-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshopping.py
205 lines (161 loc) · 6.54 KB
/
shopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import csv
import sys
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
TEST_SIZE = 0.4
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python shopping.py data")
# Load data from spreadsheet and split into train and test sets
evidence, labels = load_data(sys.argv[1])
X_train, X_test, y_train, y_test = train_test_split(
evidence, labels, test_size=TEST_SIZE
)
# Train model and make predictions
model = train_model(X_train, y_train)
predictions = model.predict(X_test)
sensitivity, specificity = evaluate(y_test, predictions)
# Print results
print(f"Correct: {(y_test == predictions).sum()}")
print(f"Incorrect: {(y_test != predictions).sum()}")
print(f"True Positive Rate: {100 * sensitivity:.2f}%")
print(f"True Negative Rate: {100 * specificity:.2f}%")
def load_data(filename):
"""
Load shopping data from a CSV file `filename` and convert into a list of
evidence lists and a list of labels. Return a tuple (evidence, labels).
evidence should be a list of lists, where each list contains the
following values, in order:
- Administrative, an integer
- Administrative_Duration, a floating point number
- Informational, an integer
- Informational_Duration, a floating point number
- ProductRelated, an integer
- ProductRelated_Duration, a floating point number
- BounceRates, a floating point number
- ExitRates, a floating point number
- PageValues, a floating point number
- SpecialDay, a floating point number
- Month, an index from 0 (January) to 11 (December)
- OperatingSystems, an integer
- Browser, an integer
- Region, an integer
- TrafficType, an integer
- VisitorType, an integer 0 (not returning) or 1 (returning)
- Weekend, an integer 0 (if false) or 1 (if true)
labels should be the corresponding list of labels, where each label
is 1 if Revenue is true, and 0 otherwise.
"""
evidence = []
labels = []
with open(filename) as f:
reader = csv.reader(f)
next(reader)
for row in reader:
#Create a temporary list and append values based on .csv files
#print(row)
tempEvidence = []
tempEvidence.append(int(row[0]))
tempEvidence.append(float(row[1]))
tempEvidence.append(int(row[2]))
tempEvidence.append(float(row[3]))
tempEvidence.append(int(row[4]))
tempEvidence.append(float(row[5]))
tempEvidence.append(float(row[6]))
tempEvidence.append(float(row[7]))
tempEvidence.append(float(row[8]))
tempEvidence.append(float(row[9]))
#Based on row["Month"] it'll append number 0-11, December by default
if (row[10] is "Jan"):
tempEvidence.append(0)
elif (row[10] is "Feb"):
tempEvidence.append(1)
elif (row[10] is "Mar"):
tempEvidence.append(2)
elif (row[10] is "Apr"):
tempEvidence.append(3)
elif (row[10] is "May"):
tempEvidence.append(4)
elif (row[10] is "June"):
tempEvidence.append(5)
elif (row[10] is "Jul"):
tempEvidence.append(6)
elif (row[10] is "Aug"):
tempEvidence.append(7)
elif (row[10] is "Sep"):
tempEvidence.append(8)
elif (row[10] is "Oct"):
tempEvidence.append(9)
elif (row[10] is "Nov"):
tempEvidence.append(10)
else:
tempEvidence.append(11)
tempEvidence.append(int(row[11]))
tempEvidence.append(int(row[12]))
tempEvidence.append(int(row[13]))
tempEvidence.append(int(row[14]))
#Use VisitorType to append either 1 or 0 representing that field
if (row[15] is "Returning_Visitor"):
tempEvidence.append(1)
else:
tempEvidence.append(0)
#Depending on Weekend value, it'll append either 1 for True and 0 for False
if (row[16] is True):
tempEvidence.append(1)
else:
tempEvidence.append(0)
#Appends tempEvidence list in evidence list and row["Revenue"] in labels list
evidence.append(tempEvidence)
if (row[17] == "TRUE"):
labels.append(1)
else:
labels.append(0)
return (evidence, labels)
def train_model(evidence, labels):
"""
Given a list of evidence lists and a list of labels, return a
fitted k-nearest neighbor model (k=1) trained on the data.
"""
#Intiate a model, train it with evidence and labels, and return that trained model
model = KNeighborsClassifier()
model.fit(evidence, labels)
return model
def evaluate(labels, predictions):
"""
Given a list of actual labels and a list of predicted labels,
return a tuple (sensitivity, specificty).
Assume each label is either a 1 (positive) or 0 (negative).
`sensitivity` should be a floating-point value from 0 to 1
representing the "true positive rate": the proportion of
actual positive labels that were accurately identified.
`specificity` should be a floating-point value from 0 to 1
representing the "true negative rate": the proportion of
actual negative labels that were accurately identified.
"""
sensitivity = 0.0
specificity = 0.0
numPos = 0
numNeg = 0
#Get the number of positive values and negative values
for label in labels:
if label == 1:
numPos = numPos + 1
elif label == 0:
numNeg = numNeg + 1
else:
continue
#Go through labels and predictions to calculate sentivity and specificity
for label, prediction in zip(labels, predictions):
if prediction == label and label is 1:
sensitivity = sensitivity + 1
elif prediction == label and label is 0:
specificity = specificity + 1
else:
continue
#Divide by length so both sensitivty and specificty are between 0 to 1
sensitivity = sensitivity / numPos
specificity = specificity / numNeg
return (sensitivity, specificity)
if __name__ == "__main__":
main()