvements and changes

-   NumPy now uses fast-on-failure attribute lookups for protocols. This
 can greatly reduce overheads of function calls or array creation
 especially with custom Python objects. The largest improvements will
 be seen on Python 3.12 or newer.

 ([gh-27119](https://github.com/numpy/numpy/pull/27119))

-   OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
 benchmarking, there are 5 clusters of performance around these
 kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`.

-   OpenBLAS on windows is linked without quadmath, simplifying
 licensing

-   Due to a regression in OpenBLAS on windows, the performance
 improvements when using multiple threads for OpenBLAS 0.3.26 were
 reverted.

 ([gh-27147](https://github.com/numpy/numpy/pull/27147))

-   NumPy now indicates hugepages also for large `np.zeros` allocations
 on linux. Thus should generally improve performance.

 ([gh-27808](https://github.com/numpy/numpy/pull/27808))

Changes

-   `numpy.fix` now won\'t perform casting to a floating
 data-type for integer and boolean data-type input arrays.

 ([gh-26766](https://github.com/numpy/numpy/pull/26766))

-   The type annotations of `numpy.float64` and `numpy.complex128` now reflect
 that they are also subtypes of the built-in `float` and `complex` types,
 respectively. This update prevents static type-checkers from reporting
 errors in cases such as:

  python
 x: float = numpy.float64(6.28)   valid
 z: complex = numpy.complex128(-1j)   valid
 

 ([gh-27334](https://github.com/numpy/numpy/pull/27334))

-   The `repr` of arrays large enough to be summarized (i.e., where
 elements are replaced with `...`) now includes the `shape` of the
 array, similar to what already was the case for arrays with zero
 size and non-obvious shape. With this change, the shape is always
 given when it cannot be inferred from the values. Note that while
 written as `shape=...`, this argument cannot actually be passed in
 to the `np.array` constructor. If you encounter problems, e.g., due
 to failing doctests, you can use the print option `legacy=2.1` to
 get the old behaviour.

 ([gh-27482](https://github.com/numpy/numpy/pull/27482))

-   Calling `__array_wrap__` directly on NumPy arrays or scalars now
 does the right thing when `return_scalar` is passed (Added in NumPy
 2). It is further safe now to call the scalar `__array_wrap__` on a
 non-scalar result.

 ([gh-27807](https://github.com/numpy/numpy/pull/27807))

-   Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
 1_1 is [end of life](https://github.com/pypa/manylinux/issues/1629).

 ([gh-27088](https://github.com/numpy/numpy/pull/27088))

-   NEP 50 promotion state option removed

 The NEP 50 promotion state settings are now removed. They were always meant as
 temporary means for testing. A warning will be given if the environment
 variable is set to anything but `NPY_PROMOTION_STATE=weak` while
 `_set_promotion_state` and `_get_promotion_state` are removed. In case code
 used `_no_nep50_warning`, a `contextlib.nullcontext` could be used to replace
 it when not available.

 ([gh-27156](https://github.com/numpy/numpy/pull/27156))

