-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomework6_blhylak_yliu17.py
232 lines (176 loc) · 9.08 KB
/
homework6_blhylak_yliu17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import sys
class NeuralNetworkClassifier():
def __init__(self, hidden_units, learning_rate, batch_size, epochs, l_1_beta_1, l_1_beta_2, l_2_alpha_1, l_2_alpha_2):
self._hidden_units = hidden_units
self._learning_rate = learning_rate
self._batch_size = batch_size
self._epochs = epochs
self._l_1_beta_1 = l_1_beta_1
self._l_1_beta_2 = l_1_beta_2
self._l_2_alpha_1 = l_2_alpha_1
self._l_2_alpha_2 = l_2_alpha_2
def fit(self, X_train, Y_train):
num_input_dimensions = X_train.shape[1]
self._num_classes = Y_train.shape[1]
training_set_size = X_train.shape[0]
self._W_1 = 1 / np.sqrt(self._hidden_units) * np.random.randn(self._hidden_units, num_input_dimensions)
self._W_2 = 1 / np.sqrt(self._num_classes) * np.random.randn(self._num_classes, self._hidden_units)
self._b_1 = 0.01 * np.ones((self._hidden_units, 1))
self._b_2 = 0.01 * np.ones((self._num_classes, 1))
for epoch in range(self._epochs):
for batch_start in range(0, training_set_size, self._batch_size):
batch_end = batch_start + self._batch_size
X_batch = X_train[batch_start:batch_end]
Y_batch = Y_train[batch_start:batch_end]
num_examples = X_batch.shape[0]
W_1_prime_total = 0
W_2_prime_total = 0
b_1_prime_total = 0
b_2_prime_total = 0
for i in range(num_examples):
x = np.vstack(X_batch[i, :])
y = np.vstack(Y_batch[i, :])
z_1, h_1, y_hat = self._forward_propagation(x)
W_1_prime, W_2_prime, b_1_prime, b_2_prime = self._backward_propagation(x, y, z_1, h_1, y_hat)
W_1_prime_total += W_1_prime
W_2_prime_total += W_2_prime
b_1_prime_total += b_1_prime
b_2_prime_total += b_2_prime
self._W_1 = self._W_1 - self._learning_rate * W_1_prime_total
self._W_2 = self._W_2 - self._learning_rate * W_2_prime_total
self._b_1 = self._b_1 - self._learning_rate * b_1_prime_total
self._b_2 = self._b_2 - self._learning_rate * b_2_prime_total
Y_hats = self.predict(X_batch)
y_hat = self.predict(X_train)
print("Epoch %3d/%3d Loss = %.2f Training Accuracy = %.2f" % (epoch + 1, self._epochs,self._cross_entropy_loss(Y_batch, Y_hats), self.score(Y_train, y_hat)))
def _forward_propagation(self, x):
z_1 = self._W_1.dot(x) + self._b_1
# print("_forward_propagation W_1=", self._W_1.shape)
# print("_forward_propagation b_1=", self._b_1.shape)
# print("_forward_propagation x=", x.shape)
# print("_forward_propagation z=", z_1.shape)
h_1 = self._relu(z_1)
# print("_forward_propagation h_1=", h_1.shape)
z_2 = self._W_2.dot(h_1) + self._b_2
# print("_forward_propagation z_2=", z_2.shape)
y_hat = self._softmax(z_2)
# print("_forward_propagation y_hat=", y_hat.shape)
return z_1, h_1, y_hat
def _backward_propagation(self, x, y, z_1, h_1, y_hat):
df_dy = y_hat - y
g = self._g(df_dy, self._W_2, z_1)
W_1_prime = self._W_1_prime(x, g, self._W_1, self._l_2_alpha_1, self._l_1_beta_1)
W_2_prime = self._W_2_prime(df_dy, h_1, self._W_2, self._l_2_alpha_2, self._l_1_beta_2)
b_1_prime = self._learning_rate * self._b_1_prime(g)
b_2_prime = self._learning_rate * self._b_2_prime(df_dy)
return W_1_prime, W_2_prime, b_1_prime, b_2_prime
def predict(self, X):
num_examples = X.shape[0]
Y_hat = np.zeros((num_examples, self._num_classes))
for i in range(num_examples):
x = np.vstack(X[i, :])
_, _, y_hat = self._forward_propagation(x)
Y_hat[i, :] = y_hat[:, 0]
return Y_hat
def _relu(self, x):
return np.maximum(x, 0)
def _relu_prime(self, x):
y = np.zeros((x.shape[0], x.shape[1]))
y[x > 0] = 1.0
return y
def _softmax(self, Z):
exp = np.exp(Z)
total = np.sum(exp, axis=0)
return exp / total
def _g(self, df_dy, W_2, z_1):
return (df_dy.T.dot(W_2) * self._relu_prime(z_1.T)).T
def _W_2_prime(self, df_dy, h_1, W_2, alpha_2, beta_2):
return df_dy.dot(h_1.T) + alpha_2 * W_2 + beta_2 * np.sign(W_2)
def _b_2_prime(self, df_dy):
