-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
32 lines (25 loc) · 1.02 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
class Util:
# expects data in a form, where the class is always the last row
@staticmethod
def splitClasses(data) -> list:
positiveClasses = []
negativeClasses = []
splitData = []
# split data in classes for easier calculations in the cqql classifier
for i in range(len(data) - 1):
if data[i][data[0].shape[0] - 1] == 1:
positiveClasses.append(data[i])
else:
negativeClasses.append(data[i])
splitData.append(positiveClasses)
splitData.append(negativeClasses)
return splitData
# normalizes dataset, so that each value is in the interval[0,1]
# takes in a Matrix where each row represents the attribute and the column the attribute values an object has
@staticmethod
def normalizeDataset(matrix):
scaler = MinMaxScaler(feature_range=(0, 1))
normedMatrix = scaler.fit_transform(matrix)
return normedMatrix