Checksums

MD5

 83746dfc1b7774a6677a69c705b83afe  numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
 e69c45cf5ea08fdf2a5527190a7d6549  numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
 d4f8048977139cb229875c201f605369  numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
 8710578b7f4ceef7f73b6d234ad3a82a  numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
 899d1f24d8e5570695a024908d100174  numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 cb768ee568bed2e4f55d47f43c655bc2  numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 5a40726db153ca1984598323cc59eb9b  numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
 450e5e05bdc5551c0a4df2a8d7f09925  numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
 1c34c86b0abaa5d2a75677044a7fca07  numpy-2.2.0rc1-cp310-cp310-win32.whl
 d679ad13f3892325fd4542931ee74852  numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
 a7a8cf5fa2e3d4bd0131ad48c0215f50  numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
 aa6c629290d8b05b44fbbf805fb39dbe  numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
 a04fe8ac96a5226686ec4190db8511d6  numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
 50aedb2a570a7867e860d98eb816bec4  numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
 cd034c5179ee4cc5669ae36be0deb6ab  numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 67e3336cdcdcf72cd07978a465e61ebd  numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 45456522fc3996937f1b1ad8bd7f85b2  numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
 244dcedc05e96c843853738bc2d37bdb  numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
 da24dd620b6509740a1d8aebe4d1306c  numpy-2.2.0rc1-cp311-cp311-win32.whl
 472e5f997dc437b8115ba4ef70a6a266  numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
 6e4ec4f92f8b0768d679419360098a89  numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
 e15a1756fbe98aa61cb8d98de1d516fc  numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
 6c58bba6f453ad22a651f6f0f6416899  numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
 1a00dd2343f8ec48350b39f72e2c4fa1  numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
 cbe9b6d14530bdfb75ef61f4328f6b9e  numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 a4f14055b4cfafab7035f35e61c6cebb  numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 8c3c80295b92ae839fcb1fc2ab2edf0e  numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
 1a5aac9894d1959e1cbbcf58e3aa98d1  numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
 03577c58315ae4b28c3111be0af0c18a  numpy-2.2.0rc1-cp312-cp312-win32.whl
 c8ed06acb7e1b885081e682a391524d8  numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
 53955ed28cb43f004ccd9f2f1e07b0d4  numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
 dffe0e20843d5e331358206b535c47f7  numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
 1f22dc1bc3dd3bf645a35a8c58e07ac3  numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
 57bb0a9d61444162269751eb861bef75  numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
 b38fd53f8f162a833b89e32b52d6f0b5  numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 f8975385402dfa988efe0121adcb3b83  numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 8b739c89e3c67210467ac0855623da47  numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
 902e1f704a187a85f02f71877ed69baf  numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
 fc33a9a4c895b2463672d01e75431a8f  numpy-2.2.0rc1-cp313-cp313-win32.whl
 f57eb3377cf0acf5ce165034e5d3d061  numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
 4dff6567391c376daf27f2a144a4142d  numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
 5195eeac3d355592ec97db04cea7fb43  numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
 9a5e6fb707b1bc448d6f5eb226757581  numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
 455ef245987926bb966565de0f68d00f  numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
 f10882cf7238a03896903b337bce2b05  numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 8889da4b211ca3edba34518306115a81  numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 1d29f0a150c39b500b4f0b1e4c625e9b  numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
 dcf499ab9d350e3414368a106c714256  numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
 af48c02a9130ad93e93a55ebf87b5c78  numpy-2.2.0rc1-cp313-cp313t-win32.whl
 290c12deaff6df2e54569563a8f1316a  numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
 fce62da0e31ae09237cf241c77e54498  numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 85acaaaa495d92bc52631a6a0654fd8e  numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 cb0482e5c60d706b9b0e9ce8dac9d8a6  numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 67390891e461b1983aadab51bc96a78b  numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
 4836fdb3009f043287f011b5f6d18208  numpy-2.2.0rc1.tar.gz