return df_dy
def _W_1_prime(self, x, g, W_1, alpha_1, beta_1):
return g.dot(x.T) + alpha_1 * W_1 + beta_1 * np.sign(W_1)
def _b_1_prime(self, g):
return g
def _l_1_loss(self, W):
return np.sum(np.absolute(W))
def _l_2_loss(self, W):
return 0.5 * np.linalg.norm(W)
def _cross_entropy_loss(self, y, yhat):
loss = 0
yhat_log = np.log(yhat.T)
for i in range(len(y)):
loss -= y[i, :].dot(yhat_log[:, i])
l_1_regularization = self._l_1_beta_1 * self._l_1_loss(self._W_1) + self._l_1_beta_2 * self._l_1_loss(self._W_2)
l_2_regularization = self._l_2_alpha_1 * self._l_2_loss(self._W_1) + self._l_2_alpha_2 * self._l_2_loss(self._W_2)
return loss + l_1_regularization + l_2_regularization
def _toClassIndices(self, probabilities):
return np.argmax(probabilities, axis=1)
def loss(self, testing_labels, predicted_labels):
return 0
def score(self, expected_labels, predicted_labels):
return np.mean(self._toClassIndices(expected_labels) == self._toClassIndices(predicted_labels))
def describe_hyperparameters(hyperparameters):
return "\nHidden Units: {0} Learning Rate: {1} Minibatch Size: {2} Epochs: {3} L1 Strength: {4} L2 Strength: {5}".format(
hyperparameters[0], hyperparameters[1], hyperparameters[2], hyperparameters[3], hyperparameters[4], hyperparameters[5])
def findBestHyperparameters(training_images, training_labels, validation_images, validation_labels):
print("Start training...")
print()
all_hidden_units = [20, 20, 30, 30, 40, 40, 50, 50, 60, 30]
all_learning_rates = [0.0001, 0.001, 0.01, 0.01, 0.01, 0.02, 0.02, 0.1, 0.2, 0.007]
all_minibatch_sizes = [2, 5, 10, 10, 20, 20, 100, 50, 50, 25]
all_num_epochs = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3]
all_l1_strengths = [0.0, 0.0, 0, 0.01, 0.0, 0.001, 0.01, 0.02, 0.01, 0.001]
all_l2_strengths = [0.0, 0.01, 0.001, 0.0, 0.01, 0.001, 0.01, 0.02, 0.01, 0.001]
best_accuracy = 0
best_hyperparamters = []
for i in range(10):
hyperparameters = (all_hidden_units[slice_start+i],
all_learning_rates[slice_start+i],
all_minibatch_sizes[slice_start+i],
all_num_epochs[slice_start+i],
all_l1_strengths[slice_start+i],
all_l2_strengths[slice_start+i])
print(describe_hyperparameters(hyperparameters))
clf = NeuralNetworkClassifier(
hidden_units = hyperparameters[0],
learning_rate = hyperparameters[1],
batch_size = hyperparameters[2],
epochs = hyperparameters[3],
l_1_beta_1 = hyperparameters[4],
l_1_beta_2 = hyperparameters[4],
l_2_alpha_1 = hyperparameters[5],
l_2_alpha_2 = hyperparameters[5])
clf.fit(training_images, training_labels)
predicted_labels = clf.predict(validation_images)
accuracy = clf.score(validation_labels, predicted_labels)
print("Accuracy: %f" % accuracy)
print("Cross Entropy Loss = %.2f" % (clf.loss(validation_labels, predicted_labels)))
if(accuracy > best_accuracy):
best_accuracy = accuracy
best_hyperparamters = hyperparameters
print("Found new best hyperparameters.")
print("\n")
print(describe_hyperparameters(best_hyperparamters))
return best_hyperparamters
def main():
training_images = np.load("mnist_train_images.npy")
training_labels = np.load("mnist_train_labels.npy")
testing_images = np.load("mnist_test_images.npy")
testing_labels = np.load("mnist_test_labels.npy")
validation_images = np.load("mnist_validation_images.npy")
validation_labels = np.load("mnist_validation_labels.npy")
parameters = findBestHyperparameters(training_images[0:16000, :], training_labels[0:16000, :],
validation_images, validation_labels)
clf = NeuralNetworkClassifier(hidden_units=parameters[0],
learning_rate=parameters[1],
batch_size=parameters[2],
epochs=parameters[3], l_1_beta_1=parameters[4], l_1_beta_2=parameters[4], l_2_alpha_1=parameters[5], l_2_alpha_2=parameters[5])
clf.fit(training_images, training_labels)
predicted_labels = clf.predict(testing_images)
if __name__ == "__main__":
if len(sys.argv) != 1:
print("Usage: python3 digit_recognizer.py")
exit()
main()