diff --git a/Report2.pdf b/Report2.pdf new file mode 100644 index 0000000..3e21bab Binary files /dev/null and b/Report2.pdf differ diff --git a/Text2Gloss_test3.ipynb b/Text2Gloss_test3.ipynb index dbaaafc..87d88f5 100644 --- a/Text2Gloss_test3.ipynb +++ b/Text2Gloss_test3.ipynb @@ -2,13 +2,13 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "c18d8f92", - "outputId": "100655e5-02fa-4a95-fc25-190d58b931dc" + "outputId": "a9cc92a9-f6ce-410f-9749-5fb22553126c" }, "outputs": [ { @@ -18,31 +18,31 @@ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting subword-nmt\n", " Downloading subword_nmt-0.3.8-py3-none-any.whl (27 kB)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from subword-nmt) (4.65.0)\n", "Collecting mock\n", - " Downloading mock-5.0.1-py3-none-any.whl (30 kB)\n", + " Downloading mock-5.0.2-py3-none-any.whl (30 kB)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from subword-nmt) (4.65.0)\n", "Installing collected packages: mock, subword-nmt\n", - "Successfully installed mock-5.0.1 subword-nmt-0.3.8\n", + "Successfully installed mock-5.0.2 subword-nmt-0.3.8\n", "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Requirement already satisfied: nltk in /usr/local/lib/python3.9/dist-packages (3.8.1)\n", - "Requirement already satisfied: click in /usr/local/lib/python3.9/dist-packages (from nltk) (8.1.3)\n", "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.9/dist-packages (from nltk) (2022.10.31)\n", - "Requirement already satisfied: joblib in /usr/local/lib/python3.9/dist-packages (from nltk) (1.1.1)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.9/dist-packages (from nltk) (8.1.3)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.9/dist-packages (from nltk) (1.2.0)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from nltk) (4.65.0)\n", "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting torchtext==0.11.0\n", " Downloading torchtext-0.11.0-cp39-cp39-manylinux1_x86_64.whl (8.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.0/8.0 MB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from torchtext==0.11.0) (2.27.1)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from torchtext==0.11.0) (4.65.0)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.0/8.0 MB\u001b[0m \u001b[31m60.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from torchtext==0.11.0) (1.22.4)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from torchtext==0.11.0) (2.27.1)\n", "Collecting torch==1.10.0\n", " Downloading torch-1.10.0-cp39-cp39-manylinux1_x86_64.whl (881.9 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m881.9/881.9 MB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from torchtext==0.11.0) (1.22.4)\n", + "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from torchtext==0.11.0) (4.65.0)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch==1.10.0->torchtext==0.11.0) (4.5.0)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->torchtext==0.11.0) (2.0.12)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->torchtext==0.11.0) (3.4)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->torchtext==0.11.0) (1.26.15)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->torchtext==0.11.0) (2.0.12)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->torchtext==0.11.0) (2022.12.7)\n", "Installing collected packages: torch, torchtext\n", " Attempting uninstall: torch\n", @@ -70,7 +70,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "id": "c6c0c86a" }, @@ -82,15 +82,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "id": "74e282ef" }, "outputs": [], "source": [ - "phoenix_dataset_dev = 'PHOENIX-2014-T.dev.corpus.csv'\n", - "phoenix_dataset_test = 'PHOENIX-2014-T.test.corpus.csv'\n", - "phoenix_dataset_train = 'PHOENIX-2014-T.train.corpus.csv'\n", + "phoenix_dataset_dev = 'sample_data/PHOENIX-2014-T.dev.corpus.csv'\n", + "phoenix_dataset_test = 'sample_data/PHOENIX-2014-T.test.corpus.csv'\n", + "phoenix_dataset_train = 'sample_data/PHOENIX-2014-T.train.corpus.csv'\n", "# Load the Phoenix dataset\n", "phoenix_dev = pd.read_csv(phoenix_dataset_dev, sep=\"|\")\n", "phoenix_test = pd.read_csv(phoenix_dataset_test, sep=\"|\")\n", @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "id": "0c3ffe98" }, @@ -112,13 +112,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6b9e213a", - "outputId": "b1433f93-4d33-4726-b9e7-48aae53f8981" + "outputId": "dd853bc6-d9cb-4c8e-9ba4-c90f9e6697d1" }, "outputs": [ { @@ -139,14 +139,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 333 + "height": 367 }, "id": "d3204e94", - "outputId": "29e3d099-e017-45c8-9529-76441bee3b6f" + "outputId": "16c5a0ff-562a-4530-ba24-a92352a88d01" }, "outputs": [ { @@ -183,7 +183,7 @@ ], "text/html": [ "\n", - "
\n", + "
\n", "
\n", "
\n", "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
srctrg
0tiefer luftdruck bestimmt in den nächsten tage...DRUCK TIEF KOMMEN
1das bedeutet viele wolken und immer wieder zum...ES-BEDEUTET VIEL WOLKE UND KOENNEN REGEN GEWIT...
2meist weht nur ein schwacher wind aus untersch...WIND MAESSIG SCHWACH REGION WENN GEWITTER WIND...
3am mittwoch hier und da nieselregen in der nor...MITTWOCH REGEN KOENNEN NORDWEST WAHRSCHEINLICH...
4und nun die wettervorhersage für morgen freita...JETZT WETTER WIE-AUSSEHEN MORGEN FREITAG SECHS...
.........
7091am dienstag wird es sehr windig und es regnet ...DIENSTAG WIND STARK REGEN KOMMEN
7092am mittwoch legt der wind noch zu und es regne...MITTWOCH WIND MEHR REGEN
7093im süden zeigt sich aber auch die sonneSUED REGION SONNE AUCH DABEI
7094der donnerstag beginnt oft freundlich später z...DONNERSTAG FREUNDLICH SONNE DANN SPAETER KOMME...
7095es bleibt windigBLEIBEN WIND
\n", - "

8257 rows × 2 columns

\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 18 - } - ], - "source": [ - "phoenix_need" - ], - "id": "LRlHkqbUx1Zu" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "vjiRueagKTJa" - }, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "from datasets import Dataset, DatasetDict\n", - "\n", - "phoenix_df = phoenix_need\n", - "\n", - "train_df, test_df = train_test_split(phoenix_df, test_size=0.2, random_state=42)\n", - "train_df, val_df = train_test_split(train_df, test_size=0.1, random_state=42)\n", - "\n", - "train_df = train_df.rename(columns={'translation': 'src', 'trg': 'trg'})\n", - "val_df = val_df.rename(columns={'translation': 'src', 'trg': 'trg'})\n", - "test_df = test_df.rename(columns={'translation': 'src', 'trg': 'trg'})" - ], - "id": "vjiRueagKTJa" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "BE4sLkqY4Q7T" - }, - "outputs": [], - "source": [ - "train_df1 = list()\n", - "train_df1.append({'translation' : train_df.to_dict('records')})\n", - "val_df1 = list()\n", - "val_df1.append({'translation' : val_df.to_dict('records')})\n", - "test_df1 = list()\n", - "test_df1.append({'translation' : test_df.to_dict('records')})" - ], - "id": "BE4sLkqY4Q7T" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "IKyI3r4E5ZyO" - }, - "outputs": [], - "source": [ - "train_df2 = pd.DataFrame(train_df1)\n", - "val_df2 = pd.DataFrame(val_df1)\n", - "test_df2 = pd.DataFrame(test_df1)" - ], - "id": "IKyI3r4E5ZyO" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "U8ism5QlPznp" - }, - "outputs": [], - "source": [ - "train_df2 = train_df2.explode('translation')\n", - "val_df2 = val_df2.explode('translation')\n", - "test_df2 = test_df2.explode('translation')" - ], - "id": "U8ism5QlPznp" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "sf2xJz-VD38C" - }, - "outputs": [], - "source": [ - "train_df2 = train_df2.reset_index(drop=True)\n", - "val_df2 = val_df2.reset_index(drop=True)\n", - "test_df2 = test_df2.reset_index(drop=True)" - ], - "id": "sf2xJz-VD38C" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17, - "referenced_widgets": [ - "8f26fc220d16425f94e24d5033e4215a", - "036a4f6f3e594ba1858e72b1c4ea41d6", - "f8ab822d5b7c4547b576ea7c71f889ef", - "5c5613089dec490c91a4525dae96860c", - "8cf043994b1f47b6a9c55459dac858fd", - "c57118269c8244149c4e2c8157a9b224", - "dc938a244b42455eacd71e728170aa2d", - "d84659e637c145f181b67ef3c21e1369", - "55371b6b591f44d9878073e82580ff87", - "db17195d51d94c6b99357da32277052f", - "740b2d727d32488e8c0637eee6e128f3", - "263efb97b4aa4d3794f657731cdb9c4a", - "9a5a668470104a98a3eda3a6a22a0ad9", - "eafd4448d8594bfaaa854f78861d5313", - "3208d3b9b8d043499f0d3592f00fdf92", - "0290f44b58bf44c3becacff772d386ad", - "f1c566e93ab94e3984a4809563dc7b56", - "db92c87519f44620a9df9d9f17dd35fb", - "48544f8fa2f34617ab6119cec0b46dd4", - "6c1eee5bbc0541459569cf7a113d19fc", - "6df748fccaea4581b9ba0965af3a7dd1", - "e4830837e3c848e08034d91855edf808", - "b99a0bea300f4729a199853ca7587c0a", - "42867affae134afcb977dd3c559af0b8", - "a6967260b0af40b1919f39330ce369c8", - "1d2c8fdbfae54fb0a34cede31bcc70af", - "6f360c8ee3a74fdea4bf26d241989175", - "00a334e11362449f9300a0adcb9ddb11", - "c91f473ab5084e249041831b9af86264", - "9c22ddcf272d4bbda789e7a7a95c7edd", - "e2f55ea0816c4b48be4b88481697cc4e", - "bc64277c4ae448dfa35b34dfc9d2f473", - "b936dbbb272543658572a590c06409aa" - ] - }, - "id": "cz8ZzfXYNiCp", - "outputId": "ed74acff-c237-4e8e-ae4b-68b6cb3017de" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Saving the dataset (0/1 shards): 0%| | 0/5944 [00:00=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n", - "Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.4)\n", - "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n", - "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.10.7)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n", + "Requirement already satisfied: transformers in /usr/local/lib/python3.9/dist-packages (4.28.1)\n", "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.3)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n", "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.11.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.4)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (3.4)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.15)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n" + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n" ] } ], @@ -1616,13 +1387,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hTj1WumvGISa", - "outputId": "b29aa172-c093-4fb2-901d-29d1e34c7c1e" + "outputId": "bd09514d-8c42-4ba6-df57-13bc043ee911" }, "outputs": [ { @@ -1630,40 +1401,40 @@ "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Requirement already satisfied: transformers[sentencepiece] in /usr/local/lib/python3.9/dist-packages (4.27.4)\n", + "Requirement already satisfied: transformers[sentencepiece] in /usr/local/lib/python3.9/dist-packages (4.28.1)\n", "Requirement already satisfied: datasets in /usr/local/lib/python3.9/dist-packages (2.11.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (2022.10.31)\n", + "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (4.65.0)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (23.0)\n", - "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (1.22.4)\n", - "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (0.13.3)\n", "Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (0.13.4)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (2.27.1)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (6.0)\n", - "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (2022.10.31)\n", - "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (4.65.0)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (3.10.7)\n", - "Requirement already satisfied: sentencepiece!=0.1.92,>=0.1.91 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (0.1.96)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (2.27.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (3.11.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (1.22.4)\n", + "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (0.13.3)\n", "Requirement already satisfied: protobuf<=3.20.2 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (3.20.2)\n", + "Requirement already satisfied: sentencepiece!