SHA256

 acd4f4e9f8c3c04c9a695333d4f475ec2f7a577342b469b411f7ffb2a2888fdc  numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
 8c3cd769a38a363fe21077ad137ee43be639464e5f257821a4cc4d4e2016deea  numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
 72fa15a5f801faf598e6633a6efcb5661085f509f8f6631a0c2c86be06631b78  numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
 44d55304a7397d6e89707af99ea8e980a101a7ff01dd768aaaca16b2312c799b  numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
 8a25595d5951ad46bec827dfee09328b8da041fc3f7f13f63880274ed4ec215e  numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 c335bd4e3395b8209a011b97e5f9876092fb2dc283933d39620a30c1fa82dfab  numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 5ac124ab756ad56a14cdfcdc69cc220befbfb1162fdf3ca4f6eb1a0ace634c56  numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
 2f7861ff2b862e2536f2256acf5dcf1909e927a5f5e940dfd488eecd178a96b6  numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
 e2d4b5a37cf5df43ffdabe0ebea150d5ec0a1796ad7122b3a780f1ab646708c8  numpy-2.2.0rc1-cp310-cp310-win32.whl
 7a3261b3b7d1403a65112dbad568eee7de596cebd0267e27e7daaa9e08dd396a  numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
 61915861927b8e20223b7ccbe40ebf3f52220c0fca43be8423087348c7c00418  numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
 8815f7e6d48dbcf4f14704d79b90c8fee1a68a42886d42e9c8209092e684bd99  numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
 3e80348e6d187573dc2bb6b1d862fc32353db371ae063d25b2199f65adc96ff1  numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
 8fb79fe9bfefb2b43f701090f70413fb535f10bfdfab1981b7c02bd406cc39dd  numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
 042b6a87c48307955049b338981ff9278fa5e7ff3166bbd0d3294f40726d22d5  numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 94251286fd3cec5552f217030af4cae68f7a1db4f1791765e597b6d9c0a7647a  numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 ffaa01305af250d733d9940c694d206a0c7d1ea2bd5a01bcb5ff7e48c3e6adac  numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
 37e6413ed8f66df534631058771ca362939e243da725b5e8537d8c64b664e9b2  numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
 7bd86cdae85da5fa8763fbe9acfdb4748e1f10bef5e6524bffdfdd2b21bfd56f  numpy-2.2.0rc1-cp311-cp311-win32.whl
 27f2593fe479dff6f4398563ca2fbf7a416fd8d3a8ad7a35fecbc8ba959000ab  numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
 f721298f4c39b4619b16ba0d341ff5e043d4123dfb796bd84835538bf8abad2b  numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
 aed72fe759ada921342b4a8ae0893cc7778b07d2f36a78445c70d5ea633c3b25  numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
 c940b9623e29db06b7d0d3c93c560d42bbd73a76f6d27c41d3fd09c0a15f7773  numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
 a783f561c34be98eb25f8cce029b63434d2dfe79702a1d53e9a0fd63c0391dc8  numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
 d0db426baa0d9547d9ac3ea08110e9bba400fab7a036235d9baddf61fd931af8  numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 7925618745531971be54a87e0b85dfe83c69dac9dfd8e46c8aaae520af05792b  numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 5d7a819d4d31bf9998c907105d97a082919b659ff8d44cef2c4f78d0ac16af47  numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
 0b6cb83ab76b101b87211ab6227e010789adf4a98ee4af07a2480d1d2f61d195  numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
 dc86f8502db8dfbe3474a34395e453849d03f0717227f7bda57a235cbbee3575  numpy-2.2.0rc1-cp312-cp312-win32.whl
 a87c1a4d808de26157440153bb9c51d7dc4778c6cd730026406298b75fa5c2df  numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
 c2ef440fc343cc11e8e1591bf77b0f4f21b0684feabdf7b3ec3d768b8cce7a05  numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
 4332ddb4f40e85f6cdf1594279b35e847a20054c3269f7f2e848b6075cb8f4b3  numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
 dc532dd1c767864614f383cad63edf864f78df3533b6444d94af099583c8fb39  numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
 ecc601c633667ea5eed0c16f987e4c715ee951d0bfa3658f76b690e8dceaddfd  numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
 38405f26748e7ed4c7b31e5f8c24f385e1daf4954628f6143f5a09047e220ca9  numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 e515a7d5f5e1b32eb9e761de4f0327aceee27ec07cc655d26424a5e86d3c8d0d  numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 fd3981aa01428eef69fe5ff2e97e3ca8e65e677ffacc7c447e164ae2aaf521fb  numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
 61a04f035bd4f87d6c0592eaa06061f9f16bf0e11d546e3b9252ccf83f0917a6  numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
 1b18bf71975be1728042ba232d7406ae2f6fed8431684851fda4b909ab6e20ce  numpy-2.2.0rc1-cp313-cp313-win32.whl
 5776d7b395dcf180bc807a9374aca05b6569e5e5e4bdcbf112aa452a471405e0  numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
 3f0d900e60e783fa9965729fa2a17021add82d769bf298cdb407abcbbf316e28  numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
 def9537da892cd995f81646df94021fbf0dce690d518daaabc0902bc8ce42cd9  numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
 f2b59a4e85367107dced5b3c7374a5e828ddb7c5c4e1d98176d09b177e23edd0  numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
 9c3bdfe13209bf4f81aea5f8dd2843ab17c9a9273133d491c220636bfd51432d  numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
 b0b742731c2721445a03e469f286c9ddf15dd80e52622ea4487ddc10a7869fe9  numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 8c43d7beaab6509f1467175cc7cfdcc048581b91ba55e149cc39af758209b166  numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 598b88170e0f361d2f6d8cc9ec18d798af07a2e9b30b95ba2d76415b7c3cc433  numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
 ddb4720b057048d7ac3ce973256e89e1e7481f71b5a214a0a3be936aeda014e7  numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
 64b994b9054ab051d137fff61bb6244aa1e7a80defa42c507355b562cc44a561  numpy-2.2.0rc1-cp313-cp313t-win32.whl
 67d2f5c34f231e7ed59189c20f8b7472b77cff85277bcd80537417eee61977db  numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
 d4bbc95647ce01252827d4c6ea5de42460ea66d75831333f2b92f088b60e1b43  numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
 d8d13dd7b6f1f14c43ff68e81c8edcb035f572d87507b5f629e78a7d8c61e9f4  numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
 d12bf735dc4e7dfa8c66b2fd47547bcf91c9996585324959e2c5a2f5360e1c8f  numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 8d7de626a5e554b074890258e63d0b06eff2af48da034fe5ffef8743578b1e0b  numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
 d3c343e027351fbb3f7ddb0024857cd10837d6a77b40b33e39ff6706ed7ceec1  numpy-2.2.0rc1.tar.gz

2.1.3

discovered after the 2.1.2 release. This release also adds support
for free threaded Python 3.13 on Windows.

