-
Notifications
You must be signed in to change notification settings - Fork 0
/
minesweeper.py
277 lines (226 loc) · 8.65 KB
/
minesweeper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import itertools
import random
class Minesweeper():
"""
Minesweeper game representation
"""
def __init__(self, height=8, width=8, mines=8):
# Set initial width, height, and number of mines
self.height = height
self.width = width
self.mines = set()
# Initialize an empty field with no mines
self.board = []
for i in range(self.height):
row = []
for j in range(self.width):
row.append(False)
self.board.append(row)
# Add mines randomly
while len(self.mines) != mines:
i = random.randrange(height)
j = random.randrange(width)
if not self.board[i][j]:
self.mines.add((i, j))
self.board[i][j] = True
# At first, player has found no mines
self.mines_found = set()
def print(self):
"""
Prints a text-based representation
of where mines are located.
"""
for i in range(self.height):
print("--" * self.width + "-")
for j in range(self.width):
if self.board[i][j]:
print("|X", end="")
else:
print("| ", end="")
print("|")
print("--" * self.width + "-")
def is_mine(self, cell):
i, j = cell
return self.board[i][j]
def nearby_mines(self, cell):
"""
Returns the number of mines that are
within one row and column of a given cell,
not including the cell itself.
"""
# Keep count of nearby mines
count = 0
# Loop over all cells within one row and column
for i in range(cell[0] - 1, cell[0] + 2):
for j in range(cell[1] - 1, cell[1] + 2):
# Ignore the cell itself
if (i, j) == cell:
continue
# Update count if cell in bounds and is mine
if 0 <= i < self.height and 0 <= j < self.width:
if self.board[i][j]:
count += 1
return count
def won(self):
"""
Checks if all mines have been flagged.
"""
return self.mines_found == self.mines
class Sentence():
"""
Logical statement about a Minesweeper game
A sentence consists of a set of board cells,
and a count of the number of those cells which are mines.
"""
def __init__(self, cells, count):
self.cells = set(cells)
self.count = count
def __eq__(self, other):
return self.cells == other.cells and self.count == other.count
def __str__(self):
return f"{self.cells} = {self.count}"
def known_mines(self):
"""
Returns the set of all cells in self.cells known to be mines.
"""
if len(self.cells) == self.count:
return self.cells.copy() # Return a copy to avoid modifying the original set
return set() # No known mines if the count doesn't match the number of cells
def known_safes(self):
"""
Returns the set of all cells in self.cells known to be safe.
"""
# Calculate how many mines we know about
known_mines_count = len(self.cells) - self.count
# If the known mines count is equal to the number of cells,
# then all the remaining cells are safe.
if known_mines_count == len(self.cells):
return self.cells.copy() # Return a copy to avoid modifying the original set
return set() # No known safes if the conditions are not met
def mark_mine(self, cell):
"""
Updates internal knowledge representation given the fact that
a cell is known to be a mine.
"""
# If the cell is in the set of cells, remove it
if cell in self.cells:
self.cells.remove(cell)
# Decrease the count of mines
self.count -= 1
def mark_safe(self, cell):
"""
Updates internal knowledge representation given the fact that
a cell is known to be safe.
"""
# If the cell is in the set of cells, remove it
if cell in self.cells:
self.cells.remove(cell)
class MinesweeperAI():
"""
Minesweeper game player
"""
def __init__(self, height=8, width=8):
# Set initial height and width
self.height = height
self.width = width
# Keep track of which cells have been clicked on
self.moves_made = set()
# Keep track of cells known to be safe or mines
self.mines = set()
self.safes = set()
# List of sentences about the game known to be true
self.knowledge = []
def mark_mine(self, cell):
"""
Marks a cell as a mine, and updates all knowledge
to mark that cell as a mine as well.
"""
self.mines.add(cell)
for sentence in self.knowledge:
sentence.mark_mine(cell)
def mark_safe(self, cell):
"""
Marks a cell as safe, and updates all knowledge
to mark that cell as safe as well.
"""
self.safes.add(cell)
for sentence in self.knowledge:
sentence.mark_safe(cell)
def add_knowledge(self, cell, count):
"""
Called when the Minesweeper board tells us, for a given
safe cell, how many neighboring cells have mines in them.
This function should:
1) mark the cell as a move that has been made
2) mark the cell as safe
3) add a new sentence to the AI's knowledge base
based on the value of `cell` and `count`
4) mark any additional cells as safe or as mines
if it can be concluded based on the AI's knowledge base
5) add any new sentences to the AI's knowledge base
if they can be inferred from existing knowledge
"""
# 1) Mark the cell as a move that has been made
self.moves_made.add(cell)
# 2) Mark the cell as safe
self.mark_safe(cell)
# 3) Add a new sentence to the AI's knowledge base
neighbors = set()
for i in range(cell[0] - 1, cell[0] + 2):
for j in range(cell[1] - 1, cell[1] + 2):
if (i, j) == cell:
continue
if 0 <= i < self.height and 0 <= j < self.width:
if (i, j) not in self.safes and (i, j) not in self.mines:
neighbors.add((i, j))
new_sentence = Sentence(neighbors, count)
self.knowledge.append(new_sentence)
# 4) Mark any additional cells as safe or as mines
for sentence in self.knowledge:
mines = sentence.known_mines()
safes = sentence.known_safes()
if mines:
for mine in mines:
self.mark_mine(mine)
if safes:
for safe in safes:
self.mark_safe(safe)
# 5) Add any new sentences to the AI's knowledge base
new_inferences = []
for sentence1 in self.knowledge:
for sentence2 in self.knowledge:
if sentence1 != sentence2 and sentence1.cells.issubset(sentence2.cells):
inferred_cells = sentence2.cells - sentence1.cells
inferred_count = sentence2.count - sentence1.count
new_inference = Sentence(inferred_cells, inferred_count)
if new_inference not in self.knowledge:
new_inferences.append(new_inference)
self.knowledge.extend(new_inferences)
def make_safe_move(self):
"""
Returns a safe cell to choose on the Minesweeper board.
The move must be known to be safe, and not already a move
that has been made.
This function may use the knowledge in self.mines, self.safes
and self.moves_made, but should not modify any of those values.
"""
for safe in self.safes:
if safe not in self.moves_made:
return safe
return None # No safe moves available
def make_random_move(self):
"""
Returns a move to make on the Minesweeper board.
Should choose randomly among cells that:
1) have not already been chosen, and
2) are not known to be mines
"""
possible_moves = [
(i, j)
for i in range(self.height)
for j in range(self.width)
if (i, j) not in self.moves_made and (i, j) not in self.mines
]
if possible_moves:
return random.choice(possible_moves)
return None # No valid moves available