=0.1.92,>=0.1.91 in /usr/local/lib/python3.9/dist-packages (from transformers[sentencepiece]) (0.1.96)\n", + "Requirement already satisfied: dill<0.3.7,>=0.3.0 in /usr/local/lib/python3.9/dist-packages (from datasets) (0.3.6)\n", "Requirement already satisfied: multiprocess in /usr/local/lib/python3.9/dist-packages (from datasets) (0.70.14)\n", - "Requirement already satisfied: xxhash in /usr/local/lib/python3.9/dist-packages (from datasets) (3.2.0)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.9/dist-packages (from datasets) (3.8.4)\n", + "Requirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.9/dist-packages (from datasets) (2023.4.0)\n", "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.9/dist-packages (from datasets) (9.0.0)\n", - "Requirement already satisfied: dill<0.3.7,>=0.3.0 in /usr/local/lib/python3.9/dist-packages (from datasets) (0.3.6)\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from datasets) (1.4.4)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from datasets) (1.5.3)\n", + "Requirement already satisfied: xxhash in /usr/local/lib/python3.9/dist-packages (from datasets) (3.2.0)\n", "Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.9/dist-packages (from datasets) (0.18.0)\n", - "Requirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.9/dist-packages (from datasets) (2023.3.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (2.0.12)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (1.3.1)\n", "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (1.8.2)\n", - "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (2.0.12)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (6.0.4)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (22.2.0)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (1.3.3)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (4.0.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from aiohttp->datasets) (1.3.3)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers[sentencepiece]) (4.5.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers[sentencepiece]) (2022.12.7)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers[sentencepiece]) (1.26.15)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers[sentencepiece]) (3.4)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->datasets) (2022.7.1)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers[sentencepiece]) (1.26.15)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers[sentencepiece]) (2022.12.7)\n", "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->datasets) (2022.7.1)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n" ] } @@ -1675,71 +1446,71 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "id": "c0d96901", "colab": { "base_uri": "https://localhost:8080/", - "height": 211, + "height": 231, "referenced_widgets": [ - "c441610b233344d8a049746a6f32fb79", - "6548e2fee57b4e2f9610025c2605cc2d", - "0a4c8d3bfdb44f389047789634ab2226", - "38cdfb156d854a9b99f3d54bdc3a08e8", - "06c93be20682495c9f03dcd1753e778c", - "c5a5cac1d8274748b9ecb8643c1ea0cb", - "06652dac8f3e432a93e9e56573ffe82d", - "d1568c5c6fc747509b53bfe16c8a0b17", - "c38d933101a94a84b6154028f81d4699", - "50a536c642e04efaa0548a24961bd0a3", - "cc4bd2e9ad094162bae6474a476aa27f", - "4ffc167348744ffe8a965106efafa366", - "cd4402de801a47358391f9d2a0309088", - "c518f3fafc8246a6932759f91d681de0", - "74dfe887a1a34e4dab089b9554a9c3c0", - "85a306b07e9c4a138b9ebbc0489b95d7", - "e8c5836880c947c09b568b6143607bdf", - "5a19c3b556b44bd68493754824f11cae", - "8700ef935ee3461ebbe4089afe919372", - "e22f3ecec5a6468d9154adee5361cc1d", - "7c4d8b55d27240128544a18184c44e6a", - "7f11dcd77bc84e249fb1fcf255dd7aa9", - "997fbd3483c64187bc5388f2bdb27acc", - "fe916edb32134f38928f8c70ca0ad466", - "2cb4b3a346734cd7949559464312c4e3", - "b53968d37ff84cacbb7bdcde4969b329", - "cf512800a7f64728b58b0879a8a258fd", - "64f9d6ad46c342c7b51256eda98cea82", - "c9fafe70926a46d394ae2c7ae5f02497", - "60d60414132e48298a966d7ea80e6b12", - "d1e7ed82d78e44639623d1d4f4cd610b", - "2d4fa1f00a9e40b29525e32682f27d68", - "8243cf762367446ea6504aa89c555f92", - "72fd8a0fe783476f80631e108eb74962", - "815c209a15eb4af5ab8701c2e0b61edc", - "1e5d41f9ba1c42d8b61c6f810212b319", - "bb1d8b508a3545bbaa63c003cb87a2ad", - "ef53a805c3714a458eac9d174e73422e", - "1834c86709354edebbe5e4a5294cedaa", - "6a54c163d1d04d40aa54eb77cc581e5e", - "1afb75aa08f64f45a30866398728116a", - "ce8800a085024df99177a6ae933f4cf3", - "ca3f5fba82264510b85fa0c8df6977c7", - "8dc53e8cd4ff43dc91684e48b978176a", - "4aa7290876ea40fda8f5a15b5761d061", - "8abe6245574c410d8c3a65c2f4315c42", - "1c4ec16f0f1c422cbfa48fc1c8402503", - "8890bbad5d684e6bb82bba4f2b73bde6", - "b66fcabf93894c1fbf003ead276e14b2", - "da8ba96f1da544eea8a8fe2255db495a", - "fe02b2377ec44526b5676a3a71520c96", - "6ef7df61a7294ac5999c72a1cdc977c7", - "1ba06c41fe954a00a2e43d5df4f4cf56", - "ff565e4ddd0043a5a6c15956d0572a4c", - "6cbeb2cb31c94f9fb08ef3592cc5ecb6" + "92f8a6c960b24b18a1eebe584739775a", + "e5ad8ec5c4d24b8cb62e19d1cf7db4b4", + "5ee9bb13994543dda0f2c550233b13e0", + "6591a01c111345d4a996b9a634e3de65", + "2c1b948ba2b44432998ac7d30e6188b5", + "288c72ed40094e5c80e4f4285314ad06", + "9512546172e945efb83ba3e1f8c0ba43", + "c75df95a05244b2094c7187c44ca4ff9", + "4129369cbdd74658ac5a926f7515684f", + "35fc2205627a4190978d3a82124b01dc", + "e71350a633cf4fdb958a4c5ef805195d", + "19ef5add0dca4029ae756205a0ac8e39", + "b916b57e10b84f42973ccb9f9d515d1f", + "85b2e1a3c96c4d799b2fa7467807f0d8", + "73ab068279fc44e8ac2d67ebd7b0fc3e", + "99c2ee0e45324bbfaac6ea14d098f89d", + "808f24531d40422f90b1abbb04c7d5f1", + "a43b1574bbd54002ba8f9882969dc022", + "8998984159ce473d8621d1ff3fb123d8", + "f928bd7ca05d4c8baabc07a85d510895", + "de77630a06c74de5873475df12439b9b", + "4423787948ad4789b2d090c28d7cd9f9", + "e2c4c192118b43ca80dd9189b536bb7a", + "898349e06fba42e592e9cb87780ffe22", + "28cfe0d2ad4648a48f7301d63d77e631", + "b6cf48341fec4db599cf97b1bafa801d", + "90f9e1e6fbea489994fe25d7f41a891c", + "d411cd907bd24fbb89e76e6f187e30ae", + "bf62b3ec94724d4a90232ba71415edd9", + "df2f85af85264c5da533b55830f1a86f", + "3493b434f69647e582ae99ae0a9edac8", + "7938ad2f61214ecbbf10a490532e4397", + "40868b9d023b44f9bbb76922308a2cfd", + "3b9d26593e9c42229ad51c3e182eb0cf", + "e2b7975d6a1442119fe1ece313c5634b", + "0687432b310243b59733879b13a3bc2b", + "075f5250dd3848e8821dfe3eb2d3ef43", + "77b01edcd89f4cf08a9c94b26a9a0350", + "f65b5fa53cd34a5abf9df71fcbd634a6", + "0bded1ca754f4a62a2209537307bbb9a", + "f2ef84459c504a2e8e8fbfbfd7f06027", + "547d01d4986a47b489c105fd5a847971", + "592d48a2dda1465b8d7136260bccd3a6", + "35182e2072c444279271294c127ff870", + "c500ceb1abc442b4b41565a86969897c", + "67df768c28154e84ad5bbc6484737bb7", + "ffab340231314847825bfaf9ee12dc6d", + "5a4b40312a94484b9649e0865114d9e9", + "1d6982c459d940909ebaf70eb5a68a06", + "309684c89e454cc4bd61a04cb9c10526", + "c4cd0148e7324ede8483c74593bc4d73", + "25ac2f545d8943a1a7b36a3c597be42c", + "d775bd4afa8d487ebadf03553c11fa4f", + "6a9db1c5c91e4273ac0295300aa93264", + "7d997d12b4a14f768e8011ca49e7582b" ] }, - "outputId": "15cbc899-bce3-4857-c3b5-e79b1dd2784e" + "outputId": "0cef2726-9499-466f-e3f1-2721bfe02afb" }, "outputs": [ { @@ -1751,7 +1522,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c441610b233344d8a049746a6f32fb79" + "model_id": "92f8a6c960b24b18a1eebe584739775a" } }, "metadata": {} @@ -1765,7 +1536,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "4ffc167348744ffe8a965106efafa366" + "model_id": "19ef5add0dca4029ae756205a0ac8e39" } }, "metadata": {} @@ -1779,7 +1550,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "997fbd3483c64187bc5388f2bdb27acc" + "model_id": "e2c4c192118b43ca80dd9189b536bb7a" } }, "metadata": {} @@ -1793,7 +1564,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "72fd8a0fe783476f80631e108eb74962" + "model_id": "3b9d26593e9c42229ad51c3e182eb0cf" } }, "metadata": {} @@ -1807,7 +1578,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "4aa7290876ea40fda8f5a15b5761d061" + "model_id": "c500ceb1abc442b4b41565a86969897c" } }, "metadata": {} @@ -1830,13 +1601,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6025a755", - "outputId": "d3bea21d-a667-4974-8b0f-2a033c3f7d4c" + "outputId": "88ea480e-7092-46d0-9612-2eafee413e09" }, "outputs": [ { @@ -1847,7 +1618,7 @@ ] }, "metadata": {}, - "execution_count": 33 + "execution_count": 30 } ], "source": [ @@ -1877,54 +1648,54 @@ "id": "gfp8i7xThvln" }, "id": "gfp8i7xThvln", - "execution_count": null, + "execution_count": 31, "outputs": [] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ - "6e4e96f1350f4a448c8864b0f513a52d", - "78be694469f24b9bb38ec8f00d90eead", - "f26d4e21fa3949d0b9f357bfda39e205", - "6488b900697b432a8490a452ae4d7999", - "d45646f8821f468887eb8c70690b48e1", - "769662f4c43b4848bbcd97a50fb870a9", - "63bf2a128bc14fb1942a4dbcf69bcd8b", - "8b7a11d3f37245bdb32c69936b48af6d", - "e090dca0578a42888d1b5690e24a31e7", - "1633d84758c546a4b3b789dae018f97c", - "3b9c31ff7be14ac89a96007b23f66121", - "a3faa041514a47d6be8ce7605fa12c23", - "3020671b51174f9c8302a573526c3d2f", - "63d669196f4a4497a45e0cd6205ace95", - "46cb0602456c4e04b6d0b2cb93d7841a", - "f6f8cff3e70047179cd8796e5126edec", - "be05a90b77a34b098e71653da49b4478", - "aca3deb75ca440cb827886b5bf19e0e6", - "acb200a560bf45819a80d88bdd8a4031", - "aec200e0702f4e11ad17a7961d3fc700", - "dcb2a6e5da49421ab1873e86f0650083", - "243b29024df24504992fdec7ed63052f", - "fc2a5d69d8854151949a97799698dd19", - "5f22fc61e5cd4e7fbc13b8f92d78ee23", - "18865676da3d49dfab563d712dcd55b9", - "fe03a6bd3dc343d8afc818b919dfb90c", - "921857fae7e945eab76e98c66ec5013a", - "17f5ffbb89264fa09d1d6d54782edbce", - "51f709a633da42c985cd97d36f914d90", - "e2b2f39d43704f9c8e241670fa803d6e", - "bbde3f6bc0984496be5b0317ea739f23", - "ec3902818c7d4ce2994779a47861dc01", - "4461ba3385694f88addd3d4fcd7c0350" + "27a885276d084972aeded827cd66a651", + "2e7d02d43bf44c2d8b8617165b6ad7ab", + "2c9e001308704de6962fdee2ee8ecb96", + "a37faf3845d24604a15b7715e6aae754", + "01ab95016d9b49649b5caf20df07a07e", + "b586f3919d7849e4993053966bd5c263", + "1aa3962201394d02b831daf163748eb2", + "f8edb277d0474cd78cfdd5135a7e71f6", + "c105bb9805984f06acc4bf3e7689aab6", + "59ee1b8c331b4856a32436e4cd593840", + "2529617af48e470cb10c3b78a54625da", + "d854ce935af24ffc852edc5bc1c0acf2", + "ab42727bdc2f4f4fa6afa3db5696b070", + "cfce7cb36d4f40d0b924cebbf7e8d912", + "6f55938e5f28431ab9b406fb29430221", + "d90e907ea7894130b312cd39cf716407", + "9ed0d50485834df49a3e238df541b753", + "667b391d3a84450fa4229c0f17a360c0", + "8d9a9b9fa1eb4258b51d6c70f71758b3", + "0f8ee8874e3a4345a4a6e58f143d7730", + "9957f83400094479a7a1cf3fbc382b74", + "11ea58df135344dda3e147bd251cbea7", + "845954adfc444434967af44b20db9896", + "67cc5f72da0548869b6464c21166d941", + "7063c0563b434d5b89c84dda54a4ffc0", + "0be4900c5f584498b117bbfb0c47c814", + "729fd70b2e944b619c8465d8c0db739c", + "b65ff03dd1cc49808398d5b135910e94", + "3790804d3e254c8aa2640fa18628a142", + "b292e93efce84f87991920f10c54d0f1", + "7b365e0582e4463ca82c7e7d2582bba6", + "a87b958909f64a9f8f60740f8326e532", + "2eee52843ab24ebf8417a10be9177c64" ] }, "id": "088a084d", - "outputId": "de735a05-6f2e-477b-e23a-2de863828cd9" + "outputId": "7e96dd0c-9d79-484e-acaf-d1aba5183359" }, "outputs": [ { @@ -1936,7 +1707,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "6e4e96f1350f4a448c8864b0f513a52d" + "model_id": "27a885276d084972aeded827cd66a651" } }, "metadata": {} @@ -1950,7 +1721,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a3faa041514a47d6be8ce7605fa12c23" + "model_id": "d854ce935af24ffc852edc5bc1c0acf2" } }, "metadata": {} @@ -1974,7 +1745,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "fc2a5d69d8854151949a97799698dd19" + "model_id": "845954adfc444434967af44b20db9896" } }, "metadata": {} @@ -2080,7 +1851,7 @@ ] }, "metadata": {}, - "execution_count": 35 + "execution_count": 32 } ], "source": [ @@ -2100,55 +1871,90 @@ { "cell_type": "code", "source": [ - "import nltk\n", + "import torch\n", + "from torch.nn import functional as F\n", "\n", - "nltk.download(\"punkt\")\n", "\n", - "# Initialize the WordPunct tokenizer\n", - "tokenizer_wordpunct = nltk.tokenize.WordPunctTokenizer()\n", + "class NewEncoder(torch.nn.Module):\n", "\n", - "source_lang = \"src\"\n", - "target_lang = \"trg\"\n", + " def __init__(self, model):\n", + " super().__init__()\n", + " self.encoder = model.model.encoder\n", + " self.main_input_name = 'input_ids'\n", "\n", - "def postprocess_text(preds, labels):\n", - " preds = [pred.strip() for pred in preds]\n", - " labels = [[label.strip()] for label in labels]\n", + " def forward(self, input_ids, attention_mask):\n", + " return self.encoder(input_ids, attention_mask=attention_mask, return_dict=False)\n", + "\n", + "\n", + "class NewDecoder(torch.nn.Module):\n", + "\n", + " def __init__(self, model):\n", + " super().__init__()\n", + " self.weight = model.model.shared.weight.clone().detach()\n", + " self.bias = model.final_logits_bias.clone().detach()\n", + " self.decoder = model.model.decoder\n", "\n", - " # Tokenize the target language using the WordPunct tokenizer\n", - " labels = [tokenizer_wordpunct.tokenize(label[0]) for label in labels]\n", - " labels = [[tokenizer.convert_tokens_to_ids(tokens)] for tokens in labels]\n", + " def forward(self, input_ids, attention_mask, encoder_outputs, index):\n", "\n", - " return preds, labels\n" + " # Invoke the decoder\n", + " hidden, = self.decoder(\n", + " input_ids=input_ids,\n", + " encoder_hidden_states=encoder_outputs,\n", + " encoder_attention_mask=attention_mask,\n", + " return_dict=False,\n", + " use_cache=False,\n", + " )\n", + "\n", + " _, n_length, _ = hidden.shape\n", + "\n", + " # Create selection mask\n", + " mask = torch.arange(n_length, dtype=torch.float32) == index\n", + " mask = mask.view(1, -1, 1)\n", + "\n", + " # Broadcast mask\n", + " masked = torch.multiply(hidden, mask)\n", + "\n", + " # Reduce along 1st dimension\n", + " hidden = torch.sum(masked, 1, keepdims=True)\n", + "\n", + " # Compute final linear layer for token probabilities\n", + " logits = F.linear(\n", + " hidden,\n", + " self.weight,\n", + " bias=self.bias\n", + " )\n", + " return logits" ], "metadata": { - "id": "8_aqvTrW4a0A", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "f0567027-a23f-4ec3-d5cf-8a1c04e377d8" + "id": "qlUq_uPfkGI1" + }, + "id": "qlUq_uPfkGI1", + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import nltk\n", + "source_lang = \"src\"\n", + "target_lang = \"trg\"\n" + ], + "metadata": { + "id": "8_aqvTrW4a0A" }, "id": "8_aqvTrW4a0A", - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "[nltk_data] Downloading package punkt to /root/nltk_data...\n", - "[nltk_data] Unzipping tokenizers/punkt.zip.\n" - ] - } - ] + "execution_count": 36, + "outputs": [] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "id": "54efc54f" }, "outputs": [], "source": [ - "batch_size = 16\n", + "batch_size = 7\n", "model_name = model_checkpoint.split(\"/\")[-1]\n", "args = Seq2SeqTrainingArguments(\n", " f\"{model_name}-finetuned-{source_lang}-to-{target_lang}\",\n", @@ -2158,27 +1964,18 @@ " per_device_eval_batch_size=batch_size,\n", " weight_decay=0.01,\n", " save_total_limit=3,\n", - " num_train_epochs=1,\n", + " num_train_epochs=10,\n", " predict_with_generate=True,\n", " fp16=True,\n", " push_to_hub=True,\n", + " seed=7575\n", ")" ], "id": "54efc54f" }, { "cell_type": "code", - "source": [], - "metadata": { - "id": "XN9jS9G6B8Pc" - }, - "id": "XN9jS9G6B8Pc", - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "id": "356dd743" }, @@ -2190,7 +1987,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "id": "2e966c25" }, @@ -2199,31 +1996,48 @@ "import numpy as np\n", "\n", "def postprocess_text(preds, labels):\n", - " preds = [pred.strip() for pred in preds]\n", - " labels = [[label.strip()] for label in labels]\n", + " preds = [pred.strip() for pred in preds]\n", + " labels = [label.strip() for label in labels]\n", + "\n", + " bleu_labels = [[label] for label in labels]\n", + "\n", + " # rougeLSum expects newline after each sentence\n", + " rouge_preds = [\"\\n\".join(nltk.sent_tokenize(pred)) for pred in preds]\n", + " rouge_labels = [\"\\n\".join(nltk.sent_tokenize(label))\n", + " for label in labels]\n", "\n", - " return preds, labels\n", + " return {\n", + " \"bleu\": [preds, bleu_labels],\n", + " \"meteor\": [preds, labels],\n", + " \"rouge\": [rouge_preds, rouge_labels]\n", + " }\n", "\n", "def compute_metrics(eval_preds):\n", - " preds, labels = eval_preds\n", - " if isinstance(preds, tuple):\n", - " preds = preds[0]\n", - " decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n", + " preds, labels = eval_preds\n", + " if isinstance(preds, tuple):\n", + " preds = preds[0]\n", + " decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n", + " labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n", + " decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n", "\n", - " # Replace -100 in the labels as we can't decode them.\n", - " labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n", - " decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n", + " # Some simple post-processing\n", + " decoded = postprocess_text(decoded_preds, decoded_labels)\n", "\n", - " # Some simple post-processing\n", - " decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)\n", + " result = rouge.compute(predictions=decoded[\"rouge\"][0], references=decoded[\"rouge\"][1], use_stemmer=True)\n", + " # Extract a few results from ROUGE\n", + " result = {key: value.mid.fmeasure * 100 for key, value in result.items()}\n", "\n", - " result = metric.compute(predictions=decoded_preds, references=decoded_labels)\n", - " result = {\"bleu\": result[\"score\"]}\n", + " prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]\n", + " result[\"gen_len\"] = np.mean(prediction_lens)\n", + " result = {k: round(v, 4) for k, v in result.items()}\n", "\n", - " prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]\n", - " result[\"gen_len\"] = np.mean(prediction_lens)\n", - " result = {k: round(v, 4) for k, v in result.items()}\n", - " return result" + " bleu_result = bleu.compute(predictions=decoded[\"bleu\"][0], references=decoded[\"bleu\"][1])\n", + " result[\"bleu\"] = bleu_result[\"score\"]\n", + "\n", + " meteor_result = meteor.compute(predictions=decoded[\"meteor\"][0], references=decoded[\"meteor\"][1])\n", + " result[\"meteor\"] = meteor_result[\"meteor\"]\n", + "\n", + " return result\n" ], "id": "2e966c25" }, @@ -2251,7 +2065,7 @@ "id": "gLImGXjFMM0Z" }, "id": "gLImGXjFMM0Z", - "execution_count": null, + "execution_count": 40, "outputs": [] }, { @@ -2263,54 +2077,54 @@ "id": "IouICVkCMrbt" }, "id": "IouICVkCMrbt", - "execution_count": null, + "execution_count": 41, "outputs": [] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 71, "referenced_widgets": [ - "cb8c0ceed812400fb80bf3c0884e801c", - "a2913f4bf9b3404599806582ea9c9dda", - "bebdd6f9a8c2468499071ec7ffca4901", - "f87b2a4f927a4722b3ddff4e7178c04d", - "acbda0d9cf184a0080d744ce0ce2595b", - "fc874d5ea0ad4219938e5f422cc873ed", - "3a7d13eb24fb4115a28f7c441e1cc9c1", - "52119c2bd1c94d0d97dfb0ad43630dc8", - "da2927f85c1d4b52be3874dc9dd36eb6", - "abfa2d27e4ff415ab34a604e26449074", - "0eeb2be5f05446ff8fd9cc269659d4e5", - "2130a0fbe4984acda5fd414a89c62fa3", - "a2a4d09245d54f42a5d3bfa137c56b7e", - "bc37a3e226344398a4f7138db1fc30fe", - "54139c41c04741bc93b5166b328849b9", - "96ae99b730524fdaa9c401df061f5a30", - "e7f08e6d90a3479bba6c6b277f89bc5d", - "7191c9f7e28441038a72b5638ff8f5a2", - "c7f84a71647d4a89a45883b25b1506ec", - "601620faee2a4d71afc80a17a2c0307d", - "aae91005c47845ca8742dbe190c9ee3e", - "dae5a5254ba549098fd272de8ee606f6", - "d6b5e75c74b040f48d8c1fbda869a531", - "6973320e39f64d6cb9e34f1f73398ed8", - "7682b51b2020477db401e27d0fb08807", - "eaa95f0f657542d081991dd9fde21203", - "1bad1354c5da4a5b96686b83009fa8cd", - "040965cbde964230a9feee6068b6cfa0", - "74baaacd944d46aeb938e5119d7d74b5", - "3d11d8fb76fc4a08921ba892f5155460", - "cf9c55c0f3e145d9b7882625f0c9569e", - "de085a18d4e147459b37aa66545adf1b", - "086945381e0a4dc79d5e8e62bf6ba66b" + "1df80b3abc274dbf93ea2a4eebacbde6", + "b7538f52c6fa4cd195e16d6485857abb", + "f4eeebaaee334998ace7743a98a50b30", + "36ac9c8eb00e4126a68a932540197ff5", + "c36db17efc524aa89b002a3f02001ee2", + "c6b8a1a8258d4ab6b095fc0675324b85", + "ebef8616913146fab4944d3d951cd523", + "6837a7ce023a4a4ca362656ea69ef4c0", + "1e4578ff6ead48519c0db4d451f27d87", + "09db804a979b40ccaef47e9cc49656d9", + "41573f42ba6c4b94a801391fbcaddb0f", + "5398bd28ca7544fb8e3967dffc4c0415", + "42114f6617a547b29da88a64232750bb", + "c126d1c5426540278829c52a721c57cb", + "46ed0b8035dc4a209707a0d3515443e0", + "3b69984f8e3248f5aaed2fc211768fbd", + "ec7a331e84c54ef58f4d7d78a64854a0", + "7e2b86223cd5468eb2c26e487442ac36", + "88ecabbc0d474bcd9be6cbcded33a3be", + "7e9dc18ac017489e99986c90f5a84bfc", + "6e6de21ab0f54333af9d6e13474bba97", + "a621c2381db04e43beaeae5565e73344", + "84424c71b5a44889aae3180123b6240c", + "6bbb4d00b5414320b2689e482e7e6164", + "eb6e0776f87f4b18974b86a7f09439ce", + "bad880f391ba4692bb3022ead9c7c5b0", + "16e2233465ab4c24babc4e18cc525bca", + "7b0fd30e02e4469eb2d4361b8f085805", + "c1845b85765a4f34b9a4d65158ee44b8", + "9259cdeb93744e63b2c8eeb4f8431e6e", + "06b8bd1b4a794b608203b0e7c96ebfbc", + "33ad576d6ee94677a1dec49f9141df15", + "2a74ac140d5c4279b9540ebc8c650f5e" ] }, "id": "OI5mNgIdJM7V", - "outputId": "435956bb-7f74-420b-986f-055d84a4d00d" + "outputId": "3fcfa27d-e59b-4bef-e985-fde56e8da2ab" }, "outputs": [ { @@ -2322,7 +2136,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "cb8c0ceed812400fb80bf3c0884e801c" + "model_id": "1df80b3abc274dbf93ea2a4eebacbde6" } }, "metadata": {} @@ -2331,7 +2145,7 @@ "output_type": "stream", "name": "stderr", "text": [ - "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils_base.py:3586: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n", + "/usr/local/lib/python3.9/dist-packages/transformers/tokenization_utils_base.py:3596: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.\n", " warnings.warn(\n" ] }, @@ -2344,7 +2158,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "2130a0fbe4984acda5fd414a89c62fa3" + "model_id": "5398bd28ca7544fb8e3967dffc4c0415" } }, "metadata": {} @@ -2358,7 +2172,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "d6b5e75c74b040f48d8c1fbda869a531" + "model_id": "84424c71b5a44889aae3180123b6240c" } }, "metadata": {} @@ -2371,33 +2185,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": { "id": "6ljCme0qVaHw", "colab": { "base_uri": "https://localhost:8080/", "height": 332, "referenced_widgets": [ - "b6eb39e5dd804fd7a63ffaa9af8251a5", - "4a1803205f9b4202b9b232b3f4c48632", - "3e82d4873bd94c588db9d1508897c971", - "5f54e0ada1fa4f27a803ec5131146cdf", - "59fe677dd25447c5ada55266f2ce6aff", - "67ebf8816b964e79aa4bde8a99247999", - "d0ef75af6ff24a1a912d1df4995efc9a", - "5f82c45527b7442b9e4cb66a2c48976a", - "a3b096140289433c8fc2c1649ce7e9eb", - "934aa40fc80e478ebd7da1a517da5eeb", - "0cd5cd660e4649b9836c0a5df525a8bf", - "f89415baac0d4b9a8f5a878edf98f4cb", - "a0a62435f8c34ac4bbcf9600af8455cb", - "a821cf09f7d744df9c064c37bae1910b", - "fa6e7e0636a84d8c83650965e8a4516a", - "4b88274b4abb43b1acbdf0d4933ddab4", - "6a5b6ff06f2b4592a7e96995f072adfe" + "355889d3a1f14eed91c511cd80ad7681", + "485bcd63d70347adaaeea305596b3afc", + "7e36006fa073432790a138c62027ea86", + "1a613697ab344314b8383ce91fddd4d5", + "e055d6c25c384390a0326167bc4815d3", + "2146c4271e7543ada4d0b2c9d16a627d", + "f1a2ebbffec049509e170f2a5ac3d4cb", + "1be8743f97ba478c9d037898c4573fe8", + "5570e4c5c5d64d538279b772f2a726a2", + "afcad6b0e1734247a588c658a9e34ac0", + "33325968e44242338e2294a80af87be9", + "f4c6a8d6db9c47d684d4edbd2473bc42", + "833442b28e1f4c1b818e6f99a2efd3dd", + "8859844f385740eda1358d95bfba45cd", + "85d96084e47149e3a49db2190020e6e7", + "3086a4ea116246beb5107367ad2b417e", + "d8a8b1e75fc44dd49cf087627bd90832" ] }, - "outputId": "49a78a0d-19e9-4f53-dcf1-34b262f7ac9b" + "outputId": "108d450e-c3c5-45f4-adf0-025ef58e8c3c" }, "outputs": [ { @@ -2420,13 +2234,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": { "id": "5fc6ae4e", "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "09807873-b827-4194-d438-3e683242af7a" + "outputId": "412889f5-9587-46b2-c1ec-2907d5259467" }, "outputs": [ { @@ -2453,14 +2267,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": { "id": "66b5eed0", "colab": { "base_uri": "https://localhost:8080/", - "height": 194 + "height": 1000 }, - "outputId": "f6c92cab-b4e3-4535-fe8e-fc2250674841" + "outputId": "aea3dbc5-8911-4709-fd91-718dcee65997" }, "outputs": [ { @@ -2481,8 +2295,8 @@ "\n", "
\n", " \n", - " \n", - " [372/372 02:36, Epoch 1/1]\n", + " \n", + " [8500/8500 32:53, Epoch 10/10]\n", "
\n", " \n", " \n", @@ -2490,17 +2304,135 @@ " \n", " \n", " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
EpochTraining LossValidation LossBleuRouge1Rouge2RougelRougelsumGen LenBleuMeteor
1No log1.45407410.47090028.5098002.1043001.08907460.34930028.13880057.39550057.36070022.41910020.4629980.480913
21.0612000.95021862.77550030.55790059.65690059.58010023.03780021.3438760.511960
30.9063000.90425163.63400031.63010060.59900060.54090022.64900022.4641250.522868
40.8397000.87670663.58660031.94280060.26180060.21140024.23750022.2738400.528200
50.7636000.86711264.03270031.95730060.77930060.73940024.23000023.0716870.532730
60.7207000.86772464.13420031.80250060.92540060.84400023.29800023.0426800.530030
70.6839000.86699164.56470032.20910061.11670061.07970023.19360023.5357140.533777
80.6455000.86666864.35740031.99180061.04000060.99670023.20270023.1239110.532127
90.6355000.86538564.24860032.14640061.12620061.08100023.63990023.3567530.534063
100.6196000.86925064.39340032.11400061.26150061.21010023.62780023.3489930.535556

" @@ -2508,15 +2440,55 @@ }, "metadata": {} }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Adding files tracked by Git LFS: ['source.spm', 'target.spm']. This may take a bit of time if the files are large.\n", + "WARNING:huggingface_hub.repository:Adding files tracked by Git LFS: ['source.spm', 'target.spm']. This may take a bit of time if the files are large.\n", + "Several commits (2) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (2) will be pushed upstream.\n", + "Several commits (3) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (3) will be pushed upstream.\n", + "Several commits (4) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (4) will be pushed upstream.\n", + "Several commits (5) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (5) will be pushed upstream.\n", + "Several commits (6) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (6) will be pushed upstream.\n", + "Several commits (7) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (7) will be pushed upstream.\n", + "Several commits (8) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (8) will be pushed upstream.\n", + "Several commits (9) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (9) will be pushed upstream.\n", + "Several commits (10) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (10) will be pushed upstream.\n", + "Several commits (11) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (11) will be pushed upstream.\n", + "Several commits (12) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (12) will be pushed upstream.\n", + "Several commits (13) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (13) will be pushed upstream.\n", + "Several commits (14) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (14) will be pushed upstream.\n", + "Several commits (15) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (15) will be pushed upstream.\n", + "Several commits (16) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (16) will be pushed upstream.\n", + "Several commits (17) will be pushed upstream.\n", + "WARNING:huggingface_hub.repository:Several commits (17) will be pushed upstream.\n" + ] + }, { "output_type": "execute_result", "data": { "text/plain": [ - "TrainOutput(global_step=372, training_loss=2.2586322087113575, metrics={'train_runtime': 157.158, 'train_samples_per_second': 37.822, 'train_steps_per_second': 2.367, 'total_flos': 59945021079552.0, 'train_loss': 2.2586322087113575, 'epoch': 1.0})" + "TrainOutput(global_step=8500, training_loss=0.8617506498448989, metrics={'train_runtime': 1973.5473, 'train_samples_per_second': 30.118, 'train_steps_per_second': 4.307, 'total_flos': 527206704021504.0, 'train_loss': 0.8617506498448989, 'epoch': 10.0})" ] }, "metadata": {}, - "execution_count": 50 + "execution_count": 45 } ], "source": [ @@ -2596,7 +2568,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "b153482aed634f1ea5075bb59a2b0545": { + "444edbdb82ff4bd892f051e263de2d79": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2611,14 +2583,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_02ab6c1cb2444ef4ba7e27d60da01dff", - "IPY_MODEL_2060f2bc20f64204952a1e66084985ff", - "IPY_MODEL_322c3e6ef836474194983229603d40b4" + "IPY_MODEL_78a95f9ee4dc48e59e98e81407125e63", + "IPY_MODEL_85023c3e45c047b19bb40e6298eaca70", + "IPY_MODEL_9d413a61db9140b39df03be196aee17f" ], - "layout": "IPY_MODEL_889da805fda949b999a9cec506eba25d" + "layout": "IPY_MODEL_ae384d1645ef4bf78edb427416d46956" } }, - "02ab6c1cb2444ef4ba7e27d60da01dff": { + "78a95f9ee4dc48e59e98e81407125e63": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2633,13 +2605,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6d75e28c977c4c59a82107056498bc8a", + "layout": "IPY_MODEL_68437450b38f4267b701b36f7a62c292", "placeholder": "​", - "style": "IPY_MODEL_1fc508d0ebc04de78df89bd54b24d5b8", + "style": "IPY_MODEL_3f477b7f622641cf92b2944e31cac298", "value": "Downloading builder script: " } }, - "2060f2bc20f64204952a1e66084985ff": { + "85023c3e45c047b19bb40e6298eaca70": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2655,15 +2627,357 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_422600b6113d4e2082ed9e2fe339ee85", + "layout": "IPY_MODEL_b331ebe67cd54c16a2e6d5c16f54e554", "max": 2849, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_ce21a7e1135b400eb0959211a07c7925", + "style": "IPY_MODEL_d80a1346c143408d8005fc1227b837ee", "value": 2849 } }, - "322c3e6ef836474194983229603d40b4": { + "9d413a61db9140b39df03be196aee17f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1a1e97a1aca24d3b9e6771b5a66a8ec6", + "placeholder": "​", + "style": "IPY_MODEL_99f6d5683907449e9115d870b77c1167", + "value": " 7.65k/? [00:00<00:00, 305kB/s]" + } + }, + "ae384d1645ef4bf78edb427416d46956": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68437450b38f4267b701b36f7a62c292": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f477b7f622641cf92b2944e31cac298": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b331ebe67cd54c16a2e6d5c16f54e554": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d80a1346c143408d8005fc1227b837ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1a1e97a1aca24d3b9e6771b5a66a8ec6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99f6d5683907449e9115d870b77c1167": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1df5954b289a4ed3bca2b59ef102272c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_db85ac6a2fb54426b9d1105ab5b2c58d", + "IPY_MODEL_eb7012e234ef40e2ad95caf1ef2f3da9", + "IPY_MODEL_d0a7e55a7a34475185f0d0ca60e921e3" + ], + "layout": "IPY_MODEL_ee56e4730ed94533937d495f8487bf84" + } + }, + "db85ac6a2fb54426b9d1105ab5b2c58d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4abbb4843e2a4e0baae50d77b7982773", + "placeholder": "​", + "style": "IPY_MODEL_36ce695114e2458c818b2194e1b3fb89", + "value": "Downloading builder script: " + } + }, + "eb7012e234ef40e2ad95caf1ef2f3da9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8dc008809366499ba119271cbb17eda0", + "max": 2199, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_344e403ae55b472b89467bb5577c07ca", + "value": 2199 + } + }, + "d0a7e55a7a34475185f0d0ca60e921e3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2678,13 +2992,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4ff59337992b4b728be4e0cd68f8d4c4", + "layout": "IPY_MODEL_ec8e080e55e4481980b128491010b013", "placeholder": "​", - "style": "IPY_MODEL_0c9c095ecd734f68a62f3df31e7c3818", - "value": " 7.65k/? [00:00<00:00, 336kB/s]" + "style": "IPY_MODEL_45ce89d90ac740febff3cc8794e4c05b", + "value": " 5.34k/? [00:00<00:00, 177kB/s]" } }, - "889da805fda949b999a9cec506eba25d": { + "ee56e4730ed94533937d495f8487bf84": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2736,7 +3050,7 @@ "width": null } }, - "6d75e28c977c4c59a82107056498bc8a": { + "4abbb4843e2a4e0baae50d77b7982773": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2788,7 +3102,7 @@ "width": null } }, - "1fc508d0ebc04de78df89bd54b24d5b8": { + "36ce695114e2458c818b2194e1b3fb89": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2803,7 +3117,7 @@ "description_width": "" } }, - "422600b6113d4e2082ed9e2fe339ee85": { + "8dc008809366499ba119271cbb17eda0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2855,7 +3169,7 @@ "width": null } }, - "ce21a7e1135b400eb0959211a07c7925": { + "344e403ae55b472b89467bb5577c07ca": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2871,7 +3185,7 @@ "description_width": "" } }, - "4ff59337992b4b728be4e0cd68f8d4c4": { + "ec8e080e55e4481980b128491010b013": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2923,7 +3237,7 @@ "width": null } }, - "0c9c095ecd734f68a62f3df31e7c3818": { + "45ce89d90ac740febff3cc8794e4c05b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2938,7 +3252,7 @@ "description_width": "" } }, - "8f26fc220d16425f94e24d5033e4215a": { + "0cda57bbaf304367849fa9d38f499511": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2953,14 +3267,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_036a4f6f3e594ba1858e72b1c4ea41d6", - "IPY_MODEL_f8ab822d5b7c4547b576ea7c71f889ef", - "IPY_MODEL_5c5613089dec490c91a4525dae96860c" + "IPY_MODEL_e2e4ec42973f4ee6b8cf20919b656adb", + "IPY_MODEL_819262719fe5423fb2a68418e52aa19f", + "IPY_MODEL_51e2a909dab14dea94a5457495505e84" ], - "layout": "IPY_MODEL_8cf043994b1f47b6a9c55459dac858fd" + "layout": "IPY_MODEL_d309c5ac0c35498d921210a6a45b13a4" } }, - "036a4f6f3e594ba1858e72b1c4ea41d6": { + "e2e4ec42973f4ee6b8cf20919b656adb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2975,13 +3289,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c57118269c8244149c4e2c8157a9b224", + "layout": "IPY_MODEL_2718cc5d119b4484aa0c87e32403ab1f", "placeholder": "​", - "style": "IPY_MODEL_dc938a244b42455eacd71e728170aa2d", + "style": "IPY_MODEL_0ab30ef801f7460f8e6a6cb070c547cb", "value": "Saving the dataset (1/1 shards): 100%" } }, - "f8ab822d5b7c4547b576ea7c71f889ef": { + "819262719fe5423fb2a68418e52aa19f": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2997,15 +3311,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d84659e637c145f181b67ef3c21e1369", + "layout": "IPY_MODEL_ce63794b26cc4c9f954155925ac3623f", "max": 5944, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_55371b6b591f44d9878073e82580ff87", + "style": "IPY_MODEL_04d922a97457474ab3861c97b69d87ae", "value": 5944 } }, - "5c5613089dec490c91a4525dae96860c": { + "51e2a909dab14dea94a5457495505e84": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3020,13 +3334,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_db17195d51d94c6b99357da32277052f", + "layout": "IPY_MODEL_239cb8aaaeed4461b9dd4ca536e0d87e", "placeholder": "​", - "style": "IPY_MODEL_740b2d727d32488e8c0637eee6e128f3", - "value": " 5944/5944 [00:00<00:00, 157648.10 examples/s]" + "style": "IPY_MODEL_2e9fb425201c4973aa5d48d073c5e61b", + "value": " 5944/5944 [00:00<00:00, 103476.66 examples/s]" } }, - "8cf043994b1f47b6a9c55459dac858fd": { + "d309c5ac0c35498d921210a6a45b13a4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3078,7 +3392,7 @@ "width": null } }, - "c57118269c8244149c4e2c8157a9b224": { + "2718cc5d119b4484aa0c87e32403ab1f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3130,7 +3444,7 @@ "width": null } }, - "dc938a244b42455eacd71e728170aa2d": { + "0ab30ef801f7460f8e6a6cb070c547cb": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3145,7 +3459,7 @@ "description_width": "" } }, - "d84659e637c145f181b67ef3c21e1369": { + "ce63794b26cc4c9f954155925ac3623f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3197,7 +3511,7 @@ "width": null } }, - "55371b6b591f44d9878073e82580ff87": { + "04d922a97457474ab3861c97b69d87ae": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3213,7 +3527,7 @@ "description_width": "" } }, - "db17195d51d94c6b99357da32277052f": { + "239cb8aaaeed4461b9dd4ca536e0d87e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3265,7 +3579,7 @@ "width": null } }, - "740b2d727d32488e8c0637eee6e128f3": { + "2e9fb425201c4973aa5d48d073c5e61b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3280,7 +3594,7 @@ "description_width": "" } }, - "263efb97b4aa4d3794f657731cdb9c4a": { + "43158795fdab4c77bb9e275ea88b451e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3295,14 +3609,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9a5a668470104a98a3eda3a6a22a0ad9", - "IPY_MODEL_eafd4448d8594bfaaa854f78861d5313", - "IPY_MODEL_3208d3b9b8d043499f0d3592f00fdf92" + "IPY_MODEL_ea762a0a4a174f59ba868d0e461300fe", + "IPY_MODEL_92d43733e22843b682c10981b514fca8", + "IPY_MODEL_3470ab0ffeeb45dd983a730f7c80d8b7" ], - "layout": "IPY_MODEL_0290f44b58bf44c3becacff772d386ad" + "layout": "IPY_MODEL_2374bedbff6947d5b665555fa89b7eca" } }, - "9a5a668470104a98a3eda3a6a22a0ad9": { + "ea762a0a4a174f59ba868d0e461300fe": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3317,13 +3631,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f1c566e93ab94e3984a4809563dc7b56", + "layout": "IPY_MODEL_af56c3650115484681877ecc55b3879b", "placeholder": "​", - "style": "IPY_MODEL_db92c87519f44620a9df9d9f17dd35fb", + "style": "IPY_MODEL_e352f20a0fe2451dbb24f0d2e9662568", "value": "Saving the dataset (1/1 shards): 100%" } }, - "eafd4448d8594bfaaa854f78861d5313": { + "92d43733e22843b682c10981b514fca8": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3339,15 +3653,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_48544f8fa2f34617ab6119cec0b46dd4", + "layout": "IPY_MODEL_e457705527d34e4a85cb4378b33fe69b", "max": 661, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6c1eee5bbc0541459569cf7a113d19fc", + "style": "IPY_MODEL_a0014c7d0c6e455d9ca533f7039f6b18", "value": 661 } }, - "3208d3b9b8d043499f0d3592f00fdf92": { + "3470ab0ffeeb45dd983a730f7c80d8b7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3362,13 +3676,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6df748fccaea4581b9ba0965af3a7dd1", + "layout": "IPY_MODEL_171ecd9f223149389c01b63216f248ec", "placeholder": "​", - "style": "IPY_MODEL_e4830837e3c848e08034d91855edf808", - "value": " 661/661 [00:00<00:00, 23522.92 examples/s]" + "style": "IPY_MODEL_4b2e62d36cb04eec8b5988021dadb721", + "value": " 661/661 [00:00<00:00, 18045.01 examples/s]" } }, - "0290f44b58bf44c3becacff772d386ad": { + "2374bedbff6947d5b665555fa89b7eca": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3420,7 +3734,7 @@ "width": null } }, - "f1c566e93ab94e3984a4809563dc7b56": { + "af56c3650115484681877ecc55b3879b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3472,7 +3786,7 @@ "width": null } }, - "db92c87519f44620a9df9d9f17dd35fb": { + "e352f20a0fe2451dbb24f0d2e9662568": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3487,7 +3801,7 @@ "description_width": "" } }, - "48544f8fa2f34617ab6119cec0b46dd4": { + "e457705527d34e4a85cb4378b33fe69b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3539,7 +3853,7 @@ "width": null } }, - "6c1eee5bbc0541459569cf7a113d19fc": { + "a0014c7d0c6e455d9ca533f7039f6b18": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3555,7 +3869,7 @@ "description_width": "" } }, - "6df748fccaea4581b9ba0965af3a7dd1": { + "171ecd9f223149389c01b63216f248ec": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3607,7 +3921,7 @@ "width": null } }, - "e4830837e3c848e08034d91855edf808": { + "4b2e62d36cb04eec8b5988021dadb721": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3622,7 +3936,7 @@ "description_width": "" } }, - "b99a0bea300f4729a199853ca7587c0a": { + "eb41f3e8e4a44c0f93c9fd6ccd2bf5d1": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3637,14 +3951,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_42867affae134afcb977dd3c559af0b8", - "IPY_MODEL_a6967260b0af40b1919f39330ce369c8", - "IPY_MODEL_1d2c8fdbfae54fb0a34cede31bcc70af" + "IPY_MODEL_49350307e55f494f8e725e49e477f08d", + "IPY_MODEL_1b1e786bcd2c48b8ace28c96a2b948b8", + "IPY_MODEL_74e161d17f304a90a630c31cffa32069" ], - "layout": "IPY_MODEL_6f360c8ee3a74fdea4bf26d241989175" + "layout": "IPY_MODEL_844838085b404ff694a7ed610d21864a" } }, - "42867affae134afcb977dd3c559af0b8": { + "49350307e55f494f8e725e49e477f08d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3659,13 +3973,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_00a334e11362449f9300a0adcb9ddb11", + "layout": "IPY_MODEL_a0051f7bb9594b1a8c40adaa163fef8e", "placeholder": "​", - "style": "IPY_MODEL_c91f473ab5084e249041831b9af86264", + "style": "IPY_MODEL_5236d4e0dd2a426bb1fb4f988dcda330", "value": "Saving the dataset (1/1 shards): 100%" } }, - "a6967260b0af40b1919f39330ce369c8": { + "1b1e786bcd2c48b8ace28c96a2b948b8": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3681,15 +3995,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9c22ddcf272d4bbda789e7a7a95c7edd", + "layout": "IPY_MODEL_384e13828c4d49feafbb88f33843e917", "max": 1652, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e2f55ea0816c4b48be4b88481697cc4e", + "style": "IPY_MODEL_b47d192f2590492092d868b3511aaed8", "value": 1652 } }, - "1d2c8fdbfae54fb0a34cede31bcc70af": { + "74e161d17f304a90a630c31cffa32069": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3704,13 +4018,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bc64277c4ae448dfa35b34dfc9d2f473", + "layout": "IPY_MODEL_592e12f87196414286dd8ac87ee75ccd", "placeholder": "​", - "style": "IPY_MODEL_b936dbbb272543658572a590c06409aa", - "value": " 1652/1652 [00:00<00:00, 55149.99 examples/s]" + "style": "IPY_MODEL_7eed76af626c413793d7e74e6823c9f1", + "value": " 1652/1652 [00:00<00:00, 69471.92 examples/s]" } }, - "6f360c8ee3a74fdea4bf26d241989175": { + "844838085b404ff694a7ed610d21864a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3762,7 +4076,7 @@ "width": null } }, - "00a334e11362449f9300a0adcb9ddb11": { + "a0051f7bb9594b1a8c40adaa163fef8e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3814,7 +4128,7 @@ "width": null } }, - "c91f473ab5084e249041831b9af86264": { + "5236d4e0dd2a426bb1fb4f988dcda330": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3829,7 +4143,7 @@ "description_width": "" } }, - "9c22ddcf272d4bbda789e7a7a95c7edd": { + "384e13828c4d49feafbb88f33843e917": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3881,7 +4195,7 @@ "width": null } }, - "e2f55ea0816c4b48be4b88481697cc4e": { + "b47d192f2590492092d868b3511aaed8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3897,7 +4211,7 @@ "description_width": "" } }, - "bc64277c4ae448dfa35b34dfc9d2f473": { + "592e12f87196414286dd8ac87ee75ccd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3949,7 +4263,7 @@ "width": null } }, - "b936dbbb272543658572a590c06409aa": { + "7eed76af626c413793d7e74e6823c9f1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3964,7 +4278,7 @@ "description_width": "" } }, - "c441610b233344d8a049746a6f32fb79": { + "92f8a6c960b24b18a1eebe584739775a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3979,14 +4293,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6548e2fee57b4e2f9610025c2605cc2d", - "IPY_MODEL_0a4c8d3bfdb44f389047789634ab2226", - "IPY_MODEL_38cdfb156d854a9b99f3d54bdc3a08e8" + "IPY_MODEL_e5ad8ec5c4d24b8cb62e19d1cf7db4b4", + "IPY_MODEL_5ee9bb13994543dda0f2c550233b13e0", + "IPY_MODEL_6591a01c111345d4a996b9a634e3de65" ], - "layout": "IPY_MODEL_06c93be20682495c9f03dcd1753e778c" + "layout": "IPY_MODEL_2c1b948ba2b44432998ac7d30e6188b5" } }, - "6548e2fee57b4e2f9610025c2605cc2d": { + "e5ad8ec5c4d24b8cb62e19d1cf7db4b4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4001,13 +4315,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c5a5cac1d8274748b9ecb8643c1ea0cb", + "layout": "IPY_MODEL_288c72ed40094e5c80e4f4285314ad06", "placeholder": "​", - "style": "IPY_MODEL_06652dac8f3e432a93e9e56573ffe82d", + "style": "IPY_MODEL_9512546172e945efb83ba3e1f8c0ba43", "value": "Downloading (…)okenizer_config.json: 100%" } }, - "0a4c8d3bfdb44f389047789634ab2226": { + "5ee9bb13994543dda0f2c550233b13e0": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4023,15 +4337,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d1568c5c6fc747509b53bfe16c8a0b17", + "layout": "IPY_MODEL_c75df95a05244b2094c7187c44ca4ff9", "max": 301, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c38d933101a94a84b6154028f81d4699", + "style": "IPY_MODEL_4129369cbdd74658ac5a926f7515684f", "value": 301 } }, - "38cdfb156d854a9b99f3d54bdc3a08e8": { + "6591a01c111345d4a996b9a634e3de65": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4046,13 +4360,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_50a536c642e04efaa0548a24961bd0a3", + "layout": "IPY_MODEL_35fc2205627a4190978d3a82124b01dc", "placeholder": "​", - "style": "IPY_MODEL_cc4bd2e9ad094162bae6474a476aa27f", - "value": " 301/301 [00:00<00:00, 11.8kB/s]" + "style": "IPY_MODEL_e71350a633cf4fdb958a4c5ef805195d", + "value": " 301/301 [00:00<00:00, 10.5kB/s]" } }, - "06c93be20682495c9f03dcd1753e778c": { + "2c1b948ba2b44432998ac7d30e6188b5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4104,7 +4418,7 @@ "width": null } }, - "c5a5cac1d8274748b9ecb8643c1ea0cb": { + "288c72ed40094e5c80e4f4285314ad06": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4156,7 +4470,7 @@ "width": null } }, - "06652dac8f3e432a93e9e56573ffe82d": { + "9512546172e945efb83ba3e1f8c0ba43": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4171,7 +4485,7 @@ "description_width": "" } }, - "d1568c5c6fc747509b53bfe16c8a0b17": { + "c75df95a05244b2094c7187c44ca4ff9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4223,7 +4537,7 @@ "width": null } }, - "c38d933101a94a84b6154028f81d4699": { + "4129369cbdd74658ac5a926f7515684f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4239,7 +4553,7 @@ "description_width": "" } }, - "50a536c642e04efaa0548a24961bd0a3": { + "35fc2205627a4190978d3a82124b01dc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4291,7 +4605,7 @@ "width": null } }, - "cc4bd2e9ad094162bae6474a476aa27f": { + "e71350a633cf4fdb958a4c5ef805195d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4306,7 +4620,7 @@ "description_width": "" } }, - "4ffc167348744ffe8a965106efafa366": { + "19ef5add0dca4029ae756205a0ac8e39": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4321,14 +4635,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_cd4402de801a47358391f9d2a0309088", - "IPY_MODEL_c518f3fafc8246a6932759f91d681de0", - "IPY_MODEL_74dfe887a1a34e4dab089b9554a9c3c0" + "IPY_MODEL_b916b57e10b84f42973ccb9f9d515d1f", + "IPY_MODEL_85b2e1a3c96c4d799b2fa7467807f0d8", + "IPY_MODEL_73ab068279fc44e8ac2d67ebd7b0fc3e" ], - "layout": "IPY_MODEL_85a306b07e9c4a138b9ebbc0489b95d7" + "layout": "IPY_MODEL_99c2ee0e45324bbfaac6ea14d098f89d" } }, - "cd4402de801a47358391f9d2a0309088": { + "b916b57e10b84f42973ccb9f9d515d1f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4343,13 +4657,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e8c5836880c947c09b568b6143607bdf", + "layout": "IPY_MODEL_808f24531d40422f90b1abbb04c7d5f1", "placeholder": "​", - "style": "IPY_MODEL_5a19c3b556b44bd68493754824f11cae", + "style": "IPY_MODEL_a43b1574bbd54002ba8f9882969dc022", "value": "Downloading source.spm: 100%" } }, - "c518f3fafc8246a6932759f91d681de0": { + "85b2e1a3c96c4d799b2fa7467807f0d8": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4365,15 +4679,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8700ef935ee3461ebbe4089afe919372", + "layout": "IPY_MODEL_8998984159ce473d8621d1ff3fb123d8", "max": 796845, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e22f3ecec5a6468d9154adee5361cc1d", + "style": "IPY_MODEL_f928bd7ca05d4c8baabc07a85d510895", "value": 796845 } }, - "74dfe887a1a34e4dab089b9554a9c3c0": { + "73ab068279fc44e8ac2d67ebd7b0fc3e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4388,13 +4702,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7c4d8b55d27240128544a18184c44e6a", + "layout": "IPY_MODEL_de77630a06c74de5873475df12439b9b", "placeholder": "​", - "style": "IPY_MODEL_7f11dcd77bc84e249fb1fcf255dd7aa9", - "value": " 797k/797k [00:01<00:00, 758kB/s]" + "style": "IPY_MODEL_4423787948ad4789b2d090c28d7cd9f9", + "value": " 797k/797k [00:00<00:00, 5.70MB/s]" } }, - "85a306b07e9c4a138b9ebbc0489b95d7": { + "99c2ee0e45324bbfaac6ea14d098f89d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4446,7 +4760,7 @@ "width": null } }, - "e8c5836880c947c09b568b6143607bdf": { + "808f24531d40422f90b1abbb04c7d5f1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4498,7 +4812,7 @@ "width": null } }, - "5a19c3b556b44bd68493754824f11cae": { + "a43b1574bbd54002ba8f9882969dc022": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4513,7 +4827,7 @@ "description_width": "" } }, - "8700ef935ee3461ebbe4089afe919372": { + "8998984159ce473d8621d1ff3fb123d8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4565,7 +4879,7 @@ "width": null } }, - "e22f3ecec5a6468d9154adee5361cc1d": { + "f928bd7ca05d4c8baabc07a85d510895": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4581,7 +4895,7 @@ "description_width": "" } }, - "7c4d8b55d27240128544a18184c44e6a": { + "de77630a06c74de5873475df12439b9b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4633,7 +4947,7 @@ "width": null } }, - "7f11dcd77bc84e249fb1fcf255dd7aa9": { + "4423787948ad4789b2d090c28d7cd9f9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4648,7 +4962,7 @@ "description_width": "" } }, - "997fbd3483c64187bc5388f2bdb27acc": { + "e2c4c192118b43ca80dd9189b536bb7a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4663,14 +4977,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fe916edb32134f38928f8c70ca0ad466", - "IPY_MODEL_2cb4b3a346734cd7949559464312c4e3", - "IPY_MODEL_b53968d37ff84cacbb7bdcde4969b329" + "IPY_MODEL_898349e06fba42e592e9cb87780ffe22", + "IPY_MODEL_28cfe0d2ad4648a48f7301d63d77e631", + "IPY_MODEL_b6cf48341fec4db599cf97b1bafa801d" ], - "layout": "IPY_MODEL_cf512800a7f64728b58b0879a8a258fd" + "layout": "IPY_MODEL_90f9e1e6fbea489994fe25d7f41a891c" } }, - "fe916edb32134f38928f8c70ca0ad466": { + "898349e06fba42e592e9cb87780ffe22": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4685,13 +4999,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_64f9d6ad46c342c7b51256eda98cea82", + "layout": "IPY_MODEL_d411cd907bd24fbb89e76e6f187e30ae", "placeholder": "​", - "style": "IPY_MODEL_c9fafe70926a46d394ae2c7ae5f02497", + "style": "IPY_MODEL_bf62b3ec94724d4a90232ba71415edd9", "value": "Downloading target.spm: 100%" } }, - "2cb4b3a346734cd7949559464312c4e3": { + "28cfe0d2ad4648a48f7301d63d77e631": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4707,15 +5021,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_60d60414132e48298a966d7ea80e6b12", + "layout": "IPY_MODEL_df2f85af85264c5da533b55830f1a86f", "max": 768489, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_d1e7ed82d78e44639623d1d4f4cd610b", + "style": "IPY_MODEL_3493b434f69647e582ae99ae0a9edac8", "value": 768489 } }, - "b53968d37ff84cacbb7bdcde4969b329": { + "b6cf48341fec4db599cf97b1bafa801d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4730,13 +5044,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2d4fa1f00a9e40b29525e32682f27d68", + "layout": "IPY_MODEL_7938ad2f61214ecbbf10a490532e4397", "placeholder": "​", - "style": "IPY_MODEL_8243cf762367446ea6504aa89c555f92", - "value": " 768k/768k [00:01<00:00, 740kB/s]" + "style": "IPY_MODEL_40868b9d023b44f9bbb76922308a2cfd", + "value": " 768k/768k [00:00<00:00, 10.0MB/s]" } }, - "cf512800a7f64728b58b0879a8a258fd": { + "90f9e1e6fbea489994fe25d7f41a891c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4788,7 +5102,7 @@ "width": null } }, - "64f9d6ad46c342c7b51256eda98cea82": { + "d411cd907bd24fbb89e76e6f187e30ae": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4840,7 +5154,7 @@ "width": null } }, - "c9fafe70926a46d394ae2c7ae5f02497": { + "bf62b3ec94724d4a90232ba71415edd9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4855,7 +5169,7 @@ "description_width": "" } }, - "60d60414132e48298a966d7ea80e6b12": { + "df2f85af85264c5da533b55830f1a86f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4907,7 +5221,7 @@ "width": null } }, - "d1e7ed82d78e44639623d1d4f4cd610b": { + "3493b434f69647e582ae99ae0a9edac8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4923,7 +5237,7 @@ "description_width": "" } }, - "2d4fa1f00a9e40b29525e32682f27d68": { + "7938ad2f61214ecbbf10a490532e4397": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4975,7 +5289,7 @@ "width": null } }, - "8243cf762367446ea6504aa89c555f92": { + "40868b9d023b44f9bbb76922308a2cfd": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4990,7 +5304,7 @@ "description_width": "" } }, - "72fd8a0fe783476f80631e108eb74962": { + "3b9d26593e9c42229ad51c3e182eb0cf": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5005,14 +5319,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_815c209a15eb4af5ab8701c2e0b61edc", - "IPY_MODEL_1e5d41f9ba1c42d8b61c6f810212b319", - "IPY_MODEL_bb1d8b508a3545bbaa63c003cb87a2ad" + "IPY_MODEL_e2b7975d6a1442119fe1ece313c5634b", + "IPY_MODEL_0687432b310243b59733879b13a3bc2b", + "IPY_MODEL_075f5250dd3848e8821dfe3eb2d3ef43" ], - "layout": "IPY_MODEL_ef53a805c3714a458eac9d174e73422e" + "layout": "IPY_MODEL_77b01edcd89f4cf08a9c94b26a9a0350" } }, - "815c209a15eb4af5ab8701c2e0b61edc": { + "e2b7975d6a1442119fe1ece313c5634b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5027,13 +5341,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1834c86709354edebbe5e4a5294cedaa", + "layout": "IPY_MODEL_f65b5fa53cd34a5abf9df71fcbd634a6", "placeholder": "​", - "style": "IPY_MODEL_6a54c163d1d04d40aa54eb77cc581e5e", + "style": "IPY_MODEL_0bded1ca754f4a62a2209537307bbb9a", "value": "Downloading (…)olve/main/vocab.json: 100%" } }, - "1e5d41f9ba1c42d8b61c6f810212b319": { + "0687432b310243b59733879b13a3bc2b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5049,15 +5363,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1afb75aa08f64f45a30866398728116a", + "layout": "IPY_MODEL_f2ef84459c504a2e8e8fbfbfd7f06027", "max": 1389436, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_ce8800a085024df99177a6ae933f4cf3", + "style": "IPY_MODEL_547d01d4986a47b489c105fd5a847971", "value": 1389436 } }, - "bb1d8b508a3545bbaa63c003cb87a2ad": { + "075f5250dd3848e8821dfe3eb2d3ef43": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5072,13 +5386,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ca3f5fba82264510b85fa0c8df6977c7", + "layout": "IPY_MODEL_592d48a2dda1465b8d7136260bccd3a6", "placeholder": "​", - "style": "IPY_MODEL_8dc53e8cd4ff43dc91684e48b978176a", - "value": " 1.39M/1.39M [00:00<00:00, 6.02MB/s]" + "style": "IPY_MODEL_35182e2072c444279271294c127ff870", + "value": " 1.39M/1.39M [00:00<00:00, 17.5MB/s]" } }, - "ef53a805c3714a458eac9d174e73422e": { + "77b01edcd89f4cf08a9c94b26a9a0350": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5130,7 +5444,7 @@ "width": null } }, - "1834c86709354edebbe5e4a5294cedaa": { + "f65b5fa53cd34a5abf9df71fcbd634a6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5182,7 +5496,7 @@ "width": null } }, - "6a54c163d1d04d40aa54eb77cc581e5e": { + "0bded1ca754f4a62a2209537307bbb9a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5197,7 +5511,7 @@ "description_width": "" } }, - "1afb75aa08f64f45a30866398728116a": { + "f2ef84459c504a2e8e8fbfbfd7f06027": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5249,7 +5563,7 @@ "width": null } }, - "ce8800a085024df99177a6ae933f4cf3": { + "547d01d4986a47b489c105fd5a847971": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5265,7 +5579,7 @@ "description_width": "" } }, - "ca3f5fba82264510b85fa0c8df6977c7": { + "592d48a2dda1465b8d7136260bccd3a6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5317,7 +5631,7 @@ "width": null } }, - "8dc53e8cd4ff43dc91684e48b978176a": { + "35182e2072c444279271294c127ff870": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5332,7 +5646,7 @@ "description_width": "" } }, - "4aa7290876ea40fda8f5a15b5761d061": { + "c500ceb1abc442b4b41565a86969897c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5347,14 +5661,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8abe6245574c410d8c3a65c2f4315c42", - "IPY_MODEL_1c4ec16f0f1c422cbfa48fc1c8402503", - "IPY_MODEL_8890bbad5d684e6bb82bba4f2b73bde6" + "IPY_MODEL_67df768c28154e84ad5bbc6484737bb7", + "IPY_MODEL_ffab340231314847825bfaf9ee12dc6d", + "IPY_MODEL_5a4b40312a94484b9649e0865114d9e9" ], - "layout": "IPY_MODEL_b66fcabf93894c1fbf003ead276e14b2" + "layout": "IPY_MODEL_1d6982c459d940909ebaf70eb5a68a06" } }, - "8abe6245574c410d8c3a65c2f4315c42": { + "67df768c28154e84ad5bbc6484737bb7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5369,13 +5683,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da8ba96f1da544eea8a8fe2255db495a", + "layout": "IPY_MODEL_309684c89e454cc4bd61a04cb9c10526", "placeholder": "​", - "style": "IPY_MODEL_fe02b2377ec44526b5676a3a71520c96", + "style": "IPY_MODEL_c4cd0148e7324ede8483c74593bc4d73", "value": "Downloading (…)cial_tokens_map.json: 100%" } }, - "1c4ec16f0f1c422cbfa48fc1c8402503": { + "ffab340231314847825bfaf9ee12dc6d": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5391,15 +5705,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6ef7df61a7294ac5999c72a1cdc977c7", + "layout": "IPY_MODEL_25ac2f545d8943a1a7b36a3c597be42c", "max": 74, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_1ba06c41fe954a00a2e43d5df4f4cf56", + "style": "IPY_MODEL_d775bd4afa8d487ebadf03553c11fa4f", "value": 74 } }, - "8890bbad5d684e6bb82bba4f2b73bde6": { + "5a4b40312a94484b9649e0865114d9e9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5414,13 +5728,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff565e4ddd0043a5a6c15956d0572a4c", + "layout": "IPY_MODEL_6a9db1c5c91e4273ac0295300aa93264", "placeholder": "​", - "style": "IPY_MODEL_6cbeb2cb31c94f9fb08ef3592cc5ecb6", - "value": " 74.0/74.0 [00:00<00:00, 2.69kB/s]" + "style": "IPY_MODEL_7d997d12b4a14f768e8011ca49e7582b", + "value": " 74.0/74.0 [00:00<00:00, 3.46kB/s]" } }, - "b66fcabf93894c1fbf003ead276e14b2": { + "1d6982c459d940909ebaf70eb5a68a06": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5472,7 +5786,7 @@ "width": null } }, - "da8ba96f1da544eea8a8fe2255db495a": { + "309684c89e454cc4bd61a04cb9c10526": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5524,7 +5838,7 @@ "width": null } }, - "fe02b2377ec44526b5676a3a71520c96": { + "c4cd0148e7324ede8483c74593bc4d73": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5539,7 +5853,7 @@ "description_width": "" } }, - "6ef7df61a7294ac5999c72a1cdc977c7": { + "25ac2f545d8943a1a7b36a3c597be42c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5591,7 +5905,7 @@ "width": null } }, - "1ba06c41fe954a00a2e43d5df4f4cf56": { + "d775bd4afa8d487ebadf03553c11fa4f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5607,7 +5921,7 @@ "description_width": "" } }, - "ff565e4ddd0043a5a6c15956d0572a4c": { + "6a9db1c5c91e4273ac0295300aa93264": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5659,7 +5973,7 @@ "width": null } }, - "6cbeb2cb31c94f9fb08ef3592cc5ecb6": { + "7d997d12b4a14f768e8011ca49e7582b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5674,7 +5988,7 @@ "description_width": "" } }, - "6e4e96f1350f4a448c8864b0f513a52d": { + "27a885276d084972aeded827cd66a651": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5689,14 +6003,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_78be694469f24b9bb38ec8f00d90eead", - "IPY_MODEL_f26d4e21fa3949d0b9f357bfda39e205", - "IPY_MODEL_6488b900697b432a8490a452ae4d7999" + "IPY_MODEL_2e7d02d43bf44c2d8b8617165b6ad7ab", + "IPY_MODEL_2c9e001308704de6962fdee2ee8ecb96", + "IPY_MODEL_a37faf3845d24604a15b7715e6aae754" ], - "layout": "IPY_MODEL_d45646f8821f468887eb8c70690b48e1" + "layout": "IPY_MODEL_01ab95016d9b49649b5caf20df07a07e" } }, - "78be694469f24b9bb38ec8f00d90eead": { + "2e7d02d43bf44c2d8b8617165b6ad7ab": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5711,13 +6025,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_769662f4c43b4848bbcd97a50fb870a9", + "layout": "IPY_MODEL_b586f3919d7849e4993053966bd5c263", "placeholder": "​", - "style": "IPY_MODEL_63bf2a128bc14fb1942a4dbcf69bcd8b", + "style": "IPY_MODEL_1aa3962201394d02b831daf163748eb2", "value": "Downloading (…)lve/main/config.json: 100%" } }, - "f26d4e21fa3949d0b9f357bfda39e205": { + "2c9e001308704de6962fdee2ee8ecb96": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5733,15 +6047,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8b7a11d3f37245bdb32c69936b48af6d", + "layout": "IPY_MODEL_f8edb277d0474cd78cfdd5135a7e71f6", "max": 1371, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e090dca0578a42888d1b5690e24a31e7", + "style": "IPY_MODEL_c105bb9805984f06acc4bf3e7689aab6", "value": 1371 } }, - "6488b900697b432a8490a452ae4d7999": { + "a37faf3845d24604a15b7715e6aae754": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5756,13 +6070,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1633d84758c546a4b3b789dae018f97c", + "layout": "IPY_MODEL_59ee1b8c331b4856a32436e4cd593840", "placeholder": "​", - "style": "IPY_MODEL_3b9c31ff7be14ac89a96007b23f66121", - "value": " 1.37k/1.37k [00:00<00:00, 47.3kB/s]" + "style": "IPY_MODEL_2529617af48e470cb10c3b78a54625da", + "value": " 1.37k/1.37k [00:00<00:00, 21.0kB/s]" } }, - "d45646f8821f468887eb8c70690b48e1": { + "01ab95016d9b49649b5caf20df07a07e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5814,7 +6128,7 @@ "width": null } }, - "769662f4c43b4848bbcd97a50fb870a9": { + "b586f3919d7849e4993053966bd5c263": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5866,7 +6180,7 @@ "width": null } }, - "63bf2a128bc14fb1942a4dbcf69bcd8b": { + "1aa3962201394d02b831daf163748eb2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5881,7 +6195,7 @@ "description_width": "" } }, - "8b7a11d3f37245bdb32c69936b48af6d": { + "f8edb277d0474cd78cfdd5135a7e71f6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5933,7 +6247,7 @@ "width": null } }, - "e090dca0578a42888d1b5690e24a31e7": { + "c105bb9805984f06acc4bf3e7689aab6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5949,7 +6263,7 @@ "description_width": "" } }, - "1633d84758c546a4b3b789dae018f97c": { + "59ee1b8c331b4856a32436e4cd593840": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6001,7 +6315,7 @@ "width": null } }, - "3b9c31ff7be14ac89a96007b23f66121": { + "2529617af48e470cb10c3b78a54625da": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6016,7 +6330,7 @@ "description_width": "" } }, - "a3faa041514a47d6be8ce7605fa12c23": { + "d854ce935af24ffc852edc5bc1c0acf2": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6031,14 +6345,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3020671b51174f9c8302a573526c3d2f", - "IPY_MODEL_63d669196f4a4497a45e0cd6205ace95", - "IPY_MODEL_46cb0602456c4e04b6d0b2cb93d7841a" + "IPY_MODEL_ab42727bdc2f4f4fa6afa3db5696b070", + "IPY_MODEL_cfce7cb36d4f40d0b924cebbf7e8d912", + "IPY_MODEL_6f55938e5f28431ab9b406fb29430221" ], - "layout": "IPY_MODEL_f6f8cff3e70047179cd8796e5126edec" + "layout": "IPY_MODEL_d90e907ea7894130b312cd39cf716407" } }, - "3020671b51174f9c8302a573526c3d2f": { + "ab42727bdc2f4f4fa6afa3db5696b070": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6053,13 +6367,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_be05a90b77a34b098e71653da49b4478", + "layout": "IPY_MODEL_9ed0d50485834df49a3e238df541b753", "placeholder": "​", - "style": "IPY_MODEL_aca3deb75ca440cb827886b5bf19e0e6", + "style": "IPY_MODEL_667b391d3a84450fa4229c0f17a360c0", "value": "Downloading tf_model.h5: 100%" } }, - "63d669196f4a4497a45e0cd6205ace95": { + "cfce7cb36d4f40d0b924cebbf7e8d912": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6075,15 +6389,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_acb200a560bf45819a80d88bdd8a4031", + "layout": "IPY_MODEL_8d9a9b9fa1eb4258b51d6c70f71758b3", "max": 298161796, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_aec200e0702f4e11ad17a7961d3fc700", + "style": "IPY_MODEL_0f8ee8874e3a4345a4a6e58f143d7730", "value": 298161796 } }, - "46cb0602456c4e04b6d0b2cb93d7841a": { + "6f55938e5f28431ab9b406fb29430221": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6098,13 +6412,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dcb2a6e5da49421ab1873e86f0650083", + "layout": "IPY_MODEL_9957f83400094479a7a1cf3fbc382b74", "placeholder": "​", - "style": "IPY_MODEL_243b29024df24504992fdec7ed63052f", - "value": " 298M/298M [00:17<00:00, 17.6MB/s]" + "style": "IPY_MODEL_11ea58df135344dda3e147bd251cbea7", + "value": " 298M/298M [00:05<00:00, 44.5MB/s]" } }, - "f6f8cff3e70047179cd8796e5126edec": { + "d90e907ea7894130b312cd39cf716407": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6156,7 +6470,7 @@ "width": null } }, - "be05a90b77a34b098e71653da49b4478": { + "9ed0d50485834df49a3e238df541b753": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6208,7 +6522,7 @@ "width": null } }, - "aca3deb75ca440cb827886b5bf19e0e6": { + "667b391d3a84450fa4229c0f17a360c0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6223,7 +6537,7 @@ "description_width": "" } }, - "acb200a560bf45819a80d88bdd8a4031": { + "8d9a9b9fa1eb4258b51d6c70f71758b3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6275,7 +6589,7 @@ "width": null } }, - "aec200e0702f4e11ad17a7961d3fc700": { + "0f8ee8874e3a4345a4a6e58f143d7730": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6291,7 +6605,7 @@ "description_width": "" } }, - "dcb2a6e5da49421ab1873e86f0650083": { + "9957f83400094479a7a1cf3fbc382b74": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6343,7 +6657,7 @@ "width": null } }, - "243b29024df24504992fdec7ed63052f": { + "11ea58df135344dda3e147bd251cbea7": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6358,7 +6672,7 @@ "description_width": "" } }, - "fc2a5d69d8854151949a97799698dd19": { + "845954adfc444434967af44b20db9896": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6373,14 +6687,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5f22fc61e5cd4e7fbc13b8f92d78ee23", - "IPY_MODEL_18865676da3d49dfab563d712dcd55b9", - "IPY_MODEL_fe03a6bd3dc343d8afc818b919dfb90c" + "IPY_MODEL_67cc5f72da0548869b6464c21166d941", + "IPY_MODEL_7063c0563b434d5b89c84dda54a4ffc0", + "IPY_MODEL_0be4900c5f584498b117bbfb0c47c814" ], - "layout": "IPY_MODEL_921857fae7e945eab76e98c66ec5013a" + "layout": "IPY_MODEL_729fd70b2e944b619c8465d8c0db739c" } }, - "5f22fc61e5cd4e7fbc13b8f92d78ee23": { + "67cc5f72da0548869b6464c21166d941": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6395,13 +6709,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_17f5ffbb89264fa09d1d6d54782edbce", + "layout": "IPY_MODEL_b65ff03dd1cc49808398d5b135910e94", "placeholder": "​", - "style": "IPY_MODEL_51f709a633da42c985cd97d36f914d90", + "style": "IPY_MODEL_3790804d3e254c8aa2640fa18628a142", "value": "Downloading (…)neration_config.json: 100%" } }, - "18865676da3d49dfab563d712dcd55b9": { + "7063c0563b434d5b89c84dda54a4ffc0": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6417,15 +6731,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e2b2f39d43704f9c8e241670fa803d6e", + "layout": "IPY_MODEL_b292e93efce84f87991920f10c54d0f1", "max": 288, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_bbde3f6bc0984496be5b0317ea739f23", + "style": "IPY_MODEL_7b365e0582e4463ca82c7e7d2582bba6", "value": 288 } }, - "fe03a6bd3dc343d8afc818b919dfb90c": { + "0be4900c5f584498b117bbfb0c47c814": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6440,13 +6754,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec3902818c7d4ce2994779a47861dc01", + "layout": "IPY_MODEL_a87b958909f64a9f8f60740f8326e532", "placeholder": "​", - "style": "IPY_MODEL_4461ba3385694f88addd3d4fcd7c0350", - "value": " 288/288 [00:00<00:00, 10.1kB/s]" + "style": "IPY_MODEL_2eee52843ab24ebf8417a10be9177c64", + "value": " 288/288 [00:00<00:00, 5.69kB/s]" } }, - "921857fae7e945eab76e98c66ec5013a": { + "729fd70b2e944b619c8465d8c0db739c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6498,7 +6812,7 @@ "width": null } }, - "17f5ffbb89264fa09d1d6d54782edbce": { + "b65ff03dd1cc49808398d5b135910e94": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6550,7 +6864,7 @@ "width": null } }, - "51f709a633da42c985cd97d36f914d90": { + "3790804d3e254c8aa2640fa18628a142": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6565,7 +6879,7 @@ "description_width": "" } }, - "e2b2f39d43704f9c8e241670fa803d6e": { + "b292e93efce84f87991920f10c54d0f1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6617,7 +6931,7 @@ "width": null } }, - "bbde3f6bc0984496be5b0317ea739f23": { + "7b365e0582e4463ca82c7e7d2582bba6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6633,7 +6947,7 @@ "description_width": "" } }, - "ec3902818c7d4ce2994779a47861dc01": { + "a87b958909f64a9f8f60740f8326e532": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6685,7 +6999,7 @@ "width": null } }, - "4461ba3385694f88addd3d4fcd7c0350": { + "2eee52843ab24ebf8417a10be9177c64": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6700,7 +7014,7 @@ "description_width": "" } }, - "cb8c0ceed812400fb80bf3c0884e801c": { + "1df80b3abc274dbf93ea2a4eebacbde6": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6715,14 +7029,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a2913f4bf9b3404599806582ea9c9dda", - "IPY_MODEL_bebdd6f9a8c2468499071ec7ffca4901", - "IPY_MODEL_f87b2a4f927a4722b3ddff4e7178c04d" + "IPY_MODEL_b7538f52c6fa4cd195e16d6485857abb", + "IPY_MODEL_f4eeebaaee334998ace7743a98a50b30", + "IPY_MODEL_36ac9c8eb00e4126a68a932540197ff5" ], - "layout": "IPY_MODEL_acbda0d9cf184a0080d744ce0ce2595b" + "layout": "IPY_MODEL_c36db17efc524aa89b002a3f02001ee2" } }, - "a2913f4bf9b3404599806582ea9c9dda": { + "b7538f52c6fa4cd195e16d6485857abb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6737,13 +7051,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fc874d5ea0ad4219938e5f422cc873ed", + "layout": "IPY_MODEL_c6b8a1a8258d4ab6b095fc0675324b85", "placeholder": "​", - "style": "IPY_MODEL_3a7d13eb24fb4115a28f7c441e1cc9c1", + "style": "IPY_MODEL_ebef8616913146fab4944d3d951cd523", "value": "Map: 100%" } }, - "bebdd6f9a8c2468499071ec7ffca4901": { + "f4eeebaaee334998ace7743a98a50b30": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6759,15 +7073,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_52119c2bd1c94d0d97dfb0ad43630dc8", + "layout": "IPY_MODEL_6837a7ce023a4a4ca362656ea69ef4c0", "max": 5944, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_da2927f85c1d4b52be3874dc9dd36eb6", + "style": "IPY_MODEL_1e4578ff6ead48519c0db4d451f27d87", "value": 5944 } }, - "f87b2a4f927a4722b3ddff4e7178c04d": { + "36ac9c8eb00e4126a68a932540197ff5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6782,13 +7096,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_abfa2d27e4ff415ab34a604e26449074", + "layout": "IPY_MODEL_09db804a979b40ccaef47e9cc49656d9", "placeholder": "​", - "style": "IPY_MODEL_0eeb2be5f05446ff8fd9cc269659d4e5", - "value": " 5944/5944 [00:01<00:00, 4446.55 examples/s]" + "style": "IPY_MODEL_41573f42ba6c4b94a801391fbcaddb0f", + "value": " 5944/5944 [00:01<00:00, 4532.95 examples/s]" } }, - "acbda0d9cf184a0080d744ce0ce2595b": { + "c36db17efc524aa89b002a3f02001ee2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6840,7 +7154,7 @@ "width": null } }, - "fc874d5ea0ad4219938e5f422cc873ed": { + "c6b8a1a8258d4ab6b095fc0675324b85": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6892,7 +7206,7 @@ "width": null } }, - "3a7d13eb24fb4115a28f7c441e1cc9c1": { + "ebef8616913146fab4944d3d951cd523": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6907,7 +7221,7 @@ "description_width": "" } }, - "52119c2bd1c94d0d97dfb0ad43630dc8": { + "6837a7ce023a4a4ca362656ea69ef4c0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6959,7 +7273,7 @@ "width": null } }, - "da2927f85c1d4b52be3874dc9dd36eb6": { + "1e4578ff6ead48519c0db4d451f27d87": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6975,7 +7289,7 @@ "description_width": "" } }, - "abfa2d27e4ff415ab34a604e26449074": { + "09db804a979b40ccaef47e9cc49656d9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7027,7 +7341,7 @@ "width": null } }, - "0eeb2be5f05446ff8fd9cc269659d4e5": { + "41573f42ba6c4b94a801391fbcaddb0f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7042,7 +7356,7 @@ "description_width": "" } }, - "2130a0fbe4984acda5fd414a89c62fa3": { + "5398bd28ca7544fb8e3967dffc4c0415": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7057,14 +7371,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a2a4d09245d54f42a5d3bfa137c56b7e", - "IPY_MODEL_bc37a3e226344398a4f7138db1fc30fe", - "IPY_MODEL_54139c41c04741bc93b5166b328849b9" + "IPY_MODEL_42114f6617a547b29da88a64232750bb", + "IPY_MODEL_c126d1c5426540278829c52a721c57cb", + "IPY_MODEL_46ed0b8035dc4a209707a0d3515443e0" ], - "layout": "IPY_MODEL_96ae99b730524fdaa9c401df061f5a30" + "layout": "IPY_MODEL_3b69984f8e3248f5aaed2fc211768fbd" } }, - "a2a4d09245d54f42a5d3bfa137c56b7e": { + "42114f6617a547b29da88a64232750bb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7079,13 +7393,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e7f08e6d90a3479bba6c6b277f89bc5d", + "layout": "IPY_MODEL_ec7a331e84c54ef58f4d7d78a64854a0", "placeholder": "​", - "style": "IPY_MODEL_7191c9f7e28441038a72b5638ff8f5a2", + "style": "IPY_MODEL_7e2b86223cd5468eb2c26e487442ac36", "value": "Map: 100%" } }, - "bc37a3e226344398a4f7138db1fc30fe": { + "c126d1c5426540278829c52a721c57cb": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7101,15 +7415,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c7f84a71647d4a89a45883b25b1506ec", + "layout": "IPY_MODEL_88ecabbc0d474bcd9be6cbcded33a3be", "max": 661, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_601620faee2a4d71afc80a17a2c0307d", + "style": "IPY_MODEL_7e9dc18ac017489e99986c90f5a84bfc", "value": 661 } }, - "54139c41c04741bc93b5166b328849b9": { + "46ed0b8035dc4a209707a0d3515443e0": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7124,13 +7438,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_aae91005c47845ca8742dbe190c9ee3e", + "layout": "IPY_MODEL_6e6de21ab0f54333af9d6e13474bba97", "placeholder": "​", - "style": "IPY_MODEL_dae5a5254ba549098fd272de8ee606f6", - "value": " 661/661 [00:00<00:00, 3327.61 examples/s]" + "style": "IPY_MODEL_a621c2381db04e43beaeae5565e73344", + "value": " 661/661 [00:00<00:00, 3970.17 examples/s]" } }, - "96ae99b730524fdaa9c401df061f5a30": { + "3b69984f8e3248f5aaed2fc211768fbd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7182,7 +7496,7 @@ "width": null } }, - "e7f08e6d90a3479bba6c6b277f89bc5d": { + "ec7a331e84c54ef58f4d7d78a64854a0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7234,7 +7548,7 @@ "width": null } }, - "7191c9f7e28441038a72b5638ff8f5a2": { + "7e2b86223cd5468eb2c26e487442ac36": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7249,7 +7563,7 @@ "description_width": "" } }, - "c7f84a71647d4a89a45883b25b1506ec": { + "88ecabbc0d474bcd9be6cbcded33a3be": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7301,7 +7615,7 @@ "width": null } }, - "601620faee2a4d71afc80a17a2c0307d": { + "7e9dc18ac017489e99986c90f5a84bfc": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7317,7 +7631,7 @@ "description_width": "" } }, - "aae91005c47845ca8742dbe190c9ee3e": { + "6e6de21ab0f54333af9d6e13474bba97": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7369,7 +7683,7 @@ "width": null } }, - "dae5a5254ba549098fd272de8ee606f6": { + "a621c2381db04e43beaeae5565e73344": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7384,7 +7698,7 @@ "description_width": "" } }, - "d6b5e75c74b040f48d8c1fbda869a531": { + "84424c71b5a44889aae3180123b6240c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7399,14 +7713,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6973320e39f64d6cb9e34f1f73398ed8", - "IPY_MODEL_7682b51b2020477db401e27d0fb08807", - "IPY_MODEL_eaa95f0f657542d081991dd9fde21203" + "IPY_MODEL_6bbb4d00b5414320b2689e482e7e6164", + "IPY_MODEL_eb6e0776f87f4b18974b86a7f09439ce", + "IPY_MODEL_bad880f391ba4692bb3022ead9c7c5b0" ], - "layout": "IPY_MODEL_1bad1354c5da4a5b96686b83009fa8cd" + "layout": "IPY_MODEL_16e2233465ab4c24babc4e18cc525bca" } }, - "6973320e39f64d6cb9e34f1f73398ed8": { + "6bbb4d00b5414320b2689e482e7e6164": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7421,13 +7735,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_040965cbde964230a9feee6068b6cfa0", + "layout": "IPY_MODEL_7b0fd30e02e4469eb2d4361b8f085805", "placeholder": "​", - "style": "IPY_MODEL_74baaacd944d46aeb938e5119d7d74b5", + "style": "IPY_MODEL_c1845b85765a4f34b9a4d65158ee44b8", "value": "Map: 100%" } }, - "7682b51b2020477db401e27d0fb08807": { + "eb6e0776f87f4b18974b86a7f09439ce": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7443,15 +7757,15 @@ "bar_style": "", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3d11d8fb76fc4a08921ba892f5155460", + "layout": "IPY_MODEL_9259cdeb93744e63b2c8eeb4f8431e6e", "max": 1652, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_cf9c55c0f3e145d9b7882625f0c9569e", + "style": "IPY_MODEL_06b8bd1b4a794b608203b0e7c96ebfbc", "value": 1652 } }, - "eaa95f0f657542d081991dd9fde21203": { + "bad880f391ba4692bb3022ead9c7c5b0": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7466,13 +7780,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_de085a18d4e147459b37aa66545adf1b", + "layout": "IPY_MODEL_33ad576d6ee94677a1dec49f9141df15", "placeholder": "​", - "style": "IPY_MODEL_086945381e0a4dc79d5e8e62bf6ba66b", - "value": " 1652/1652 [00:00<00:00, 4014.93 examples/s]" + "style": "IPY_MODEL_2a74ac140d5c4279b9540ebc8c650f5e", + "value": " 1652/1652 [00:00<00:00, 4627.99 examples/s]" } }, - "1bad1354c5da4a5b96686b83009fa8cd": { + "16e2233465ab4c24babc4e18cc525bca": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7524,7 +7838,7 @@ "width": null } }, - "040965cbde964230a9feee6068b6cfa0": { + "7b0fd30e02e4469eb2d4361b8f085805": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7576,7 +7890,7 @@ "width": null } }, - "74baaacd944d46aeb938e5119d7d74b5": { + "c1845b85765a4f34b9a4d65158ee44b8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7591,7 +7905,7 @@ "description_width": "" } }, - "3d11d8fb76fc4a08921ba892f5155460": { + "9259cdeb93744e63b2c8eeb4f8431e6e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7643,7 +7957,7 @@ "width": null } }, - "cf9c55c0f3e145d9b7882625f0c9569e": { + "06b8bd1b4a794b608203b0e7c96ebfbc": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7659,7 +7973,7 @@ "description_width": "" } }, - "de085a18d4e147459b37aa66545adf1b": { + "33ad576d6ee94677a1dec49f9141df15": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7711,7 +8025,7 @@ "width": null } }, - "086945381e0a4dc79d5e8e62bf6ba66b": { + "2a74ac140d5c4279b9540ebc8c650f5e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7726,7 +8040,7 @@ "description_width": "" } }, - "b6eb39e5dd804fd7a63ffaa9af8251a5": { + "355889d3a1f14eed91c511cd80ad7681": { "model_module": "@jupyter-widgets/controls", "model_name": "VBoxModel", "model_module_version": "1.5.0", @@ -7741,16 +8055,16 @@ "_view_name": "VBoxView", "box_style": "", "children": [ - "IPY_MODEL_4a1803205f9b4202b9b232b3f4c48632", - "IPY_MODEL_3e82d4873bd94c588db9d1508897c971", - "IPY_MODEL_5f54e0ada1fa4f27a803ec5131146cdf", - "IPY_MODEL_59fe677dd25447c5ada55266f2ce6aff", - "IPY_MODEL_67ebf8816b964e79aa4bde8a99247999" + "IPY_MODEL_485bcd63d70347adaaeea305596b3afc", + "IPY_MODEL_7e36006fa073432790a138c62027ea86", + "IPY_MODEL_1a613697ab344314b8383ce91fddd4d5", + "IPY_MODEL_e055d6c25c384390a0326167bc4815d3", + "IPY_MODEL_2146c4271e7543ada4d0b2c9d16a627d" ], - "layout": "IPY_MODEL_d0ef75af6ff24a1a912d1df4995efc9a" + "layout": "IPY_MODEL_f1a2ebbffec049509e170f2a5ac3d4cb" } }, - "4a1803205f9b4202b9b232b3f4c48632": { + "485bcd63d70347adaaeea305596b3afc": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7765,13 +8079,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5f82c45527b7442b9e4cb66a2c48976a", + "layout": "IPY_MODEL_1be8743f97ba478c9d037898c4573fe8", "placeholder": "​", - "style": "IPY_MODEL_a3b096140289433c8fc2c1649ce7e9eb", + "style": "IPY_MODEL_5570e4c5c5d64d538279b772f2a726a2", "value": "


Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" } }, - "3e82d4873bd94c588db9d1508897c971": { + "7e36006fa073432790a138c62027ea86": { "model_module": "@jupyter-widgets/controls", "model_name": "PasswordModel", "model_module_version": "1.5.0", @@ -7788,13 +8102,13 @@ "description": "Token:", "description_tooltip": null, "disabled": false, - "layout": "IPY_MODEL_934aa40fc80e478ebd7da1a517da5eeb", + "layout": "IPY_MODEL_afcad6b0e1734247a588c658a9e34ac0", "placeholder": "​", - "style": "IPY_MODEL_0cd5cd660e4649b9836c0a5df525a8bf", + "style": "IPY_MODEL_33325968e44242338e2294a80af87be9", "value": "" } }, - "5f54e0ada1fa4f27a803ec5131146cdf": { + "1a613697ab344314b8383ce91fddd4d5": { "model_module": "@jupyter-widgets/controls", "model_name": "CheckboxModel", "model_module_version": "1.5.0", @@ -7811,12 +8125,12 @@ "description_tooltip": null, "disabled": false, "indent": true, - "layout": "IPY_MODEL_f89415baac0d4b9a8f5a878edf98f4cb", - "style": "IPY_MODEL_a0a62435f8c34ac4bbcf9600af8455cb", + "layout": "IPY_MODEL_f4c6a8d6db9c47d684d4edbd2473bc42", + "style": "IPY_MODEL_833442b28e1f4c1b818e6f99a2efd3dd", "value": true } }, - "59fe677dd25447c5ada55266f2ce6aff": { + "e055d6c25c384390a0326167bc4815d3": { "model_module": "@jupyter-widgets/controls", "model_name": "ButtonModel", "model_module_version": "1.5.0", @@ -7833,12 +8147,12 @@ "description": "Login", "disabled": false, "icon": "", - "layout": "IPY_MODEL_a821cf09f7d744df9c064c37bae1910b", - "style": "IPY_MODEL_fa6e7e0636a84d8c83650965e8a4516a", + "layout": "IPY_MODEL_8859844f385740eda1358d95bfba45cd", + "style": "IPY_MODEL_85d96084e47149e3a49db2190020e6e7", "tooltip": "" } }, - "67ebf8816b964e79aa4bde8a99247999": { + "2146c4271e7543ada4d0b2c9d16a627d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7853,13 +8167,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4b88274b4abb43b1acbdf0d4933ddab4", + "layout": "IPY_MODEL_3086a4ea116246beb5107367ad2b417e", "placeholder": "​", - "style": "IPY_MODEL_6a5b6ff06f2b4592a7e96995f072adfe", + "style": "IPY_MODEL_d8a8b1e75fc44dd49cf087627bd90832", "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " } }, - "d0ef75af6ff24a1a912d1df4995efc9a": { + "f1a2ebbffec049509e170f2a5ac3d4cb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7911,7 +8225,7 @@ "width": "50%" } }, - "5f82c45527b7442b9e4cb66a2c48976a": { + "1be8743f97ba478c9d037898c4573fe8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7963,7 +8277,7 @@ "width": null } }, - "a3b096140289433c8fc2c1649ce7e9eb": { + "5570e4c5c5d64d538279b772f2a726a2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7978,7 +8292,7 @@ "description_width": "" } }, - "934aa40fc80e478ebd7da1a517da5eeb": { + "afcad6b0e1734247a588c658a9e34ac0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8030,7 +8344,7 @@ "width": null } }, - "0cd5cd660e4649b9836c0a5df525a8bf": { + "33325968e44242338e2294a80af87be9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8045,7 +8359,7 @@ "description_width": "" } }, - "f89415baac0d4b9a8f5a878edf98f4cb": { + "f4c6a8d6db9c47d684d4edbd2473bc42": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8097,7 +8411,7 @@ "width": null } }, - "a0a62435f8c34ac4bbcf9600af8455cb": { + "833442b28e1f4c1b818e6f99a2efd3dd": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8112,7 +8426,7 @@ "description_width": "" } }, - "a821cf09f7d744df9c064c37bae1910b": { + "8859844f385740eda1358d95bfba45cd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8164,7 +8478,7 @@ "width": null } }, - "fa6e7e0636a84d8c83650965e8a4516a": { + "85d96084e47149e3a49db2190020e6e7": { "model_module": "@jupyter-widgets/controls", "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", @@ -8180,7 +8494,7 @@ "font_weight": "" } }, - "4b88274b4abb43b1acbdf0d4933ddab4": { + "3086a4ea116246beb5107367ad2b417e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8232,7 +8546,7 @@ "width": null } }, - "6a5b6ff06f2b4592a7e96995f072adfe": { + "d8a8b1e75fc44dd49cf087627bd90832": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",