The Python versions supported by this release are 3.10-3.13.

Improvements

-   Fixed a number of issues around promotion for string ufuncs with
 StringDType arguments. Mixing StringDType and the fixed-width DTypes
 using the string ufuncs should now generate much more uniform
 results.

 ([gh-27636](https://github.com/numpy/numpy/pull/27636))

Changes

-   `numpy.fix` now won\'t perform casting to a floating
 data-type for integer and boolean data-type input arrays.

 ([gh-26766](https://github.com/numpy/numpy/pull/26766))

Contributors

A total of 15 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Abhishek Kumar +
-   Austin +
-   Benjamin A. Beasley +
-   Charles Harris
-   Christian Lorentzen
-   Marcel Telka +
-   Matti Picus
-   Michael Davidsaver +
-   Nathan Goldbaum
-   Peter Hawkins
-   Raghuveer Devulapalli
-   Ralf Gommers
-   Sebastian Berg
-   dependabot\[bot\]
-   kp2pml30 +

Pull requests merged

A total of 21 pull requests were merged for this release.

-   [27512](https://github.com/numpy/numpy/pull/27512): MAINT: prepare 2.1.x for further development
-   [27537](https://github.com/numpy/numpy/pull/27537): MAINT: Bump actions/cache from 4.0.2 to 4.1.1
-   [27538](https://github.com/numpy/numpy/pull/27538): MAINT: Bump pypa/cibuildwheel from 2.21.2 to 2.21.3
-   [27539](https://github.com/numpy/numpy/pull/27539): MAINT: MSVC does not support #warning directive
-   [27543](https://github.com/numpy/numpy/pull/27543): BUG: Fix user dtype can-cast with python scalar during promotion
-   [27561](https://github.com/numpy/numpy/pull/27561): DEV: bump `python` to 3.12 in environment.yml
-   [27562](https://github.com/numpy/numpy/pull/27562): BLD: update vendored Meson to 1.5.2
-   [27563](https://github.com/numpy/numpy/pull/27563): BUG: weighted quantile for some zero weights (#27549)
-   [27565](https://github.com/numpy/numpy/pull/27565): MAINT: Use miniforge for macos conda test.
-   [27566](https://github.com/numpy/numpy/pull/27566): BUILD: satisfy gcc-13 pendantic errors
-   [27569](https://github.com/numpy/numpy/pull/27569): BUG: handle possible error for PyTraceMallocTrack
-   [27570](https://github.com/numpy/numpy/pull/27570): BLD: start building Windows free-threaded wheels \[wheel build\]
-   [27571](https://github.com/numpy/numpy/pull/27571): BUILD: vendor tempita from Cython
-   [27574](https://github.com/numpy/numpy/pull/27574): BUG: Fix warning \"differs in levels of indirection\" in npy_atomic.h\...
-   [27592](https://github.com/numpy/numpy/pull/27592): MAINT: Update Highway to latest
-   [27593](https://github.com/numpy/numpy/pull/27593): BUG: Adjust numpy.i for SWIG 4.3 compatibility
-   [27616](https://github.com/numpy/numpy/pull/27616): BUG: Fix Linux QEMU CI workflow
-   [27668](https://github.com/numpy/numpy/pull/27668): BLD: Do not set \_\_STDC_VERSION\_\_ to zero during build
-   [27669](https://github.com/numpy/numpy/pull/27669): ENH: fix wasm32 runtime type error in numpy.\_core
-   [27672](https://github.com/numpy/numpy/pull/27672): BUG: Fix a reference count leak in npy_find_descr_for_scalar.
-   [27673](https://github.com/numpy/numpy/pull/27673): BUG: fixes for StringDType/unicode promoters

Checksums

MD5

 3f2f22827dd321ae86b5ab4fa888d0db  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
 13da2761d1abe71731a2806537369115  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
 5aef4a78b69cd90d0f6fff8f88817991  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
 12da7f09cd5707634878f85845c9de10  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
 5b999693362815b56855533469aea0ca  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 8c49f457127bfb4f167c91583e5167af  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 f

@pyup-bot pyup-bot mentioned this pull request Feb 13, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant